歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

Origin8.0實驗數(shù)據(jù)處理與曲線擬合.ppt

  • 資源ID:117254779       資源大?。?span id="84486q4" class="font-tahoma">1.68MB        全文頁數(shù):61頁
  • 資源格式: PPT        下載積分:16積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要16積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

Origin8.0實驗數(shù)據(jù)處理與曲線擬合.ppt

數(shù)據(jù)分析繪圖工具Origin8.0 實驗數(shù)據(jù)處理與曲線擬合,數(shù)據(jù)分析繪圖工具 Origin 8.0,1 概述 2 線性擬合 3 多元線性擬合 4 非線性擬合多項式擬合 5 非線性擬合內(nèi)置函數(shù)擬合 6 自定義函數(shù)擬合 7 曲面擬合,.,1 概述,1.1 Origin8.0的一些變化 1.2 函數(shù)擬合的基本概念 1.3 擬合的基本方法,1.1 Origin的一些變化,1、新增了“XFunctions”技術(shù) 自1991年Origin問世以來,版本從4.0、5.0、6.0、7.0、7.5到2007年推出的8.0版,軟件不斷完善。與7.5版相比,Origin8.0在菜單設(shè)計、具體操作等很多方面都有顯著改進,特別是采用了XFunctions技術(shù),更是把“模塊化”和“對象化”發(fā)揮到了淋漓盡致的程度。,1.1 Origin的一些變化,2、在峰擬合方面的改進 將以前版中的峰擬合全部整合到“Peak and Baseline”菜單中。以前版本中的峰擬合插件也一并整合到這里了,并建立了功能強大的峰擬合向?qū)Ы缑妫梢徊讲酵瓿扇缋庾V、紅外光譜、X衍射譜線等的多峰譜線高級分析,自動完成基線檢測、多峰定位和多于100個峰的擬合。在材料學(xué)、工程學(xué)、光譜學(xué)、藥理學(xué)及其他科學(xué)領(lǐng)域有著廣泛的應(yīng)用。,1.1 Origin的一些變化,3、高質(zhì)量出版級別的圖表 Origin 8.0與 Origin 7.5版相比,在數(shù)據(jù)管理、數(shù)據(jù)分析處理和圖形分析等方面都有較大的提升,特別是能夠輸出高質(zhì)量出版級別的圖表,為科技工作者提供了高質(zhì)量的論文編寫工具。,1.2 函數(shù)擬合的基本概念,什么時候需要函數(shù)擬合? 在實驗數(shù)據(jù)處理和科技論文對實驗結(jié)果討論中,經(jīng)常需要對實驗數(shù)據(jù)進行線性回歸和曲線擬合,用以描述不同變量之間的關(guān)系,找出相應(yīng)函數(shù)的系數(shù),建立經(jīng)驗公式或數(shù)學(xué)模型。,1.2 函數(shù)擬合的基本概念,Origin 8.0提供了強大的線性回歸和函數(shù)擬合功能,其中最有代表性的是線性回歸和非線性最小二乘法擬合。繼承了以前版本提供的200多個內(nèi)置數(shù)學(xué)函數(shù)用于擬合,提供了專業(yè)水準(zhǔn)的擬合分析報告。提供了擬合函數(shù)管理器(Fitting Function Organizer)。改進了自定義擬合函數(shù)的編輯、管理與設(shè)置;新增了3D曲面函數(shù)擬合工具,方便對曲面函數(shù)的擬合。,1.3 函數(shù)擬合的基本方法,根據(jù)實驗結(jié)果的不同,函數(shù)擬合分為線性擬合與非線性擬合: 簡單線性擬合 線性擬合: 多元線性擬合 多項式擬合 非線性擬合: 內(nèi)置函數(shù)擬合 自定義函數(shù)擬合 曲面擬合,2. 