輪邊驅(qū)動(dòng)系統(tǒng)輪邊減速器設(shè)計(jì)
《輪邊驅(qū)動(dòng)系統(tǒng)輪邊減速器設(shè)計(jì)》由會(huì)員分享,可在線閱讀,更多相關(guān)《輪邊驅(qū)動(dòng)系統(tǒng)輪邊減速器設(shè)計(jì)(34頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 目錄 摘要 3 Abstract. 4 0文獻(xiàn)綜述 5 0.1輪邊驅(qū)動(dòng)系統(tǒng)發(fā)展背景 5 0.2輪邊驅(qū)動(dòng)系統(tǒng)國內(nèi)外發(fā)展現(xiàn)狀 5 1引言 7 2研究基本內(nèi)容 7 3輪邊驅(qū)動(dòng)系統(tǒng)方案設(shè)計(jì) 7 3.1驅(qū)動(dòng)系統(tǒng)方案選定 7 3.2減速裝置方案選定 8 4輪邊驅(qū)動(dòng)系統(tǒng)齒輪傳動(dòng)設(shè)計(jì) 10 4.1輪邊減速器的傳動(dòng)嚙合計(jì)算 10 4.1.1確定齒輪滿足條件,進(jìn)行配齒計(jì)算 10 4.1.2齒輪材料及熱處理工藝的確定 11 4.1.3齒輪配合模數(shù)m計(jì)算 12 4.1.4幾何尺寸計(jì)算 13 4.1.5齒輪傳動(dòng)嚙合要素計(jì)算 13 4.1.6齒輪強(qiáng)度校核 14 5輪邊減速器行
2、星齒輪傳動(dòng)的均載機(jī)構(gòu)選取 21 6各傳動(dòng)軸的結(jié)構(gòu)設(shè)計(jì)與強(qiáng)度校核 23 6.1電機(jī)軸設(shè)計(jì) 23 6.2行星軸設(shè)計(jì) 23 6.3輸出軸設(shè)計(jì) 24 7減速器潤滑與密封 24 8輪邊驅(qū)動(dòng)系統(tǒng)三維建模與仿真 25 8.1驅(qū)動(dòng)系統(tǒng)齒輪零件建模 25 8.2行星架建模 27 8.3殼體與端蓋建模 28 8.4總裝配爆炸模型 30 8.5輪邊驅(qū)動(dòng)系統(tǒng)運(yùn)動(dòng)仿真 31 8.5.1運(yùn)動(dòng)仿真建模 31 9總結(jié) 32 參考文獻(xiàn) 33 致謝 35 基于Pro/E的小型電動(dòng)車輪邊驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)與運(yùn)動(dòng)仿真 摘要:電
3、動(dòng)汽車一般使用可再生能源,其能源多元化與高效化,在城市交通中,可以實(shí)現(xiàn)極低排放,甚至零排放。目前電動(dòng)車能源主要來自電力,在眾多的驅(qū)動(dòng)系統(tǒng)形式中,采用輪邊減速驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)形式是目前的主要發(fā)展方向。目前輪邊驅(qū)動(dòng)系統(tǒng)主要采用的是輪轂電機(jī),這種電機(jī)成本較高,制造過程復(fù)雜,并且主要應(yīng)用于大型電動(dòng)轎車上,在小型電動(dòng)車上采用結(jié)構(gòu)簡(jiǎn)單的輪邊驅(qū)動(dòng)系統(tǒng)還較少,本文提出了由一級(jí)2K-H (NGW)型行星傳動(dòng)組成的小型電動(dòng)汽車用輪邊驅(qū)動(dòng)系統(tǒng),并按照齒根彎曲強(qiáng)度和齒面接觸強(qiáng)度計(jì)算公式對(duì)各級(jí)齒輪進(jìn)行了設(shè)計(jì);對(duì)各級(jí)齒輪、軸、軸承等進(jìn)行了強(qiáng)度和壽命校核;對(duì)行星架的結(jié)構(gòu)、齒輪箱的結(jié)構(gòu)進(jìn)行設(shè)計(jì),并根據(jù)設(shè)計(jì)結(jié)果畫出小型電動(dòng)汽車輪邊
4、驅(qū)動(dòng)系統(tǒng)零件圖和總裝圖。 關(guān)鍵詞:行星齒輪減速器;輪邊驅(qū)動(dòng)系統(tǒng);輪邊減速器;NGW;輪轂電機(jī); Based on the Pro/E small electric wheel driving system design and simulation Abstract:Electric vehicles generally use of renewable energy,In the urban transport,the energy diversification and efficiency can achieve
5、very low emissions, or even zero emission.Now EV energy mainly from electricity.In the form of different drive systems,The Reducer Beside the Wheels is the main development direction.In-wheel motor is mainly used in Direct Wheel Drives System.Because the high cost of this motor, difficult to manufac
6、ture and mainly used in large-scale electric car,The simple structure side-wheel drive system is less in the small electric car.This paper presents a Small electric vehicle using the side-wheel drive system that consisting of Principle of 2K-V Type Planetary Transmission.and design all the gears acc
7、ording to formulas of bending fatigue strength of the tooth root and the surface contact fatigue strength of the gears; And checking the life and strength of all the gears, shafts, bearings and so on; And design the structure of planet shelf, gears box and shafts. And draw the part drawings and asse
