《福建省長泰一中高中數學 12《充分條件和必要條件》課件 新人教A版選修11》由會員分享,可在線閱讀,更多相關《福建省長泰一中高中數學 12《充分條件和必要條件》課件 新人教A版選修11(20頁珍藏版)》請在裝配圖網上搜索。
1、新人教版選修1-1全套課件1.2充分條件和必要條件 教學目標教學目標 知識目標:知識目標:1、正確理解充分條件、必要條件、充要條件三、正確理解充分條件、必要條件、充要條件三個概念。個概念。2、能利用充分條件、必要條件、充要條件三個、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關系。概念,熟練判斷四種命題間的關系。3、在理解定義的基礎上,可以自覺地對定義進、在理解定義的基礎上,可以自覺地對定義進行轉化,轉化成推理關系及集合的包含關系。行轉化,轉化成推理關系及集合的包含關系。(二)能力目標:(二)能力目標:1、培養(yǎng)學生的觀察與類比能力:、培養(yǎng)學生的觀察與類比能力:“會觀察會觀察
2、”,通過大量的問題,會觀察其共性及個性。通過大量的問題,會觀察其共性及個性。2、培養(yǎng)學生的歸納能力:、培養(yǎng)學生的歸納能力:“敢歸納敢歸納”,敢于對,敢于對一些事例,觀察后進行歸納,總結出一般規(guī)律。一些事例,觀察后進行歸納,總結出一般規(guī)律。3、培養(yǎng)學生的建構能力:、培養(yǎng)學生的建構能力:“善建構善建構”,通過反,通過反復的觀察分析和類比,對歸納出的結論,建構于復的觀察分析和類比,對歸納出的結論,建構于自己的知識體系中。自己的知識體系中。(三)情感目標:(三)情感目標:通過以學生為主體的教學方法,讓學生自己構造通過以學生為主體的教學方法,讓學生自己構造數學命題,發(fā)展體驗獲取知識的感受。數學命題,發(fā)展
3、體驗獲取知識的感受。通過對命題的四種形式及充分條件,必要條件的通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學們的辯證唯物主義觀點。相對性,培養(yǎng)同學們的辯證唯物主義觀點。3、通過、通過“會觀察會觀察”,“敢歸納敢歸納”,“善建構善建構”,培養(yǎng)學生自主學習,勇于創(chuàng)新,多方位審視問題培養(yǎng)學生自主學習,勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現出濃厚的興趣和不畏困出來,并在問題面前表現出濃厚的興趣和不畏困難、勇于進取的精神。難、勇于進取的精神?!窘虒W重點】構建充分條件、必要條件的數學意義;【教學重點】構
4、建充分條件、必要條件的數學意義;【教學難點】命題條件的充分性、必要性的判斷【教學難點】命題條件的充分性、必要性的判斷 1 1、命、命題:題:可以判斷真假的陳述句,可以判斷真假的陳述句,可寫成:若可寫成:若p則則q。 2、四種命題及相、四種命題及相互關系:互關系:一、復習引一、復習引入入逆命逆命題題若若q則則p原命原命題題若若p則則q否命題否命題若若 p則則 q逆否命逆否命題題若若 q則則 p 互互逆逆互互逆逆互互 否否互互 否否互為互為 逆否逆否注注:兩個命題互為逆否命題,它們有相同的真假性。兩個命題互為逆否命題,它們有相同的真假性。一、復習引一、復習引入入3、例、例 :判斷下列命題的真假。判
5、斷下列命題的真假。 (1)若)若xa2+b2,則,則x2ab 。 (2)若)若ab=0,則則a=0。(2)因為若)因為若ab=0 則應該有則應該有a=0 或或b=0。 所以并不能得到所以并不能得到a一定為一定為0。真命題真命題假命題假命題解解(1)因為若)因為若xa2+b2 ,而,而a2+b2 2ab,所以可以,所以可以 得到得到 x2ab 。 一、復習引一、復習引入入4、例,、例, 將(將(1)改寫成)改寫成“若若p,則則q”的形式的形式 并判斷下列命題的真假及其并判斷下列命題的真假及其逆命題的真假。逆命題的真假。 (1)有兩角相等的三角形)有兩角相等的三角形是等腰三角形。是等腰三角形。 (
6、2)若)若a2b2,則,則ab。解解(1)原命題:若一個三角形有兩個角相等,則這個)原命題:若一個三角形有兩個角相等,則這個 三角形是等腰三角形。三角形是等腰三角形。(2)原命題:若)原命題:若a2b2,則,則ab。逆命題:若一個三角形是等腰三角形,則這個逆命題:若一個三角形是等腰三角形,則這個 三三 角形有兩個角相等。角形有兩個角相等。逆命題:若逆命題:若ab,則,則a2b2。真命題真命題真命題真命題假命題假命題假命題假命題一、復習引一、復習引入入 在真命題(在真命題(1)中,)中,p是是q成成立所立所必須具備必須具備的前提。的前提。 在假命題(在假命題(2)中,)中,p不是不是q成立所成立
