2020高考數(shù)學(xué)刷題首選卷 第五章 不等式、推理與證明、算法初步與復(fù)數(shù) 考點測試37 直接證明與間接證明 文(含解析)
-
資源ID:120433767
資源大?。?span id="zflrzjf" class="font-tahoma">944.72KB
全文頁數(shù):9頁
- 資源格式: DOCX
下載積分:22積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2020高考數(shù)學(xué)刷題首選卷 第五章 不等式、推理與證明、算法初步與復(fù)數(shù) 考點測試37 直接證明與間接證明 文(含解析)
考點測試37 直接證明與間接證明
高考概覽
考綱研讀
1.了解直接證明的兩種基本方法——分析法和綜合法;了解分析法和綜合法的思考過程和特點
2.了解反證法的思考過程和特點
一、基礎(chǔ)小題
1.命題“對于任意角θ,cos4θ-sin4θ=cos2θ”的證明:“cos4θ-sin4θ=(cos2θ-sin2θ)·(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”過程應(yīng)用了( )
A.分析法 B.綜合法
C.綜合法、分析法綜合使用 D.間接證明法
答案 B
解析 因為證明過程是“從左往右”,即由條件?結(jié)論.
2.用反證法證明結(jié)論“三角形內(nèi)角至少有一個不大于60°”,應(yīng)假設(shè)( )
A.三個內(nèi)角至多有一個大于60°
B.三個內(nèi)角都不大于60°
C.三個內(nèi)角都大于60°
D.三個內(nèi)角至多有兩個大于60°
答案 C
解析 “三角形內(nèi)角至少有一個不大于60°”即“三個內(nèi)角至少有一個小于等于60°”,其否定為“三角形內(nèi)角都大于60°”.故選C.
3.若a,b,c是不全相等的實數(shù),求證:a2+b2+c2>ab+bc+ca.
證明過程如下:
∵a,b,c∈R,∴a2+b2≥2ab,
b2+c2≥2bc,c2+a2≥2ac.
又∵a,b,c不全相等,
∴以上三式至少有一個“=”不成立.
∴將以上三式相加得2(a2+b2+c2)>2(ab+bc+ac).
∴a2+b2+c2>ab+bc+ca.
此證法是( )
A.分析法 B.綜合法
C.分析法與綜合法并用 D.反證法
答案 B
解析 由已知條件入手證明結(jié)論成立,滿足綜合法的定義.
4.分析法又稱執(zhí)果索因法,若用分析法證明:“設(shè)a>b>c,且a+b+c=0,求證<a”索的因應(yīng)是( )
A.a(chǎn)-b>0 B.a(chǎn)-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
答案 C
解析 <a?b2-ac<3a2
?(a+c)2-ac<3a2
?a2+2ac+c2-ac-3a2<0
?-2a2+ac+c2<0
?2a2-ac-c2>0
?(a-c)(2a+c)>0?(a-c)(a-b)>0.
5.若P=+,Q=+,a≥0,則P,Q的大小關(guān)系是( )
A.P>Q B.P=Q
C.P<Q D.由a的取值確定
答案 C
解析 令a=0,則P=≈2.6,Q=+≈3.7,
∴P<Q.
據(jù)此猜想a≥0時P<Q.
證明如下:
要證P<Q,
只要證P2<Q2,
只要證2a+7+2<2a+7+2,
只要證a2+7a<a2+7a+12,
只要證0<12,
∵0<12成立,∴P<Q成立.故選C.
6.兩旅客坐火車外出旅游,希望座位連在一起,且有一個靠窗,已知火車上的座位如圖所示,則下列座位號碼符合要求的應(yīng)當(dāng)是( )
窗口
1
2
6
7
11
12
…
…
過道
3
4
5
8
9
10
13
14
15
…
…
…
窗口
A.48,49 B.62,63 C.75,76 D.84,85
答案 D
解析 由已知圖形中座位的排序規(guī)律可知,被5除余1的數(shù)和能被5整除的座位號靠窗,由于兩旅客希望座位連在一起,且有一個靠窗,分析答案中的4組座位號知,只有D符合條件.
7.有6名選手參加演講比賽,觀眾甲猜測:4號或5號選手得第一名;觀眾乙猜測:3號選手不可能得第一名;觀眾丙猜測:1,2,6號選手中的一位獲得第一名;觀眾丁猜測:4,5,6號選手都不可能獲得第一名.比賽后發(fā)現(xiàn)沒有并列名次,且甲、乙、丙、丁中只有1人猜對比賽結(jié)果,此人是( )
A.甲 B.乙 C.丙 D.丁
答案 D
解析 若1,2號得第一名,則乙丙丁都對,若3號得第一名,則只有丁對,若4,5號得第一名,則甲乙都對,若6號得第一名,則乙丙都對,因此只有丁猜對.故選D.