8、mbly drawing of the side-wheel drive system according to the results of the design . Key Words: Planetary gear reducer;side-wheel drive system; Reducer Beside the Wheels; NGW;In-wheel motor ; 0文獻(xiàn)綜述 0.1輪邊驅(qū)動(dòng)系統(tǒng)發(fā)展背景 隨著世界經(jīng)濟(jì)的發(fā)展,環(huán)境與能源的沖突現(xiàn)象越來越明顯。據(jù)統(tǒng)計(jì),石油預(yù)計(jì)將在五十年左右消失殆盡,煤也只能維持一百年左右,然
9、而,汽車行業(yè)的耗能卻占石油資源的三分之二。為了改善人文環(huán)境,降低能耗,各國都在尋找不同的解決辦法,這使得具有節(jié)能環(huán)保汽車有了進(jìn)一步的發(fā)展。電動(dòng)汽車一般使用可再生能源,其能源多元化與高效化,在城市交通中,可以實(shí)現(xiàn)極低排放,甚至零排放。 目前電動(dòng)車能源主要來自動(dòng)力,在眾多的驅(qū)動(dòng)系統(tǒng)形式中,采用輪邊減速驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)形式是目前的主要發(fā)展方向。輪邊減速驅(qū)動(dòng)系統(tǒng)廣泛運(yùn)用于各種交通系統(tǒng)中,例如:電動(dòng)自行車、電動(dòng)摩托車、電動(dòng)輪椅、礦用車輛、電動(dòng)轎車等; 圖0.1 輪轂電機(jī)應(yīng)用領(lǐng)域 Fig0.1 In-wheel motor applications 不同的應(yīng)用場(chǎng)合對(duì)輪邊驅(qū)動(dòng)系統(tǒng)的結(jié)構(gòu)形式和技術(shù)
10、性能等都提出了不同的要求,相應(yīng)的產(chǎn)生了各種輪轂電機(jī)系統(tǒng)及其特色技術(shù)。本文主要的研究方向是小型電動(dòng)汽車用輪邊驅(qū)動(dòng)系統(tǒng)。 0.2輪邊驅(qū)動(dòng)系統(tǒng)國內(nèi)外發(fā)展現(xiàn)狀 電動(dòng)汽車的發(fā)明由來已久,但是真正意義上采用輪邊減速驅(qū)動(dòng)系統(tǒng)的電動(dòng)汽車,是20世紀(jì)初保時(shí)捷制造的。隨著電動(dòng)汽車技術(shù)的發(fā)展,電機(jī)控制與機(jī)械制造工藝不斷完善,輪邊驅(qū)動(dòng)系統(tǒng)已經(jīng)有了長(zhǎng)足進(jìn)步。 在國外,很多國家都在研究采用輪邊驅(qū)動(dòng)系統(tǒng)的電動(dòng)汽車,其中日本為主要研究國家。1991年與東京電力公司共同開發(fā)的4座電動(dòng)汽車IZA,采用Ni2Cd電池為動(dòng)力源,以4個(gè)額定功率為6.8kW、峰值功率達(dá)到25kW 的外轉(zhuǎn)子式永磁同步輪轂電機(jī)驅(qū)動(dòng), 最高速度可達(dá)17
11、6km /h;1996年,該小組聯(lián)合日本國家環(huán)境研究所研制了采用輪邊驅(qū)動(dòng)系統(tǒng)的后輪驅(qū)動(dòng)電動(dòng)汽車ECO,該車的輪邊驅(qū)動(dòng)系統(tǒng)選用永磁直流無刷電動(dòng)機(jī),額定功率為6.8kW,峰值功率為20kW,并匹配一行星齒輪減速機(jī)構(gòu);2001年,該小組又推出了以鋰電池為動(dòng)力源,采用8個(gè)大功率交流同步輪轂電機(jī)獨(dú)立驅(qū)動(dòng)的電動(dòng)轎車KAZ。該車充分利用電動(dòng)輪驅(qū)動(dòng)系統(tǒng)布置靈活的特點(diǎn),打破傳統(tǒng),安裝了8個(gè)車輪,大大增加了該車的動(dòng)力,從而使該車的最高速度可以達(dá)到311km /h。KAZ的輪邊驅(qū)動(dòng)系統(tǒng)采用高轉(zhuǎn)速、高性能內(nèi)轉(zhuǎn)子型電動(dòng)機(jī),其峰值功率可達(dá)55kW, 0~100km/h 加速時(shí)間達(dá)到8s。為了使電動(dòng)機(jī)輸出轉(zhuǎn)速符合車輪的實(shí)際
12、轉(zhuǎn)速要求,KAZ的電動(dòng)輪系統(tǒng)匹配了一行星齒輪減速機(jī)構(gòu)。 法國TM4公司設(shè)計(jì)的一體化輪邊驅(qū)動(dòng)系統(tǒng)采用外轉(zhuǎn)子式永磁電動(dòng)機(jī),將電動(dòng)機(jī)轉(zhuǎn)子外殼直接與輪輞相連,將電動(dòng)機(jī)外殼作為車輪的組成部分,并且電動(dòng)機(jī)轉(zhuǎn)子外殼集成為鼓式制動(dòng)器的制動(dòng)鼓,制動(dòng)蹄片直接作用在電動(dòng)機(jī)外殼上,省卻制動(dòng)鼓的結(jié)構(gòu),減小了輪邊驅(qū)動(dòng)系統(tǒng)的質(zhì)量,集成化設(shè)計(jì)程度相當(dāng)高。該輪邊驅(qū)動(dòng)系統(tǒng)所使用的永磁無刷直流電動(dòng)機(jī)的性能非常高,其峰值功率可達(dá)到80kW,峰值扭矩為670Nm,最高轉(zhuǎn)速為1385r/min,額定功率為18.5kW,額定轉(zhuǎn)速為950r/min,額定轉(zhuǎn)矩為180Nm額定工況下的平均效率可達(dá)到96.3%。 在國內(nèi),雖然對(duì)于輪邊減速系統(tǒng)
13、的研究起步較晚,但是也取得了一定進(jìn)展。比亞迪在04年在北京車展上展出了ET概念車,采用輪邊減速驅(qū)動(dòng)系統(tǒng)由四個(gè)輪邊電機(jī)獨(dú)立驅(qū)動(dòng)。同濟(jì)大學(xué)也自主研制了“春暉”系列燃料電池概念車。哈爾濱工業(yè)大學(xué)愛英斯電動(dòng)汽車研究所研制開發(fā)的EV96-1型電動(dòng)汽車也采用外轉(zhuǎn)子型輪轂電機(jī)驅(qū)動(dòng)系統(tǒng),選用一種稱為“多態(tài)電動(dòng)機(jī)”的永磁式電動(dòng)機(jī),兼有同步電動(dòng)機(jī)和異步電動(dòng)機(jī)的雙重特性,其額定功率為6.8kw,峰值功率為15kw,集成盤式制動(dòng)器,風(fēng)冷散熱。 1引言 電動(dòng)汽車一般使用可再生能源,其能源多元化與高效化,在城市交通中,可以實(shí)現(xiàn)極低排放,甚至零排放。 目前電動(dòng)車能源主要來自電力,在眾多的驅(qū)動(dòng)系統(tǒng)形式中
