2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題23 以圓為背景的證明與計算(含解析)

上傳人:Sc****h 文檔編號:81858895 上傳時間:2022-04-28 格式:DOC 頁數(shù):22 大?。?.24MB
收藏 版權(quán)申訴 舉報 下載
2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題23 以圓為背景的證明與計算(含解析)_第1頁
第1頁 / 共22頁
2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題23 以圓為背景的證明與計算(含解析)_第2頁
第2頁 / 共22頁
2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題23 以圓為背景的證明與計算(含解析)_第3頁
第3頁 / 共22頁

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題23 以圓為背景的證明與計算(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題23 以圓為背景的證明與計算(含解析)(22頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題23 以圓為背景的證明與計算 考點分析 【例1】(2019·廣東中考模擬)已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E. (1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB; (2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大?。? 【答案】(1)詳見解析;(2)∠BDE=20°. 【解析】 (1)如圖1,∵AC是⊙O的直徑, ∴∠ABC=90°, ∵DE⊥AB, ∴∠DEA=90°, ∴∠DEA=∠ABC, ∴

2、BC∥DF, ∴∠F=∠PBC, ∵四邊形BCDF是圓內(nèi)接四邊形, ∴∠F+∠DCB=180°, ∵∠PCB+∠DCB=180°, ∴∠F=∠PCB, ∴∠PBC=∠PCB, ∴PC=PB; (2)如圖2,連接OD, ∵AC是⊙O的直徑, ∴∠ADC=90°, ∵BG⊥AD, ∴∠AGB=90°, ∴∠ADC=∠AGB, ∴BG∥DC, ∵BC∥DE, ∴四邊形DHBC是平行四邊形, ∴BC=DH=1, 在Rt△ABC中,AB=,tan∠ACB=, ∴∠ACB=60°, ∴BC=AC=OD, ∴DH=OD, 在等腰△DOH中,∠DOH=∠OHD=

3、80°, ∴∠ODH=20°, 設(shè)DE交AC于N, ∵BC∥DE, ∴∠ONH=∠ACB=60°, ∴∠NOH=180°﹣(∠ONH+∠OHD)=40°, ∴∠DOC=∠DOH﹣∠NOH=40°, ∵OA=OD, ∴∠OAD=∠DOC=20°, ∴∠CBD=∠OAD=20°, ∵BC∥DE, ∴∠BDE=∠CBD=20°. 【點睛】 本題考查了圓內(nèi)接四邊形的性質(zhì)、圓周角定理、平行四邊形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識點,解決第(2)問,作出輔助線,求得∠ODH=20°是解決本題的關(guān)鍵. 【例2】 (2019·湖南中考真題)如圖,點在半徑為8的上,過點作,交延

4、長線于點.連接,且. (1)求證:是的切線; (2)求圖中陰影部分的面積. 【答案】(1)見解析;(2). 【解析】 (1)證明:連接,交于, ∵,, ∴, ∵, ∴, 即, ∵, ∴, ∴是的切線; (2)解:∵,∴, ∵, ∴, ∴. 【點睛】 本題考查了平行線的性質(zhì),圓周角定理,扇形的面積,三角形的面積,解直角三角形等知識點的綜合運用,題目比較好,難度適中. 考點集訓(xùn) 1.(2019·遼寧中考真題)如圖,在中,,,點在的內(nèi)部,經(jīng)過,兩點,交于點,連接并延長交于點,以,為鄰邊作. (1)判斷與的位置關(guān)系,并說明理由. (2)若點

5、是的中點,的半徑為2,求的長. 【答案】(1)是的切線;理由見解析;(2)的長. 【解析】 (1)是的切線; 理由:連接, ,, , , 四邊形是平行四邊形, , , , , 是的切線; (2)連接, 點是的中點, , , , 的長. 【點睛】 本題考查了直線與圓的位置關(guān)系,圓周角定理,平行四邊形的性質(zhì),正確的識別圖形是解題的關(guān)鍵. 2.(2019·云南初三)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓. (1)求證:AC是⊙O的切線; (2)已知⊙O的半徑為2.5,BE

6、=4,求BC,AD的長. 【答案】(1)證明見解析;(2)BC=,AD=. 【解析】 (1)如圖,連接OE, ∵OB=OE, ∴∠OBE=∠OEB, ∵BE平分∠ABC, ∴∠OBE=∠CBE, ∴∠OEB=∠CBE, ∴OE∥BC, 又∵∠C=90°, ∴∠AEO=90°,即OE⊥AC, ∴AC為⊙O的切線; (2)∵ED⊥BE, ∴∠BED=∠C=90°, 又∵∠DBE=∠EBC, ∴△BDE∽△BEC, ∴,即, ∴BC=; ∵∠AEO=∠C=90°,∠A=∠A, ∴△AOE∽△ABC, ∴,即, 解得:AD=. 點睛:本題主要考查切