8.記S=+++…+,則S與1的大小關(guān)系是________.
答案 S<1
解析 ∵<,<,…,
=<,
∴S=+++…+<++…+=1.
二、高考小題
9.(2019·山東高考)用反證法證明命題“設(shè)a,b為實數(shù),則方程x3+ax+b=0至少有一個實根”時,要做的假設(shè)是( )
A.方程x3+ax+b=0沒有實根
B.方程x3+ax+b=0至多有一個實根
C.方程x3+ax+b=0至多有兩個實根
D.方程x3+ax+b=0恰好有兩個實根
答案 A
解析 “方程x3+ax+b=0至少有一個實根”的否定是“方程x3+ax+b=0沒有實根”.
三、模擬小題
10.(2019·山東濟南模擬)用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么a,b,c中至少有一個是偶數(shù).用反證法證明時,下列假設(shè)正確的是( )
A.假設(shè)a,b,c都是偶數(shù)
B.假設(shè)a,b,c都不是偶數(shù)
C.假設(shè)a,b,c至多有一個偶數(shù)
D.假設(shè)a,b,c至多有兩個偶數(shù)
答案 B
解析 “至少有一個”的否定為“都不是”,故選B.
11.(2018·寧夏銀川調(diào)研)設(shè)a,b,c是不全相等的正數(shù),給出下列判斷:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b,a<b及a=b中至少有一個成立;
③a≠c,b≠c,a≠b不能同時成立.
其中正確判斷的個數(shù)為( )
A.0 B.1 C.2 D.3
答案 C
解析?、佗谡_;③中,a≠b,b≠c,a≠c可以同時成立,如a=1,b=2,c=3,故正確的判斷有2個.
12.(2018·長春模擬)設(shè)a,b,c都是正數(shù),則a+,b+,c+三個數(shù)( )
A.都大于2 B.都小于2
C.至少有一個不大于2 D.至少有一個不小于2
答案 D
解析 假設(shè)a+,b+,c+都小于2,則有a++b++c+<6.
因為a,b,c都是正數(shù),
所以a++b++c+
=++
≥2+2+2=6,
這與a++b++c+<6矛盾,
故假設(shè)不成立,所以a+,b+,c+至少有一個不小于2.故選D.
13.(2018·山東煙臺模擬)設(shè)a>b>0,m=-,n=,則m,n的大小關(guān)系是________.
答案 n>m
解析 解法一(取特殊值法):取a=2,b=1,則m<n.
解法二(分析法):-<?+>?a<b+2·+a-b?2·>0,顯然成立.
一、高考大題
1.(2018·北京高考)設(shè)n為正整數(shù),集合A={α|α=(t1,t2,…,tn),tk∈{0,1},k=1,2,…,n}.對于集合A中的任意元素α=(x1,x2,…,xn)和β=(y1,y2,…,yn),記M(α,β)=[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(xn+yn-|xn-yn|)].
(1)當(dāng)n=3時,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;
(2)當(dāng)n=4時,設(shè)B是A的子集,且滿足:對于B中的任意元素α,β,當(dāng)α,β相同時,M(α,β)是奇數(shù);當(dāng)α,β不同時,M(α,β)是偶數(shù).求集合B中元素個數(shù)的最大值;
(3)給定不小于2的n,設(shè)B是A的子集,且滿足:對于B中的任意兩個不同的元素α,β,M(α,β)=0.寫出一個集合B,使其元素個數(shù)最多,并說明理由.
解 (1)因為α=(1,1,0),β=(0,1,1),
所以M(α,α)=[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,
M(α,β)=[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.
(2)設(shè)α=(x1,x2,x3,x4)∈B,
則M(α,α)=x1+x2+x3+x4.
由題意知x1,x2,x3,x4∈{0,1},且M(α,α)為奇數(shù),
所以x1,x2,x3,x4中1的個數(shù)為1或3.
所以B?{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.
將上述集合中的元素分成如下四組:
(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).
經(jīng)驗證,對于每組中兩個元素α,β均有M(α,β)=1.
所以每組中的兩個元素不可能同時是集合B的元素.
所以集合B中元素的個數(shù)不超過4.
又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}滿足條件,
所以集合B中元素個數(shù)的最大值為4.