14、,采用輪邊減速驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)形式是目前的主要發(fā)展方向。 本設(shè)計(jì)在充分了解了輪邊驅(qū)動(dòng)系統(tǒng)的構(gòu)造形式、工作原理、實(shí)際應(yīng)用等情況的基礎(chǔ)上,從齒輪箱的強(qiáng)度和動(dòng)力學(xué)等方面考慮,按照本科階段所學(xué)習(xí)到的機(jī)械設(shè)計(jì)的相關(guān)設(shè)計(jì)方法,先全面的分析了各齒輪的受力情況,再按照任務(wù)書中功率、傳動(dòng)比、壽命、可靠性、大體的尺寸等條件,從齒面接觸疲勞強(qiáng)度和齒根彎曲疲勞強(qiáng)度兩個(gè)方面設(shè)計(jì)、選取和校核了該輪邊驅(qū)動(dòng)系統(tǒng)傳動(dòng)齒輪箱的主要零部件。 2研究基本內(nèi)容 目前輪邊驅(qū)動(dòng)系統(tǒng)主要采用的是輪轂電機(jī),這種電機(jī)成本較高,制造過程復(fù)雜,并且主要應(yīng)用于大型電動(dòng)轎車上,在小型電動(dòng)車上采用結(jié)構(gòu)簡(jiǎn)單的輪邊驅(qū)動(dòng)系統(tǒng)還較少,所以本文提出解決方案,
15、主要研究?jī)?nèi)容: (1) 對(duì)小型電動(dòng)汽車整體驅(qū)動(dòng)系統(tǒng)分析,從而確定具體驅(qū)動(dòng)電機(jī)要求、整體結(jié)構(gòu)、懸架結(jié)構(gòu)。 (2) 細(xì)節(jié)設(shè)計(jì):根據(jù)驅(qū)動(dòng)電機(jī)的參數(shù),確定系統(tǒng)參數(shù)—傳動(dòng)比、轉(zhuǎn)速、零件尺寸等,從而確定輪邊驅(qū)動(dòng)系統(tǒng)的機(jī)械結(jié)構(gòu)。 (3) Pro/E參數(shù)建模仿真:將設(shè)計(jì)系統(tǒng)進(jìn)行參數(shù)化建模,并運(yùn)用pro/E進(jìn)行運(yùn)動(dòng)仿真。 3輪邊驅(qū)動(dòng)系統(tǒng)方案設(shè)計(jì) 3.1驅(qū)動(dòng)系統(tǒng)方案選定 輪邊驅(qū)動(dòng)系統(tǒng)方案首先要考慮輪轂電機(jī)的結(jié)構(gòu)形式,目前輪轂電機(jī)的主要結(jié)構(gòu)形式有兩種:內(nèi)轉(zhuǎn)子型和外轉(zhuǎn)子型。大多數(shù)電動(dòng)汽車當(dāng)前都是外轉(zhuǎn)子型結(jié)構(gòu)形式,其主要采用的是低轉(zhuǎn)速電機(jī),電機(jī)一般轉(zhuǎn)速不高,所以這種外轉(zhuǎn)子型輪轂電機(jī)無需減速裝置。但因其外
16、轉(zhuǎn)子一般都與電動(dòng)汽車輪轂相連,所以結(jié)構(gòu)比較緊湊,同時(shí)帶來的缺點(diǎn)就是制造成本的增加。相比外轉(zhuǎn)子型輪轂電機(jī),內(nèi)轉(zhuǎn)子型輪轂電機(jī)一般采用帶有減速裝置的高轉(zhuǎn)速電機(jī),這種驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)簡(jiǎn)單,制造成本低,維護(hù)方便,非常適合選擇作為小型電動(dòng)汽車的輪邊驅(qū)動(dòng)系統(tǒng)。因此本設(shè)計(jì)采用帶有減速裝置的高轉(zhuǎn)速內(nèi)轉(zhuǎn)子型驅(qū)動(dòng)系統(tǒng)。電動(dòng)機(jī)作為電動(dòng)汽車的驅(qū)動(dòng)部分,其參數(shù)直接影響所驅(qū)動(dòng)電動(dòng)汽車的最高行駛速度、爬坡能力和加速能力。根據(jù)要求,首先確定電動(dòng)機(jī)參數(shù)要求,本設(shè)計(jì)所設(shè)計(jì)的電機(jī)參數(shù)如下表格: 表3.1 電機(jī)特性參數(shù) Tab.3.1 Motor parameters 電機(jī)額定功率 電機(jī)峰值功率 電機(jī)額定轉(zhuǎn)矩 電機(jī)峰值轉(zhuǎn)矩
17、 電機(jī)額定轉(zhuǎn)速 電機(jī)最高轉(zhuǎn)速 3.5KW 15KW 10Nm 50Nm 3500rpm 12000rpm 3.2減速裝置方案選定 具有減速的齒輪裝置很多,但是目前多數(shù)輪轂電機(jī)的減速機(jī)構(gòu)都采用行星齒輪傳動(dòng)方式,主要是因?yàn)槠渚哂兄亓枯p、結(jié)構(gòu)緊湊、傳動(dòng)比高等優(yōu)點(diǎn);在行星齒輪傳動(dòng)中,具有多種傳動(dòng)方式,選擇一種合理的傳動(dòng)方式,可以使輪邊驅(qū)動(dòng)系統(tǒng)有緊湊的結(jié)構(gòu),合理的重量。目前行星齒輪傳動(dòng)方式主要由以下幾種: (1)K-H-V擺線針行星齒輪傳動(dòng),如圖3.2.1,其特點(diǎn)是傳動(dòng)比較大,效率較高,并且傳動(dòng)過程中多齒數(shù)參與嚙合,其承載能力大,傳動(dòng)平穩(wěn)且噪音低;但其生產(chǎn)制造困難,零件成本及精
18、度高。 (2)NGW型行星齒輪傳動(dòng),如圖3.2.2,其特點(diǎn)是結(jié)構(gòu)緊湊簡(jiǎn)單、傳動(dòng)比范圍大、占用空間小、質(zhì)量輕便、制造成本低等。適用多種工作環(huán)境,單級(jí)傳動(dòng)比一般3~9較合適。 (3)NW型行星齒輪傳動(dòng),如圖3.2.3,其有NGW型行星齒輪傳動(dòng)優(yōu)點(diǎn),如結(jié)構(gòu)簡(jiǎn)單、傳動(dòng)比范圍大、占用空間小、質(zhì)量輕便等,同時(shí)其比NGW型行星齒輪傳動(dòng)更加緊湊;但是其安裝復(fù)雜,成本高。 圖3.2.1 K-H-V擺線針行星齒輪傳動(dòng) Fig3.2.1 K-H-V cycloid planetary gear 圖3.2.2 NGW型行星齒輪傳動(dòng) Fig3.2.2 NGW type planetary
