《【步步高】2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題六 第1講排列與組合、二項(xiàng)式定理》由會(huì)員分享,可在線閱讀,更多相關(guān)《【步步高】2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題六 第1講排列與組合、二項(xiàng)式定理(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專(zhuān)題六 概率與統(tǒng)計(jì)第1講 排列與組合、二項(xiàng)式定理
(推薦時(shí)間:60分鐘)
一、填空題
1.有5名同學(xué)參加唱歌、跳舞、下棋三項(xiàng)比賽,每項(xiàng)比賽至少有一人參加,其中甲同學(xué)不能參加跳舞比賽,則參賽方案的種數(shù)為_(kāi)_______(用數(shù)字回答).
2.(1-)10=a+b (a,b為有理數(shù)),則a2-2b2=______.
3.將5名志愿者分配到3個(gè)不同的世博會(huì)展覽館參加接待工作,每個(gè)場(chǎng)館至少分配一名志愿者的方案種數(shù)為_(kāi)______________.
4.若(1+mx)6=a0+a1x+a2x2+…+a6x6,且a1+a2+…+a6=63,則實(shí)數(shù)m的值為_(kāi)_______.
5.(2020·北
2、京)用數(shù)字2,3組成四位數(shù),且數(shù)字2,3至少都出現(xiàn)一次,這樣的四位數(shù)共有________個(gè).(用數(shù)字作答)
6.(2020·安徽)設(shè)(x-1)21=a0+a1x+a2x2+…+a21x21,則a10+a11=________.
7.若對(duì)于任意實(shí)數(shù)x,有x5=a0+a1(x-2)+…+a5(x-2)5,則a1+a3+a5-a0=________.
8. 8的展開(kāi)式中,含x的非整數(shù)次冪的項(xiàng)的系數(shù)之和為_(kāi)_______.
9.某班級(jí)有一個(gè)7人小組,現(xiàn)任選其中3人相互調(diào)整座位,其余4人座位不變,則不同的調(diào)整方案的種數(shù)為_(kāi)_______.
10.(2020·大綱全國(guó))(1-)20的二項(xiàng)展開(kāi)式中
3、,x的系數(shù)與x9的系數(shù)之差為_(kāi)_______.
11.有4張分別標(biāo)有數(shù)字1,2,3,4的紅色卡片和4張分別標(biāo)有數(shù)字1,2,3,4的藍(lán)色卡片,從這8張卡片中取出4張卡片排成一行.如果取出的4張卡片所標(biāo)的數(shù)字之和等于10,則不同的排法共有________種.(用數(shù)字作答)
12.8展開(kāi)式中含x的整數(shù)次冪的項(xiàng)的系數(shù)之和為_(kāi)_______(用數(shù)字作答).
二、解答題
13.如果n的展開(kāi)式中含有非零常數(shù)項(xiàng),求正整數(shù)n的最小值.
14.從5名女同學(xué)和4名男同學(xué)中選出4人參加演講比賽,分別按下列要求,各有多少種不同選法?
(1)男、女同學(xué)各2名;
(2)男、女同學(xué)分別至少有1名;
(3)在(
4、2)的前提下,男同學(xué)甲與女同學(xué)乙不能同時(shí)選出.
15.已知(1+2)n的展開(kāi)式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而又等于它后一項(xiàng)系數(shù)的.
(1)求展開(kāi)后所有項(xiàng)的系數(shù)之和及所有項(xiàng)的二項(xiàng)式系數(shù)之和;
(2)求展開(kāi)式中的有理項(xiàng).
答 案
1.100 2. 1 3.150 4.1或-3
5.146.0 7. 89 8. 184 9. 70 10. 0
11.432 12. 72
13.解 ∵Tr+1=C(3x2)n-r·r=(-1)r·C·3n-r·2r·x2n-5r,
∴若Tr+1為常數(shù)項(xiàng),必有2n-5r=0.
∴n=,∵n、r∈N*,∴n的最小值為5.
14.解 (1) C=60;
(2)男、女同學(xué)分別至少有1名,共有3種情況:CC+CC+CC=120;
(3)120-(C+CC+C)=99.
15.解 根據(jù)題意,設(shè)該項(xiàng)為第r+1項(xiàng),則有
即亦即
解得
(1)令x=1得展開(kāi)式中所有項(xiàng)的系數(shù)和為(1+2)7=37=2 187.
所有項(xiàng)的二項(xiàng)式系數(shù)和為27=128.
(2)展開(kāi)式的通項(xiàng)為T(mén)r+1=C2rx,r≤7且r∈N.
于是當(dāng)r=0,2,4,6時(shí),對(duì)應(yīng)項(xiàng)為有理項(xiàng),即有理項(xiàng)為T(mén)1=C20x0=1,T3=C22x=84x,
T5=C24x2=560x2,T7=C26x3=448x3.