線性擬合,2.1 簡單線性擬合 在完成化學(xué)實驗以后,先把實驗數(shù)據(jù)用散點圖形繪制出來,然后根據(jù)散點圖的形狀再來斷定是線性形狀還是非線性形狀。如果是線性形狀,就采用線性擬合,否則就用非線性擬合。,主講:王雅瓊,以硝基苯酚醋酸酯水解的速率常數(shù)實驗為例:采用初始濃度法,測定金屬配合物模擬水解酶催化對硝基苯酚醋酸酯水解的速率常數(shù),實驗中得到的時間和吸光度值如下表所示:,2.2 擬合舉例,用散點工具繪制折線圖如下:,從圖形上觀察,實驗點的分布規(guī)律為直線關(guān)系,應(yīng)該采用線性擬合方式,擬合為直線方程: Y=a + bX 從Analysis菜單選擇Fitting子菜單下的線性擬合選項 Linear Fit,之后出現(xiàn)一個線性擬合選項對話框如下:,在接下來的提示中,提醒你:“你想切換到報告表嗎?”,可以選擇“Yes”或“No”。,然后可以看到線性擬合的結(jié)果,擬合的直線為紅色的線條,列表中給出了擬合方程的參數(shù)a和b的值,同時也給出了相關(guān)系數(shù)R以及確定系數(shù)R2、標(biāo)準(zhǔn)偏差SD、實驗數(shù)據(jù)點的個數(shù)N等。在報告表中也同時給出了擬合好的直線圖形。,擬合結(jié)果說明:,3、多項式擬合,3、多項式擬合,3、多項式擬合,(2) 選擇菜單命令A(yù)nalysis Fitting Fit Polynomial進 行擬合。在彈出的: Polynomial Fit對話框中,設(shè)置 回歸區(qū)間和采用試驗法得出多項 式合適的級數(shù)(本例中多項式的級 數(shù)先定為2)如右圖:,3、多項式擬合,其擬合曲線和擬合結(jié)果在散點圖上給出如下圖,3、多項式擬合,從下面的擬合結(jié)果可以看出,相關(guān)系數(shù)很不好,只有0.89243。看來按照二級多項式擬合不行。,3、多項式擬合,(3) 重新擬合 把窗口中的所有內(nèi)容全部刪 除,重新導(dǎo)入下列數(shù)據(jù): Polynomial Fit.dat擬合數(shù)據(jù) 文件,選擇A(X)與C(Y)兩列數(shù) 據(jù), 做出散點圖, 再從Analysis Fitting Fit Polynomial進行 擬合,在彈出的菜單中選擇擬合 多項式的級數(shù)為3級,如右圖,設(shè)定級數(shù)為3,3、多項式擬合,點擊“OK”后畫出的擬合曲線事下圖,從圖中可以看出,擬合曲線與數(shù) 據(jù)點吻合的非常好, 而且它的相關(guān)系數(shù) 也很好,達到了 0.99767。,3、多項式擬合,因此,這組數(shù)據(jù)的變化規(guī)律可以用一元三次多項式來描述:,3、多項式擬合,如果把擬合多項式的級數(shù)進一步增大,比如增大到6,擬合結(jié)果又會是怎樣的呢?請同學(xué)們自己立刻擬合一次!,3、多項式擬合,從報告中可以看出,改進并不明顯,相關(guān)系數(shù)只是在第4位上有點增大。所以對于這組數(shù)據(jù)來說采用三級多項式就可以了。,3、多項式擬合,分析報表中的各參數(shù)如下:,4、多元線性擬合,4、多元線性擬合,某湖八年來湖水中COD濃度實測值(Y)與影響因素:湖區(qū)工業(yè)產(chǎn)值(X1)、總?cè)丝跀?shù)(X2)、捕魚量(X3)、降水量(X4)等的數(shù)據(jù)資料見下表:,4、多元線性擬合,要求建立污染物Y的水質(zhì)分析模型。 (1) 輸入數(shù)據(jù),將COD濃度實測值設(shè)置為Y,其余設(shè)置為X,如下圖所示。,4、多元線性擬合,選擇菜單命令A(yù)nalysis Fitting Multiple linear Regression ,進行多元線性 回歸,當(dāng)選擇“Open Dialog 時,系統(tǒng)會彈出一個多元線 性回歸窗口如右圖,數(shù)據(jù)范圍選擇因變Y和自變量X1到X4,然后單擊“OK”即可。