19、 gear 圖3.2.3 NW型行星齒輪傳動(dòng) Fig3.2.3 NW type planetary gear 小型電動(dòng)汽車一般要求成本較低、結(jié)構(gòu)簡(jiǎn)單、維護(hù)方便,所以在選用輪邊驅(qū)動(dòng)系統(tǒng)減速裝置時(shí),要注意其要求,NGW型行星齒輪傳動(dòng)因?yàn)榻Y(jié)構(gòu)緊湊簡(jiǎn)單、傳動(dòng)比范圍大、占用空間小、質(zhì)量輕便、制造成本低等優(yōu)點(diǎn),可以選用。雖然單級(jí)傳動(dòng)比較低,但是設(shè)計(jì)方案?jìng)鲃?dòng)比在6左右,所以滿足傳動(dòng)比要求。 根據(jù)上述過程的選擇,確定輪邊驅(qū)動(dòng)系統(tǒng)的初步方案,方案見圖3.2.4如下: 圖3.2.4 方案圖 Fig3.2.4 Program chart 4輪邊驅(qū)動(dòng)系統(tǒng)齒輪傳動(dòng)設(shè)計(jì) 4.1輪邊
20、減速器的傳動(dòng)嚙合計(jì)算 4.1.1確定齒輪滿足條件,進(jìn)行配齒計(jì)算 (1)傳動(dòng)比條件 對(duì)于NGW型行星齒輪減速器,傳動(dòng)比條件為,。 (2)鄰接條件 圖4.1 鄰接條件 Fig4.1 Adjacency condition 在行星齒輪傳動(dòng)中,為了提高承載能力,減少機(jī)構(gòu)的尺寸,并考慮到動(dòng)力學(xué)的平衡問題,常在太陽輪與內(nèi)齒輪之間均與對(duì)稱地布置幾個(gè)行星齒輪,為使兩相鄰兩個(gè)行星齒輪不相互碰撞,要求其齒頂圓有一定的間隙,稱為鄰接條件。 由表4-1,np一定時(shí),按鄰接條件決定參數(shù),在滿足傳動(dòng)比條件為6的條件下,可選行星齒輪數(shù)np為3或4. (3)同心條件 行星齒輪傳動(dòng)裝置的特點(diǎn)為輸入與輸
21、出是共軸線的,即各中心論的軸線與行星架軸線是重合的,為保證中心論和行星輪架軸線重合條件下的正確嚙合,由中心論和行星輪組成的各嚙合副的實(shí)際中心距必須相等,稱為同心條件。 對(duì)于NGW型行星齒輪減速器傳動(dòng),其同心條件為: 。 (4)裝配條件 一般行星齒輪傳動(dòng)中,行星齒數(shù)大于1,要使幾個(gè)行星輪能均勻的裝入,并保證與中心論正確嚙合而沒有錯(cuò)位現(xiàn)象,應(yīng)具備的齒數(shù)關(guān)系既為裝配條件。 對(duì)于NGW型行星齒輪傳動(dòng),其裝配條件為: 中心論a所轉(zhuǎn)過的角度ψa一定滿足其周節(jié)對(duì)的中心角的整數(shù)倍M,可得M=。整理可得M===整數(shù)。 利用比例法進(jìn)行NGW型輪邊齒輪減速器
22、齒數(shù)計(jì)算: Za:Zg:Zb:M=Za::: 取np=3,=6可得: Za:Zg:Zb:M=Za:2Za: 5Za: 2Za,為避免發(fā)生最小齒數(shù)根切現(xiàn)象,應(yīng)取Zmin≥17,初取Za=20.則Zb=100,Zg=40。M=40為整數(shù),滿足各項(xiàng)條件,實(shí)際傳動(dòng)比=1+=1+5=6。 4.1.2齒輪材料及熱處理工藝的確定 (1) 太陽輪與行星輪:齒輪材料選擇調(diào)制剛20CrMnTi,經(jīng)正火滲碳后淬火,從而獲得較好的齒面硬度和較好的芯部韌性,表面硬度58-62HRC,加工精度為6級(jí)。 (2) 內(nèi)齒圈:齒輪材料選擇20Cr,經(jīng)滲碳后淬火處理,表面硬度56-62HRC,加工精度為7級(jí)。 4.1
23、.3齒輪配合模數(shù)m計(jì)算 根據(jù)齒輪嚙合傳動(dòng)的特點(diǎn),在進(jìn)行模數(shù)m計(jì)算時(shí),可以按齒根彎曲強(qiáng)度初步計(jì)算,并進(jìn)行接觸疲勞強(qiáng)度校核計(jì)算。 (1) 按齒面接觸強(qiáng)度強(qiáng)度計(jì)算 小齒輪分度圓直徑mm。 其中T1—名義轉(zhuǎn)矩,單位NM,。 Kd—算式系數(shù),Kd=720。 KA—使用系數(shù)4,原動(dòng)機(jī)工作特性均勻平穩(wěn)(電動(dòng)機(jī)),工作機(jī)的工作特性嚴(yán)重沖擊,取KA=1.75。 KHε—綜合系數(shù),行星齒輪數(shù)np=3,KHε=2.0。 KHp—計(jì)算接觸疲勞強(qiáng)度的行星輪載荷分布不均勻系數(shù),np=3,內(nèi)齒輪浮動(dòng),KHp取1.1。 —小齒輪寬度系數(shù),取0.5。
24、 u—齒數(shù)比,u=2。 —接觸疲勞極限,單位N/mm2,=1500N/mm2。 帶入公式后d1=18.27mm。 (2) 按齒根彎曲強(qiáng)度校核模數(shù)m 齒輪校核計(jì)算公式 其中 Km—算式系數(shù),Km=11.5 —綜合系數(shù),查表6-54,取=1.8 KFp—計(jì)算彎曲強(qiáng)度的行星齒輪間載荷分布不均勻系數(shù),KFp=1+1.5(KHp-1)=1+1.5(1.1-1)=1.15 YFa1—小齒輪齒形系數(shù),查表10-52,YFa1=2.73 —彎曲疲勞極限,查表6-294,=350Nmm2 根據(jù)上述計(jì)算,并查表15-26,因較小的模數(shù)可以增加
25、齒輪齒數(shù),但是也降低了齒根抗彎強(qiáng)度,所以取m=1.25。 4.1.4幾何尺寸計(jì)算 表4.1 幾何尺寸數(shù)據(jù)表 Tab.4.1 Geometric data table 名稱 太陽輪 行星輪 內(nèi)齒輪 模數(shù) m=1.25 壓力角 分度圓直徑d 25mm 50mm 125mm 外嚙合 內(nèi)嚙合 1.25mm - 1.156mm 齒根高h(yuǎn)f 1.5625mm 齒全高h(yuǎn) 2.8125mm 2.7185mm 齒頂圓直徑da 27.5mm 52.5mm 122.588mm 齒根圓直徑df 21.875mm 46.875mm 128