7、線的判定與性質(zhì),解題的關(guān)鍵是掌握切線的判定與性質(zhì)及相似三角形的判定與性質(zhì). 3.(2019·連云港市新海實驗中學(xué)初三月考)如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF. (1)求∠CDE的度數(shù); (2)求證:DF是⊙O的切線; (3)若AC=DE,求tan∠ABD的值. 【答案】(1)90°;(2)證明見解析;(3)2. 【解析】 解:(1)解:∵對角線AC為⊙O的直徑, ∴∠ADC=90°, ∴∠EDC=90°; (2)證明:連接DO, ∵∠EDC=90°,F(xiàn)是EC的中點,

8、∴DF=FC, ∴∠FDC=∠FCD, ∵OD=OC, ∴∠OCD=∠ODC, ∵∠OCF=90°, ∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°, ∴DF是⊙O的切線; (3)解:如圖所示:可得∠ABD=∠ACD, ∵∠E+∠DCE=90°,∠DCA+∠DCE=90°, ∴∠DCA=∠E, 又∵∠ADC=∠CDE=90°, ∴△CDE∽△ADC, ∴, ∴DC2=AD?DE ∵AC=2DE, ∴設(shè)DE=x,則AC=2x, 則AC2﹣AD2=AD?DE, 期(2x)2﹣AD2=AD?x, 整理得:AD2+AD?x﹣20x2=0, 解得:AD=

9、4x或﹣4.5x(負數(shù)舍去), 則DC=, 故tan∠ABD=tan∠ACD=. 4.(2019·江蘇初三月考)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°. (1)求∠ABC的度數(shù); (2)求證:AE是⊙O的切線; (3)當BC=4時,求劣弧AC的長. 【答案】(1)60°;(2)證明略;(3) 【解析】 (1)∵∠ABC與∠D都是弧AC所對的圓周角, ∴∠ABC=∠D=60°; (2)∵AB是⊙O的直徑, ∴∠ACB=90°. ∴∠BAC=30°, ∴∠BAE=∠BAC+∠EAC=30°+60°=90°, 即BA⊥A

10、E, ∴AE是⊙O的切線; (3)如圖,連接OC, ∵OB=OC,∠ABC=60°, ∴△OBC是等邊三角形, ∴OB=BC=4,∠BOC=60°, ∴∠AOC=120°, ∴劣弧AC的長為==. 【點睛】 本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關(guān)鍵. 5.(2019·江蘇中考真題)如圖,為⊙的直徑,為⊙上一點,為的中點.過點作直線的垂線,垂足為,連接. (1)求證:; (2)與⊙有怎樣的位置關(guān)系?請說明理由. 【答案】(1)見解析;(2)與⊙相切,理由見解析. 【解析】 (1)連接, 為的中點, ∴, , , ; (2)

11、與⊙相切,理由如下: , , ∴∠ODE+∠E=180°, , ∴∠E=90°, ∴∠ODE=90°, , 又∵OD是半徑, 與⊙相切. 【點睛】 本題考查了直線與圓的位置關(guān)系,圓心角、弧、弦的關(guān)系,圓周角定理,熟練掌握切線的判定定理是解題的關(guān)鍵. 6.(2019·湖北初三)如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB, (1)求證:PB是的切線. (2)若PB=6,DB=8,求⊙O的半徑. 【答案】(1)證明見解析;(2)3. 【解析】 (1)證明:∵在△DEO和△PB

12、O中,∠EDB=∠EPB,∠DOE=∠POB, ∴∠OBP=∠E=90°, ∵OB為圓的半徑, ∴PB為圓O的切線; (2)解:在Rt△PBD中,PB=6,DB=8, 根據(jù)勾股定理得:PD=, ∵PD與PB都為圓的切線, ∴PC=PB=6, ∴DC=PD-PC=10-6=4, 在Rt△CDO中,設(shè)OC=r,則有DO=8-r, 根據(jù)勾股定理得:(8-r)2=r2+42, 解得:r=3, 則圓的半徑為3. 考點:切線的判定與性質(zhì). 7.(2019·廣西中考模擬)如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.

13、(1)試判斷PD與⊙O的位置關(guān)系,并說明理由; (2)若點C是弧AB的中點,已知AB=4,求CE?CP的值. 【答案】(1)PD是⊙O的切線.證明見解析.(2)8. 【解析】 連結(jié)OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切線. (2)連結(jié)BC,∵AB是⊙O的直徑,∴∠ACB=90°,又∵C為弧AB的中點,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=C

14、A2=()2=8. 考點:相似三角形的判定與性質(zhì);圓心角、弧、弦的關(guān)系;直線與圓的位置關(guān)系;探究型. 8.(2019·湖南中考真題)如圖,點D在以AB為直徑的⊙O上,AD平分,,過點B作⊙O的切線交AD的延長線于點E. (1)求證:直線CD是⊙O的切線. (2)求證:. 【答案】(1)證明見解析;(2)證明見解析. 【解析】 解:證明:(1)連接OD, ∵AD平分, ∴, ∵, ∴, ∴, ∴, ∵, ∴, ∴直線CD是⊙O的切線; (2)連接BD, ∵BE是⊙O的切線,AB為⊙O的直徑, ∴, ∵, ∴, ∵, ∴, ∴, ∴.