7、所必須具備必須具備的前提。的前提。在真命題(在真命題(1)中,)中,p足以導致足以導致q,也就是說條件,也就是說條件p充分充分了。了。在假命題(在假命題(2)中條件)中條件p不不充分充分。 1、如果命題、如果命題“若若p則則q”為真,則為真,則記作記作p q(或(或q p)。)。二、新課二、新課練習練習1 用符號用符號 與與 填填空。空。 (1) x2=y2 x=y;(2)內錯角相等)內錯角相等 兩直兩直線平行;線平行;(3)整數)整數a能被能被6整除整除 a的個位數字為偶數;(的個位數字為偶數;(4)ac=bc a=b2、如果命題、如果命題“若若p則則q”為假,則為假,則記作記作p q 。二
8、、新課二、新課定義定義2:如果已知:如果已知q p,則說,則說p是是q的必要條件。的必要條件。 1、定義、定義1:如果已知:如果已知p q,則,則說說p是是q的充分條件。的充分條件。 p q,相當于,相當于P Q ,即,即 P Q 或或 P、Q q p,相當于,相當于Q P ,即,即 Q P 或或 P、Q p q,相當于,相當于P=Q ,即即 P、Q 定義定義3:如果既有:如果既有p q,又,又有有q p,就記作,就記作 則說則說p是是q的充要條件。的充要條件。 p q,二、新課二、新課例例1,下列,下列“若若p,則,則q”形式的命題中,哪些命題形式的命題中,哪些命題 中的中的p是是q的充分條
9、件?的充分條件? (1)若)若x=1,則,則x2 4x+3=0; (2)若)若f(x)=x,則,則f(x)為增函數;)為增函數; (3)若)若x 為無理數,則為無理數,則x2 為無理數為無理數解解:命題(:命題(1)()(2)是真命題,)是真命題,命題(命題(3)是假命題,所以命題)是假命題,所以命題(1)()(2)中的)中的p是是q的充分條件的充分條件 如果已知如果已知p q,則說則說p是是q的充分的充分 條件,條件, q是是p的必的必要條件。要條件。二、新課二、新課練習練習2 下列下列“若若p,則,則q”形式的命形式的命題中,哪些命題中的題中,哪些命題中的 p是是q的充分條件?的充分條件?
10、(1) 若兩個三角形全等,則這兩個三角形相似;若兩個三角形全等,則這兩個三角形相似;(2) 若若x 5,則,則x 10。解解:命題:命題(1)是真命題,命題()是真命題,命題(2)是假命題)是假命題 所以命題(所以命題(1)中的)中的p是是q的充分條件。的充分條件。二、新課二、新課 認清條件和結論。認清條件和結論。 考察考察p q和和q p的真假。的真假。 可先簡化命題??上群喕}。 將命題轉化為等價的逆否命題后再判斷。將命題轉化為等價的逆否命題后再判斷。 否定一個命題只要舉出一個反例即可。否定一個命題只要舉出一個反例即可。二、新課二、新課例例2 下列下列“若若p,則,則q”形式的命題形式的
11、命題中,哪些命題中的中,哪些命題中的 q是是p的必要條件?的必要條件?(1) 若若x=y,則,則x2=y2。(2) 若兩個三角形全等,則這兩個三角形的面積相等。若兩個三角形全等,則這兩個三角形的面積相等。(3) 若若ab,則,則acbc。解解:命題:命題(1)()(2)是真命題,命題()是真命題,命題(3)是假命題,)是假命題, 所以命題(所以命題(1)()(2)中的)中的q是是p的必要條件。的必要條件。二、新課二、新課練習練習3 下列下列“若若p,則,則q”形式的命形式的命題中,哪些命題中的題中,哪些命題中的 p是是q的必要條件?的必要條件?(1) 若若a+5是無理數,則是無理數,則a是無理
12、數。是無理數。(2) 若(若(x-a)()(x-b)=0,則,則 x=a。解解:命題:命題(1)()(2)的逆命題都是真命題,)的逆命題都是真命題, 所以命題(所以命題(1)()(2)中的)中的p是是q的必要條件。的必要條件。分析分析:注意這里考慮的是命題:注意這里考慮的是命題中的中的p是是q的必要條件。的必要條件。 所以應該分析下列命題的逆命題的真假性。所以應該分析下列命題的逆命題的真假性。二、新課二、新課答:答:命題命題(1)為真命題:為真命題:練習練習4,判斷下列命題的真假:,判斷下列命題的真假: (1)x=2是是x2 4x+4=0的必要條件;的必要條件; (2)圓心到直線的距離等于半徑
13、是這)圓心到直線的距離等于半徑是這條條 直線為圓的切線的必要條件;直線為圓的切線的必要條件; (3)sin =sin 是是 = 的充分條的充分條件;件; (4)ab 0是是a 0的充分條件。的充分條件。=命題(命題(2)為真命題;)為真命題;命題(命題(3)為假命題;)為假命題;命題(命題(4)為真命題。)為真命題。三、小結三、小結 如果已知如果已知p q,則說,則說p是是q的充分的充分 條件,條件, q是是p的必要條件。的必要條件。 認清條件和結論。認清條件和結論。 考察考察p q和和q p的真假。的真假。 可先簡化命題??上群喕}。 將命題轉化為等價的逆否命題后再判斷。將命題轉化為等價的逆否命題后再判斷。 否定一個命題只要舉出一個反例即可。否定一個命題只要舉出一個反例即可。四、作業(yè)四、作業(yè) 1、課本、課本P15,3(1)、)、(3)、()、(5)。)。