26、.125mm 基圓直徑db 23.49mm 46.98mm 117.46mm 中心距 45mm 齒頂圓壓力角 31°19′49″ 26°30′35″ 16°47′11″ 重合度 1.637 1.850 齒寬b 13mm 19mm 25mm 4.1.5齒輪傳動(dòng)嚙合要素計(jì)算 (1) a-g齒輪傳動(dòng)的重合度計(jì)算 = (2) g-b齒輪傳動(dòng)的重合度計(jì)算 4.1.6齒輪強(qiáng)度校核 1.a-g嚙合傳動(dòng) (1) 太陽輪強(qiáng)度校核 ①計(jì)算載荷 轉(zhuǎn)矩T計(jì)算:。 圓周力Ft計(jì)算:。 ②應(yīng)力循環(huán)次數(shù)Na計(jì)算 其中na=3500r/min,=na/6=
27、583.3r/min T—汽車每天工作十小時(shí),使用期限十年,則。 次。 ③各種系數(shù)的計(jì)算與選定 1) 使用系數(shù)KA=1.75 2) 動(dòng)載系數(shù)Kv ,查表5-15,六級(jí)精度,取Kv=1.06 3) 齒向載荷分布系數(shù)KHβ,KFβ的確定 其中—運(yùn)轉(zhuǎn)初期時(shí)計(jì)算接觸強(qiáng)度的齒向載荷分布系數(shù),可查圖5-35,=1.1(=0.5) KHw—接觸強(qiáng)度跑合影響系數(shù),查表5-55,KHw=0.95 KFβ0—運(yùn)轉(zhuǎn)初期計(jì)算彎曲強(qiáng)度時(shí)齒向載荷分布系數(shù),查表5-4,KFβ0=1.08。 KFw—彎曲強(qiáng)度跑合影響系數(shù),查圖5-55,KFw=1.0
28、 KHe=0.7,KFe=0.8 則 4) 齒間載荷分布系數(shù)KHα及KFα確定 計(jì)算,查表6-94, 1.2,其中,則。 5) 查表5-135,取節(jié)點(diǎn)區(qū)域系數(shù)ZH=2.37 6) 彈性系數(shù)ZE= 7) 齒形系數(shù)YFa,查圖6-224取YFa=2.82 8) 應(yīng)力修正系數(shù)Ysa查圖6-244取Ysa=1.53 9) 重合度系數(shù) 10) 彎曲強(qiáng)度計(jì)算得螺旋角系數(shù), 對(duì)于直齒輪,=1,=1 ④齒數(shù)比u=2 ⑤計(jì)算接觸應(yīng)力 ⑥計(jì)算接觸應(yīng)力 ⑦計(jì)算彎曲應(yīng)力 ⑧計(jì)算彎曲應(yīng)力 ⑨計(jì)算許用接觸應(yīng)力 其中—基礎(chǔ)疲勞極限,=1500Nmm2
29、 ZNT—壽命系數(shù),Na=1.916*次,取ZNT=1.0 ZL—潤滑系數(shù),查圖6-174取v40=100mm2/s,ZL=0.9 ZV—相嚙合齒間的相對(duì)速度,查圖6-184,取ZV=0.89 ZR—齒面粗糙度,ZR=0.9 ZW—齒面工作硬化系數(shù),因硬度>470HBS,取ZW=1.0 ZX—接觸強(qiáng)度計(jì)算的尺寸系數(shù),根據(jù)表6-154,ZX=0.9997 則 ⑩接觸強(qiáng)度安全系數(shù) 11計(jì)算許用彎曲應(yīng)力 其中—彎曲疲勞極限,=350Nmm2 —試驗(yàn)齒輪時(shí)的應(yīng)力修正系數(shù),=2.0 —壽命系數(shù),取=1.0
30、 —相對(duì)齒根圓角敏感系數(shù),查圖5-225,=0.98 —齒根表面狀況系數(shù),=0.925 —尺寸系數(shù),=1.05-0.01m=1 則 12 彎曲強(qiáng)度安全系數(shù) (2) 行星齒輪強(qiáng)度校核 行星齒輪因與太陽輪是統(tǒng)一嚙合副,其計(jì)算過程與太陽輪強(qiáng)度校核過程相同,所以直接計(jì)算結(jié)果如下: ① ②計(jì)算接觸應(yīng)力 ③計(jì)算彎曲應(yīng)力 ④計(jì)算彎曲應(yīng)力 ⑤計(jì)算許用接觸應(yīng)力 ⑥接觸強(qiáng)度安全系數(shù) ⑦計(jì)算許用彎曲應(yīng)力 ⑧彎曲強(qiáng)度安全系數(shù) 2.g-b嚙合傳動(dòng) (1)內(nèi)齒圈強(qiáng)度校核 ①計(jì)算載荷 圓周力Ft計(jì)算:。 ②應(yīng)力循環(huán)次數(shù)Nb計(jì)算 其中,
31、其中符號(hào)代表方向 T—汽車每天工作十小時(shí),使用期限十年,則。 次。 ③各種系數(shù)的計(jì)算與選定 1)使用系數(shù)KA=1.75 2)動(dòng)載系數(shù)Kv ,查表6-64,六級(jí)精度,取Kv=1.03 3)齒向載荷分布系數(shù)KHβ,KFβ的確定 其中—齒輪相對(duì)于轉(zhuǎn)臂X的圓周速度及大齒輪齒面硬度HB2對(duì)的影響系數(shù),查圖6-7(a)4線圖取 —齒輪相對(duì)于轉(zhuǎn)臂X的圓周速度及大齒輪齒面硬度HB2對(duì)的影響系數(shù),查圖6-7(b)4線圖取 —齒寬和行星輪數(shù)np對(duì)和的影響系數(shù),查圖6-84取=1.13 4)齒間載荷分布系數(shù)KHα及KFα確定 計(jì)算,查表6-94,KHα=1
32、.2=1.38,其中,KFα=1.52 5)查表5-134,取節(jié)點(diǎn)區(qū)域系數(shù)ZH=2.37 6)彈性系數(shù)ZE= 7)重合度系數(shù)確定 8) 載荷作用齒頂時(shí)的齒形系數(shù) 查圖6-22,對(duì)于內(nèi)齒輪的齒形系數(shù)近似計(jì)算, 9) 載荷作用齒頂圓時(shí)應(yīng)力修正系數(shù) 查圖6-24,對(duì)于進(jìn)行近似計(jì)算,取 10)彎曲強(qiáng)度計(jì)算得螺旋角系數(shù), 對(duì)于直齒輪,=1,=1 ④齒數(shù)比 ⑤計(jì)算接觸應(yīng)力 ⑥計(jì)算接觸應(yīng)力 ⑦計(jì)算彎曲應(yīng)力 ⑧計(jì)算彎曲應(yīng)力 ⑨計(jì)算許用接觸應(yīng)力 其中—接觸疲勞極限, —壽命系數(shù),Na=1.916*次,取=1.0 —潤滑系數(shù),取v40=1
