歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2022年春八年級數(shù)學下冊 第6章 平行四邊形 3 三角形的中位線教案 (新版)北師大版

  • 資源ID:105953620       資源大小:74.50KB        全文頁數(shù):3頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

2022年春八年級數(shù)學下冊 第6章 平行四邊形 3 三角形的中位線教案 (新版)北師大版

2022年春八年級數(shù)學下冊 第6章 平行四邊形 3 三角形的中位線教案 (新版)北師大版 教學目標 一、基本目標 1.理解三角形的中位線的定義. 2.理解并掌握三角形中位線的性質(zhì)定理,能夠證明這個定理,且能夠應用這個定理解決有關的問題. 3.經(jīng)歷探索三角形中位線性質(zhì)定理的證明過程,體會轉(zhuǎn)化的思想方法,進一步發(fā)展學生操作、觀察、歸納、推理的能力. 二、重難點目標 【教學重點】 應用三角形中位線的性質(zhì)定理解決有關問題. 【教學難點】 三角形中位線的性質(zhì)定理的證明. 教學過程 環(huán)節(jié)1 自學提綱,生成問題 【5 min閱讀】 閱讀教材P150~P151的內(nèi)容,完成下面練習. 【3 min反饋】 1.連接三角形兩邊中點的線段叫做三角形的中位線. 2.三角形中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半. 3.順次連結(jié)四邊形各邊的中點所成的四邊形是平行四邊形. 4.如圖所示,在△ABC中,點D、E分別是AB、AC的中點,∠A=50°,∠ADE=60°,則∠C的度數(shù)為70°. 5.已知△ABC的周長為50 cm,D、E、F分別為△ABC中AB、BC、AC邊的中點,且DE=8 cm.EF=10 cm,則DF的長為7 cm. 環(huán)節(jié)2 合作探究,解決問題 活動1 小組討論(師生互學) 【例1】如圖,在△ABC中,AB=5,AC=3,點N為BC的中點,AM平分∠BAC, CM⊥AM,垂足為M,延長CM交AB于點D,求MN的長. 【互動探索】(引發(fā)學生思考)為證MN為△BCD的中位線,應根據(jù)三線合一,得到DM=MC,即可解決問題. 【解答】∵AM平分∠BAC,CM⊥AM, ∴AD=AC=3,DM=CM. ∵BN=CN,∴MN為△BCD的中位線, ∴MN=×(5-3)=1. 【互動總結(jié)】(學生總結(jié),老師點評)當已知三角形的一邊的中點時,要注意分析問題中是否有隱含的中點. 活動2  鞏固練習(學生獨學) 1.如圖,在△ABC中,D、E分別為AC、BC的中點,AF平分∠CAB,交DE于點F.若DF=3,則AC的長為( C ) A.  B.3   C.6  D.9 2.如圖,C、D分別為EA、EB的中點,∠E=30°,∠1=110°,則∠2的度數(shù)為( A ) A.80°  B.90°   C.100°  D.110° 3.如圖所示,?ABCD的對角線AC、BD相交于點O,點E、F分別是線段AO、BO的中點,若AC+BD=24厘米,△OAB的周長是18厘米,則EF=3厘米. 4.如圖所示,D是△ABC內(nèi)一點,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點,則四邊形EFGH的周長為11. 5.如圖所示,在△ABC中,BC>AC,點D在BC上,且DC=AC,∠ACB的平分線CF交AD于點F,點E是AB的中點,連結(jié)EF.求證:EF∥BC. 證明:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,∴點F是AD的中點.∵點E是AB的中點,∴EF∥BD,即EF∥BC. 活動3  拓展延伸(學生對學) 【例2】如圖,E為平行四邊形ABCD中DC邊的延長線上一點,且CE=DC,連結(jié)AE,分別交BC、BD于點F、G,連結(jié)AC交BD于點O,連結(jié)OF,判斷AB與OF的位置關系和大小關系,并證明你的結(jié)論. 【互動探索】本題可先證明△ABF≌△ECF,從而得出BF=CF,這樣就得出了OF是△ABC的中位線,從而利用中位線定理即可得出線段OF與線段AB的關系. 【解答】AB∥OF,AB=2OF. 證明如下:∵四邊形ABCD是平行四邊形, ∴AB∥CD,AB=CD,OA=OC. ∴∠BAF=∠CEF,∠ABF=∠ECF. ∵CE=DC, CD=AB,∴AB=CE. 在△ABF和△ECF中, ∴△ABF≌△ECF(ASA),∴BF=CF. ∵OA=OC,∴OF是△ABC的中位線, ∴AB∥OF,AB=2OF. 【互動總結(jié)】(學生總結(jié),老師點評)本題綜合的知識點比較多,解答本題的關鍵是判斷出OF是△ABC的中位線. 環(huán)節(jié)3 課堂小結(jié),當堂達標 (學生總結(jié),老師點評) 1.三角形的中位線 連結(jié)三角形的兩邊中點的線段叫做三角形的中位線. 2.三角形中位線定理 三角形的中位線平行于第三邊,且等于第三邊的一半. 練習設計 請完成本課時對應練習!

注意事項

本文(2022年春八年級數(shù)學下冊 第6章 平行四邊形 3 三角形的中位線教案 (新版)北師大版)為本站會員(xt****7)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