15、 【點睛】 本題考查了相似三角形的判定和性質(zhì),角平分線的定義.圓周角定理,切線的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵. 9.(2019·山東中考真題)如圖,在中,,以為直徑的分別與交于點,過點作,垂足為點. (1)求證:直線是的切線; (2)求證:; (3)若的半徑為4,,求陰影部分的面積. 【答案】(1)詳見解析;(2)詳見解析;(3) 解:(1)如圖所示,連接, ∵, ∴, 而, ∴, ∵, ∴, ∴, ∴, ∴直線是的切線; (2)連接,則,則, 則, ∵,, ∴, 而, ∴, ∴,即; (3)連接, ∵, ∴, ∴,

16、, 【點睛】 本題主要考查圓的綜合性知識,難度系數(shù)不大,應(yīng)該熟練掌握,關(guān)鍵在于做輔助線,這是這類題的難點. 10.(2019·江蘇中考真題)如圖,AB是⊙O的直徑,AC與⊙O交于點F,弦AD平分,,垂足為E. (1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由; (2)若⊙O的半徑為2,,求線段EF的長. 【答案】(1)直線DE與⊙O相切;(2). 【解析】 (1)直線DE與⊙O相切, 連結(jié)OD. ∵AD平分, ∴, ∵, ∴, ∴, ∴, ∵,即, ∴,即, ∴DE是⊙O的切線; (2)過O作于G, ∵, ∴,, ∴, ∴, ∴, ∴四

17、邊形AODF是菱形, ∵,, ∴, ∴. 【點睛】 本題考查切線的判定和性質(zhì)、垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,屬于中考??碱}型. 11.(2019·天津中考真題)已知,分別與相切于點,,,為上一點. (Ⅰ)如圖①,求的大??; (Ⅱ)如圖②,為的直徑,與相交于點,若,求的大?。? 【答案】(Ⅰ);(Ⅱ). 【解析】 解:(Ⅰ)如圖,連接. ∵是的切線, ∴,. 即. ∵, ∴在四邊形中,. ∵在中,, ∴. (Ⅱ)如圖,連接. ∵為的直徑, ∴. 由(Ⅰ)知,, ∴. ∴. ∵在中,, ∴. 又是的一個外

18、角,有, ∴. 【點睛】 本題考查的是切線的性質(zhì)、圓周角定理、等腰三角形的性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵 12.(2019·甘肅中考真題)如圖,在中,,點在邊上,經(jīng)過點和點且與邊相交于點. (1)求證:是的切線; (2)若,求的半徑. 【答案】(1)見解析;(2) 【解析】 (1)證明:連接, ∵, ∴, ∵, ∴, ∴, ∴, ∴是的切線; (2)解:連接, ∵, ∴是等邊三角形, ∴, ∴, ∴, ∴, ∴的半徑. 【點睛】 本題考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),等邊三角形的判定和性質(zhì),正確的作

19、出輔助線是解題的關(guān)鍵. 13.(2019·湖北中考真題)如圖,在中,為的中點,以為直徑的分別交于點兩點,過點作于點. 試判斷與的位置關(guān)系,并說明理由. 若求的長. 【答案】(1)切,理由見解析;(2) 【解析】 (1)相切, 理由:如圖,連接, 為的中點, 與相切; 連接, 為的直徑, 即, 【點睛】 本題考查了直線與圓的位置關(guān)系,平行線的判定和性質(zhì),勾股定理,解直角三角形,正確的作出輔助線是解題的關(guān)鍵. 14.(2019·山西初三期末)如圖,點O在∠APB的平分線上,⊙O與PA相

20、切于點C. (1)求證:直線PB與⊙O相切; (2)PO的延長線與⊙O交于點E.若⊙O的半徑為3,PC=4.求弦CE的長. 【答案】(1)證明見解析;(2) 【解析】 (1)證明:連接OC,作OD⊥PB于D點. ∵⊙O與PA相切于點C, ∴OC⊥PA. (2)解:設(shè)PO交⊙O于F,連接CF. ∵OC=3,PC=4,∴PO=5,PE=8. ∵⊙O與PA相切于點C, ∴∠PCF=∠E. 又∵∠CPF=∠EPC, ∴△PCF∽△PEC, ∴CF:CE=PC:PE=4:8=1:2. ∵EF是直徑, ∴∠ECF=90°. 設(shè)CF=x,則EC=2x. 則x2+(2x)2=62, 解得x=. 則EC=2x=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