33、00mm2/s,=0.9 —相嚙合齒間的相對(duì)速度,取=0.89 —齒面粗糙度,=0.9 —齒面工作硬化系數(shù),因硬度>470HBS,取=1.0 —接觸強(qiáng)度計(jì)算的尺寸系數(shù),根據(jù)表6-15,=0.9997 則 ⑩接觸強(qiáng)度安全系數(shù) 11計(jì)算許用彎曲應(yīng)力 其中—彎曲疲勞極限,=350Nmm2 —試驗(yàn)齒輪時(shí)的應(yīng)力修正系數(shù),=2.0 —壽命系數(shù),查表6-6,計(jì)算 —相對(duì)齒根圓角敏感系數(shù),查圖5-22,=1.1 —齒根表面狀況系數(shù),=0.925 —尺寸系數(shù),=1.05-0.01m=1 則 12
34、彎曲強(qiáng)度安全系數(shù) (2)行星齒輪強(qiáng)度校核 行星齒輪因與內(nèi)齒輪是同一嚙合副,其計(jì)算過程與內(nèi)齒輪強(qiáng)度校核過程相同,所以直接計(jì)算結(jié)果如下: ① ②計(jì)算接觸應(yīng)力 ③計(jì)算彎曲應(yīng)力 ④計(jì)算彎曲應(yīng)力 ⑤計(jì)算許用接觸應(yīng)力 ⑥接觸強(qiáng)度安全系數(shù) ⑦計(jì)算許用彎曲應(yīng)力 ⑧彎曲強(qiáng)度安全系數(shù) 5輪邊減速器行星齒輪傳動(dòng)的均載機(jī)構(gòu)選取 在行星齒輪傳動(dòng)結(jié)構(gòu)中,因?yàn)椴捎昧硕鄠€(gè)(np≥2)的行星輪傳動(dòng),所以使其具有結(jié)構(gòu)緊湊、質(zhì)量輕、體積小、承載能力大等優(yōu)點(diǎn),但是因?yàn)檩斎臊X輪,即太陽輪傳到每個(gè)行星輪的載荷分布不均勻,這可能有時(shí)在行星齒輪傳動(dòng)過程中,載荷集中在某一個(gè)行星輪上,而其他行星輪
35、閑置,從而造成傳動(dòng)出現(xiàn)事故,為了解決這種載荷分配不均勻性的問題,在設(shè)計(jì)制造過程中出現(xiàn)了多種均載機(jī)構(gòu)。 所謂行星齒輪間載荷分布均勻,就是指輸入的中心轉(zhuǎn)輪傳遞給行星輪的嚙合作用力的大小相等,目前國內(nèi)外采用較多的均載機(jī)構(gòu)主要由以下幾種: 1.基本構(gòu)件浮動(dòng)的均載機(jī)構(gòu) (1) 中心輪浮動(dòng) 中心輪浮動(dòng)一般采用齒輪聯(lián)軸器作為均載機(jī)構(gòu),在傳動(dòng)過程中,由于齒輪聯(lián)軸器可以對(duì)中心論在徑向上自動(dòng)補(bǔ)償作用,從而可以使其在傳動(dòng)過程中各個(gè)嚙合作用力相等。 (2) 內(nèi)齒輪浮動(dòng) 內(nèi)齒輪浮動(dòng)實(shí)現(xiàn)方式是通過雙齒聯(lián)軸器將機(jī)體與內(nèi)齒輪連接,從而使內(nèi)齒輪浮動(dòng)。 (3) 行星架浮動(dòng) 行星架浮動(dòng)一般一般也是通過雙齒聯(lián)軸器將行
36、星架與高低速連接實(shí)現(xiàn)浮動(dòng)。 圖5.1 太陽輪浮動(dòng) Fig5.1 Sun wheel floating 圖5.2 內(nèi)齒輪浮動(dòng) Fig5.2 Internal gear floating 對(duì)比分析三種浮動(dòng)方式的特點(diǎn),采用太陽輪浮動(dòng),均載機(jī)構(gòu)易于制造,且結(jié)構(gòu)相對(duì)簡(jiǎn)單,在行星齒輪np=3時(shí)其均載效果較好;采用內(nèi)齒輪浮動(dòng),可以使均載機(jī)構(gòu)結(jié)構(gòu)緊湊,軸向尺寸??;采用行星架浮動(dòng),雖然因受力較大而有利于浮動(dòng),但是由于自重過大,產(chǎn)生離心力較大,影響浮動(dòng)效果,所以不適合本設(shè)計(jì)。本設(shè)計(jì)采用軸向尺寸小的內(nèi)齒輪浮動(dòng),并用彈性銷與機(jī)體連接。如下圖: 圖5.3 內(nèi)齒輪浮動(dòng) Fig5.3
37、Internal gear floating 6各傳動(dòng)軸的結(jié)構(gòu)設(shè)計(jì)與強(qiáng)度校核 6.1電機(jī)軸設(shè)計(jì) 根據(jù)輪邊減速器結(jié)構(gòu)特點(diǎn),對(duì)電機(jī)軸材料,結(jié)構(gòu)有一定要求,首選按扭轉(zhuǎn)強(qiáng)度條件計(jì)算電機(jī)軸直徑,這里選電機(jī)軸材料為40Cr,則電機(jī)軸直徑 其中:—與材料有關(guān)的系數(shù),查表15-3,。 P—電機(jī)額定功率,P=3.5KW。 n—電機(jī)額定轉(zhuǎn)速,n=3500r/min。 則 考慮電機(jī)軸與太陽輪采用花鍵連接,對(duì)電機(jī)軸適當(dāng)放大,取d=14mm。 6.2行星軸設(shè)計(jì) 行星軸的軸徑與行星輪的軸承選取有關(guān),而行星輪的孔內(nèi)徑直徑也與軸承有關(guān),但孔內(nèi)徑邊緣距離齒根的最小厚度一般
38、不小于全齒高的1.2-1.4倍,即模數(shù)的3倍左右。初算內(nèi)孔邊緣最小直徑d,,則d=39.38mm。則。 由計(jì)算結(jié)果可以確定所選軸承最小外徑應(yīng),查機(jī)械設(shè)計(jì)手冊(cè)深溝球軸承的基本尺寸與數(shù)據(jù),滿足的軸承有較多,但考慮軸承還要受彎矩作用,所以在滿足條件的情況下,應(yīng)盡量選擇較大的軸承。 根據(jù)工業(yè)應(yīng)用實(shí)踐,行星輪內(nèi)孔設(shè)置的軸承直徑一般滿足一下范圍: 0.3*行星齒輪分度圓直徑,則。 0.7*行星齒輪分度圓直徑,則。 查機(jī)械設(shè)計(jì)手冊(cè)6,選用軸承代號(hào)為61902的深溝球軸承,其中,,。 按行星軸的心軸彎矩進(jìn)行校核,最小軸徑滿足。 其中:M—心軸彎矩值,因?yàn)樵谳S上齒輪為直齒輪,不受軸向力,所以彎矩。
39、 —許用彎曲應(yīng)力,對(duì)于材料為40Cr的心軸,。 則,所以行星輪心軸滿足強(qiáng)度要求。 6.3輸出軸設(shè)計(jì) 輸出軸承載的轉(zhuǎn)矩較大,其強(qiáng)度要求也較高,首先根據(jù)扭轉(zhuǎn)強(qiáng)度強(qiáng)度條件,估算輸出軸最小軸徑。 其中:—與材料有關(guān)的系數(shù),查表15-3,軸用材料為38SiMnMo,。 P—輸出軸功率,P=3.5KW。 n—輸出軸轉(zhuǎn)速,。 則。 考慮沖擊,花鍵等因素,將軸尺寸適當(dāng)放大,取。 7減速器潤滑與密封 由于輪邊驅(qū)動(dòng)系統(tǒng)工作平穩(wěn)要求較高;工作環(huán)境差,驅(qū)動(dòng)系統(tǒng)承受沖擊載荷,常年經(jīng)受酷暑嚴(yán)寒和極端溫差的影響,加之所處自然環(huán)境交通不同,以及設(shè)計(jì)上要求使用