(3)設(shè)Sk={(x1,x2,…,xn)|(x1,x2,…,xn)∈A,
xk=1,x1=x2=…=xk-1=0}(k=1,2,…,n),
Sn+1={(x1,x2,…,xn)|x1=x2=…=xn=0},
所以A=S1∪S2∪…∪Sn+1.
對于Sk(k=1,2,…,n-1)中的不同元素α,β,經(jīng)驗證,M(α,β)≥1.
所以Sk(k=1,2,…,n-1)中的兩個元素不可能同時是集合B的元素.
所以B中元素的個數(shù)不超過n+1.
取ek=(x1,x2,…,xn)∈Sk且xk+1=…=xn=0(k=1,2,…,n-1).
令B={e1,e2,…,en-1}∪Sn∪Sn+1,則集合B的元素個數(shù)為n+1,且滿足條件.
故B是一個滿足條件且元素個數(shù)最多的集合.
2.(2018·江蘇高考)記f′(x),g′(x)分別為函數(shù)f(x),g(x)的導(dǎo)函數(shù),若存在x0∈R,滿足f(x0)=g(x0)且f′(x0)=g′(x0),則稱x0為函數(shù)f(x)與g(x)的一個“S點”.
(1)證明:函數(shù)f(x)=x與g(x)=x2+2x-2不存在“S點”;
(2)若函數(shù)f(x)=ax2-1與g(x)=ln x存在“S點”,求實數(shù)a的值;
(3)已知函數(shù)f(x)=-x2+a,g(x)=,對任意a>0,判斷是否存在b>0,使函數(shù)f(x)與g(x)在區(qū)間(0,+∞)內(nèi)存在“S點”,并說明理由.
解 (1)證明:函數(shù)f(x)=x,g(x)=x2+2x-2,
則f′(x)=1,g′(x)=2x+2,
由f(x)=g(x)且f′(x)=g′(x),
得此方程組無解.
因此,f(x)=x與g(x)=x2+2x-2不存在“S點”.
(2)函數(shù)f(x)=ax2-1,g(x)=ln x,
則f′(x)=2ax,g′(x)=,
設(shè)x0為f(x)與g(x)的“S點”,由f(x0)=g(x0)且f′(x0)=g′(x0),得
即(*)
得ln x0=-,即x0=e-,則a==.
當(dāng)a=時,x0=e-滿足方程組(*),
即x0為f(x)與g(x)的“S點”,因此,a的值為.
(3)f′(x)=-2x,g′(x)=,x≠0,
f′(x0)=g′(x0)?bex0=->0?x0∈(0,1),
f(x0)=g(x0)?-x+a==-?
a=x-,
令h(x)=x2--a=,
x∈(0,1),a>0,
設(shè)m(x)=-x3+3x2+ax-a,x∈(0,1),a>0,
則m(0)=-a<0,m(1)=2>0?m(0)·m(1)<0,
又m(x)的圖象在(0,1)上連續(xù)不斷,
∴m(x)在(0,1)上有零點,則h(x)在(0,1)上有零點.因此,對任意a>0,存在b>0,使函數(shù)f(x)與g(x)在區(qū)間(0,+∞)內(nèi)存在“S點”.
二、模擬大題
3.(2018·貴州安順調(diào)研)已知函數(shù)f(x)=3x-2x,求證:對于任意的x1,x2∈R,均有≥f.
證明 要證明≥f,
即證明≥3-2·,
因此只要證明-(x1+x2)≥3-(x1+x2),
即證明≥3,
因此只要證明≥,
由于x1,x2∈R時,3x1>0,3x2>0,
由基本不等式知≥(當(dāng)且僅當(dāng)x1=x2時,等號成立)顯然成立,
故原結(jié)論成立.
4.(2018·山東臨沂三校聯(lián)考)已知數(shù)列{an}的前n項和為Sn,且滿足an+Sn=2.
(1)求數(shù)列{an}的通項公式;
(2)求證:數(shù)列{an}中不存在三項按原來順序成等差數(shù)列.
解 (1)當(dāng)n=1時,a1+S1=2a1=2,則a1=1.
又an+Sn=2,所以an+1+Sn+1=2,
兩式相減得an+1=an,所以{an}是首項為1,公比為的等比數(shù)列,所以an=.
(2)證明:(反證法)假設(shè)存在三項按原來順序成等差數(shù)列,記為ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N*),
則2·=+,
所以2·2r-q=2r-p+1.①
又因為p<q<r,且p,q,r∈N*,所以r-q,r-p∈N*.
所以①式左邊是偶數(shù),右邊是奇數(shù),等式不成立.
所以假設(shè)不成立,原命題得證.
9