,4、多元線性擬合,下圖為回歸報告窗口:,4、多元線性擬合,得到的多元線性回歸式為:,R-Square = 0.96408 , F = 47.96541 , P = 0.00473,5、指數(shù)擬合,指數(shù)擬合可分為指數(shù)衰減擬合和指數(shù)增長擬合,指數(shù)函數(shù)有一階函數(shù)和高階函數(shù)。下面以O(shè)rigin 8.0SamplesCurve FittingExponential Decay.dat數(shù)據(jù)文件為例,說明指數(shù)衰減擬合。 (1) 導(dǎo)入Exponential Decay.dat數(shù)據(jù),從該工作表窗口“Sparklines”圖形可以看出,包括了Decay1,Decay2和Decay3三列呈指數(shù)衰減數(shù)據(jù),如下圖所示:,5、指數(shù)擬合,5、指數(shù)擬合,(2) 選中數(shù)據(jù)B(Y)列繪制散 點圖(Graph1)。選擇菜單命 令A(yù)nalysisFitting Exponential Fit,打開 NLFit對話框, 在“Function”下拉列表框, 選擇相應(yīng)的函數(shù)。,5、指數(shù)擬合,從這里選擇函數(shù),從這里選擇參數(shù),查看示范曲線,查看函數(shù)方程,5、指數(shù)擬合,選擇指數(shù)衰減函數(shù),5、指數(shù)擬合,選擇函數(shù)參數(shù),把參數(shù)y0、A1設(shè)定為常量,5、指數(shù)擬合,5、指數(shù)擬合,從上面的紅線可以看出,一階指數(shù)曲線并不能完全從實驗點上通過,因此,應(yīng)該廢除本次擬合結(jié)果,重新繪制散點圖,再次選擇三階指數(shù)函數(shù)進行擬合,結(jié)果如下:,5、指數(shù)擬合,可以看出,擬合曲線與散點變化規(guī)律非常吻合,5、指數(shù)擬合,6、非線性曲線擬合,非線性曲線擬合(Nonlinear Curve Fit , NLFit)是Origin 所提供的功能最強大、使用也最復(fù)雜的數(shù)據(jù)擬合工具。有多達200多個數(shù)據(jù)表達式,用于曲線擬合函數(shù),這些數(shù)學(xué)表達式選自不同的學(xué)科領(lǐng)域的數(shù)據(jù)模型,能滿足絕大多數(shù)科技工程中的曲線擬合需求。Origin的非線性曲線擬合是通過NLFit對話框?qū)崿F(xiàn)的。下面以SamplesCurve FittingGaussian.dat數(shù)據(jù)進行非線性曲線擬合演示。,6、非線性曲線擬合,(1) 導(dǎo)入Gaussian.dat數(shù)據(jù)文件,選中C(Y)列數(shù)據(jù),將其坐標(biāo)屬性改為C(yEr?)欄,選中B(Y)和C(yEr?)欄,選擇菜單命令PlotSymbolScatter,繪制散點圖如下:,6、非線性曲線擬合,選擇菜單命令A(yù)nalysisFittingNonlinear Curve Fit,打開NLFit對話框如下圖,擬合函數(shù)類別和函數(shù)選擇,6、非線性曲線擬合,(3) 在上面板的“Settings”中選擇函數(shù)GaussAmp。,選擇函數(shù)GaussAmp,6、非線性曲線擬合,(4) 單擊“Fit”擬合按鈕即可完成擬合工作。結(jié)果如下:,6、非線性曲線擬合,擬合方程如下:,6、非線性曲線擬合,6、非線性曲線擬合,6、非線性曲線擬合,6、非線性曲線擬合,6、非線性曲線擬合,3、多項式擬合,

注意事項

本文(Origin8.0實驗數(shù)據(jù)處理與曲線擬合.ppt)為本站會員(good****022)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