40、壽命長(zhǎng)等工作特點(diǎn),所以保證充分潤滑條件對(duì)輪邊驅(qū)動(dòng)系統(tǒng)傳動(dòng)齒輪箱具有十分重要的意義。良好的潤滑能夠?qū)X輪和軸承起到足夠的保護(hù)作用,從而保證齒輪和軸能正常的工作和具有較高的壽命,所以在設(shè)計(jì)齒輪箱時(shí),其的潤滑方式也非常重要,不容忽視。同時(shí)良好的密封,也起到關(guān)鍵作用。 輪邊驅(qū)動(dòng)系統(tǒng)在工作過程中,齒輪由于工作環(huán)境的不同,常發(fā)生點(diǎn)蝕、齒輪折斷和膠合等失效形式;通常,閉式齒輪傳動(dòng)的潤滑方式有浸油潤滑和噴油潤滑兩種,一般根據(jù)齒輪的圓周速度來確定采用哪種潤滑方式。一般來說,當(dāng)齒輪的圓周速度小于12m/s時(shí),常將齒輪浸入油池進(jìn)行潤滑。由于行星齒輪傳動(dòng)系統(tǒng)的轉(zhuǎn)速較低,且齒輪的半徑較小,轉(zhuǎn)速低,因此采用浸油潤滑,為
41、了減少潤滑油更換次數(shù),適當(dāng)?shù)卦黾育X輪浸油深度,使其在10-20mm之間。同時(shí)由于所設(shè)計(jì)的行星齒輪傳動(dòng)系統(tǒng)所承受的載荷較低,所以采用中載荷工業(yè)齒輪油。 8輪邊驅(qū)動(dòng)系統(tǒng)三維建模與仿真 Pro/ENGINEER三維實(shí)體建模設(shè)計(jì)系統(tǒng)是美國參數(shù)技術(shù)公司(簡(jiǎn)稱PTC)的產(chǎn)品,PTC公司提出的單一數(shù)據(jù)庫、參數(shù)化?;谔卣骱屯昝狸P(guān)聯(lián)的概念從根本上改變了機(jī)械CAD/CAE/CAM的傳統(tǒng)概念,這種全新的設(shè)計(jì)理念已經(jīng)成為當(dāng)今世界機(jī)械CAD/CAE/CAM領(lǐng)域的新標(biāo)準(zhǔn)。使用計(jì)算機(jī)仿真的好處在于完善設(shè)計(jì),防止出現(xiàn)錯(cuò)誤,是設(shè)計(jì)師用來檢驗(yàn)自己的設(shè)計(jì)是否正確的手段之一,另外運(yùn)動(dòng)方針也可以用來模擬運(yùn)動(dòng),以及進(jìn)行相關(guān)的力
42、學(xué)性能分析等,同時(shí)運(yùn)動(dòng)仿真還能相當(dāng)程度的減少產(chǎn)品試加工時(shí)的成本投入,縮短設(shè)計(jì)周期。 8.1驅(qū)動(dòng)系統(tǒng)齒輪零件建模 在Pro/ENGINEER實(shí)體建模中,對(duì)于齒輪建模,已經(jīng)參數(shù)化,這樣的優(yōu)點(diǎn)在于:對(duì)于不同的齒輪,若只是改變齒輪齒數(shù),模數(shù)等參數(shù),則只需在軟件中改變相應(yīng)的參數(shù)即可得到新的模型,而不需要重新建模,大大減少設(shè)計(jì)時(shí)間。 齒輪建模過程大致如下:?jiǎn)螕舨藛螜谥小肮ぞ摺?參數(shù),在參數(shù)對(duì)話框里填入如下參數(shù) 圖8.1.1 參數(shù)對(duì)話框 Fig8.1.1 Parameters dialog box 完成齒輪基本圓繪制后,為齒輪添加“關(guān)系”,單擊菜單欄“工具”-關(guān)系 圖8.1.2
43、關(guān)系對(duì)話框 Fig8.1.2 Relationship dialog box 在對(duì)話框中添加分度圓直徑、齒頂圓直徑、齒根圓直徑和基圓直徑關(guān)系式,并與圖形上尺寸關(guān)聯(lián),確定后再生,即可得到新的基本圓尺寸。 然后再分別創(chuàng)建齒輪輪廓線、齒頂圓實(shí)體特征、齒廓曲線等特征,完成一個(gè)齒廓后圓周陣列即可得到一個(gè)完整的齒輪模型。下圖分別為太陽輪模型、行星輪模型和內(nèi)齒圈模型。 圖8.1.3 太陽輪 Fig8.1.3 Sun wheel 圖8.1.4 行星輪 Fig8.1.4 Planetary wheel 圖8.1.5 內(nèi)齒輪 Fig8.1.5 Internal gear
44、 8.2行星架建模 分析行星架主要是旋轉(zhuǎn)體,所以首先利用旋轉(zhuǎn)特征來完成主要外形建模,首先建立旋轉(zhuǎn)草圖,草圖尺寸如下 圖8.2.1 行星架草圖 Fig8.2.1 The planetary frame sketch 旋轉(zhuǎn)成型后,要將模型內(nèi)部多余部分切除,利用拉伸切除命令,分別將行星軸孔、內(nèi)部多余材料切除,然后拉伸出花鍵,最后倒角,完成建模,行星架模型如下 圖8.2.2 行星架 Fig8.2.2 Planetary frame 8.3殼體與端蓋建模 輪邊驅(qū)動(dòng)系統(tǒng)殼體、端蓋、行星軸主要是旋轉(zhuǎn)體,所以可以按上述方法,分別首先建立草圖,然后旋轉(zhuǎn)得到所需模型。 圖8
45、.3.1 殼體 Fig8.3.1 Shell 圖8.3.2 左端蓋 Fig8.3.2 The left end cover 圖8.3.4 右端蓋 Fig8.3.4 The right end cover 圖8.3.5 軸承端蓋 Fig8.3.5 Bearing end cover 圖8.3.6 行星軸 Fig8.3.6 Planetary shaft 8.4總裝配爆炸模型 輪邊減速器的裝配基本上都是軸向安裝,在對(duì)裝配模型進(jìn)行爆炸處理時(shí),首選軸向爆炸,其爆炸圖如下: 圖8.4.1 爆炸圖 Fig8.4.1 Explosio
46、n 8.5輪邊驅(qū)動(dòng)系統(tǒng)運(yùn)動(dòng)仿真 對(duì)于輪邊驅(qū)動(dòng)系統(tǒng)運(yùn)動(dòng)仿真,主要的目的是查看系統(tǒng)設(shè)計(jì)結(jié)構(gòu)是否合理,零件是否存在干涉,是否能夠達(dá)到初期運(yùn)動(dòng)要求。 8.5.1運(yùn)動(dòng)仿真建模 輪邊驅(qū)動(dòng)系統(tǒng)主要運(yùn)動(dòng)部件是NGW型行星齒輪的嚙合傳動(dòng),所以運(yùn)動(dòng)仿真的建模,主要是行星齒輪傳動(dòng)的齒輪嚙合建模,在pro/E中,齒輪嚙合仿真,是通過定義齒輪連接完成的。在打開裝配模型后,選擇應(yīng)用程序-機(jī)構(gòu),打開運(yùn)動(dòng)仿真界面,然后選擇定義齒輪副連接,如下圖。 圖8.5.1 齒輪副定義 Fig8.5.1 Gear definition 分別按要求對(duì)相嚙合的齒輪副定義要素,同時(shí)注意旋轉(zhuǎn)方向,定義完成后定義電機(jī)運(yùn)動(dòng)參數(shù),
47、即可進(jìn)行運(yùn)動(dòng)仿真。仿真如下: 圖8.5.2 運(yùn)動(dòng)仿真 Fig8.5.2 Motion simulation 通過運(yùn)動(dòng)仿真,可以觀察各零件并沒有發(fā)生干涉等問題,滿足初期運(yùn)動(dòng)條件,說明設(shè)計(jì)相對(duì)合理。 9總結(jié) 本文首先介紹了電動(dòng)汽車輪邊驅(qū)動(dòng)系統(tǒng)的發(fā)展背景、意義和輪邊驅(qū)動(dòng)系統(tǒng)技術(shù)在國內(nèi)外發(fā)展現(xiàn)狀;對(duì)輪邊驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)形式做了簡(jiǎn)要介紹。 本小型電動(dòng)車用輪邊減速器設(shè)計(jì)中采用一級(jí)NGW行星齒輪傳動(dòng)設(shè)計(jì)方案,對(duì)傳動(dòng)系統(tǒng)的主要零部件(齒輪、軸、軸承)進(jìn)行了的嚴(yán)格設(shè)計(jì)、選擇和校核。并對(duì)設(shè)計(jì)方案建立模型,運(yùn)用Pro/ENGINEER進(jìn)行運(yùn)動(dòng)仿真。 在歷時(shí)幾月的時(shí)間里本人主要為本論文做了以
48、下工作: 1) 查閱相關(guān)文獻(xiàn),充分了解電動(dòng)汽車用輪邊減速器的發(fā)展背景,當(dāng)前國內(nèi)外發(fā)展現(xiàn)狀和發(fā)展方向。 2)根據(jù)已知的輸入輸出轉(zhuǎn)速計(jì)算出總的傳動(dòng)比,并對(duì)傳動(dòng)比進(jìn)行了分配;根據(jù)功率計(jì)算出各軸傳遞的轉(zhuǎn)矩;根據(jù)輪邊減速器的工作要求確定了減速器的傳動(dòng)形式為一級(jí)NGW行星齒輪傳動(dòng);根據(jù)強(qiáng)度條件設(shè)計(jì)了輪邊減速系統(tǒng)的各詳細(xì)參數(shù); 3)進(jìn)行了各級(jí)齒輪的結(jié)構(gòu)設(shè)計(jì),各級(jí)軸的結(jié)構(gòu)設(shè)計(jì),各級(jí)軸承的選取,潤滑系統(tǒng)的選取,還有各主要零部件強(qiáng)度校核并進(jìn)行建模運(yùn)動(dòng)仿真; 4)根據(jù)設(shè)計(jì)計(jì)算結(jié)果繪制了小型電動(dòng)車用輪邊減速驅(qū)動(dòng)系統(tǒng)零件圖和總裝配圖。 以上內(nèi)容為本學(xué)期畢業(yè)設(shè)計(jì)的主要工作,由于時(shí)間和本人知識(shí)的限制,內(nèi)容
49、中尚有一些不完善的地方,懇請(qǐng)老師提出指正。 參考文獻(xiàn) [1] 吳宗澤,羅圣國. 機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊(cè)[M].北京:高等教育出版社,2006.5. [2]濮良貴,紀(jì)名剛.機(jī)械設(shè)計(jì)[M].北京:高等教育出版社,2006.5. [3]江先寶.微型電動(dòng)汽車用輪邊驅(qū)動(dòng)系統(tǒng)的設(shè)計(jì)與研究[A],2009.03. [4]饒振剛.行星齒輪傳動(dòng)設(shè)計(jì)[M].北京:化學(xué)工業(yè)出版社,2003.7. [5]馬從謙.漸開線行星齒輪傳動(dòng)設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,1987.10. [6]數(shù)字化手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)(新編軟件版). [7]李征,周榮.電動(dòng)汽車驅(qū)動(dòng)電機(jī)選用方法[J].汽車技術(shù),2
50、007.03.04. [8]孫桓,陳作模,葛文杰.機(jī)械原理(第七版)[M].北京:高等教育出版社,2006.3 [9]陳樺,范曉斌,徐文杰.基于Pro/E二次開發(fā)的零件參數(shù)化設(shè)計(jì)系統(tǒng)的研究[J].機(jī)械設(shè) 計(jì)與制造,2009(11):73-75. [10] 王玉新.三維虛擬環(huán)境下的機(jī)械產(chǎn)品概念設(shè)計(jì)[J].中國機(jī)械工程,2001,(12):24-27. [11] 高秀華.機(jī)構(gòu)三維動(dòng)態(tài)設(shè)計(jì)仿真技術(shù)[M].北京:化學(xué)工業(yè)出版社,2003. [12] 廖華麗.基于Pro/E的虛擬樣機(jī)技術(shù)在半自動(dòng)裝訂機(jī)設(shè)計(jì)中的應(yīng)用[J].機(jī)械設(shè)計(jì)與制造,2005,(8):l38~139. [13]SHI
51、MIZU,H,Transportation and safety in Japan:Multi-purpose electric vehicle“KAZ”,International Association of Traffic&Safety Sciences.V01.25No.2. [14]Keiichi Motoyama,Ph.D,Takashi Yamanaka.A,Study of Suspension Design Using Optimization Technique and DOE[C].Mechanical Dynamics,Inc.International ADAMS User Conference.2000 [15]RonMcCoy.Virtual Prototyping:The Practical Solution.Inventor’Digest,May/June 1998 致謝 33
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版