果園挖穴施肥機的設計【果園定量挖坑施肥機】【說明書+CAD+SOLIDWORKS】
果園挖穴施肥機的設計【果園定量挖坑施肥機】【說明書+CAD+SOLIDWORKS】,果園定量挖坑施肥機,說明書+CAD+SOLIDWORKS,果園挖穴施肥機的設計【果園定量挖坑施肥機】【說明書+CAD+SOLIDWORKS】,果園,施肥,設計,定量,挖坑,說明書,仿單,cad,solidworks
塔里木大學畢業(yè)設計
16 屆畢業(yè)設計
果園挖穴施肥機的設計
學生姓名 艾合塔爾江.艾爾肯
學 號 8031212234
所屬學院 機械電氣化工程學院
專 業(yè) 農業(yè)機械化與其自動化
班 級 16-2
指導老師 賀小偉
日 期 2016.05
塔里木大學機械電氣化工程學院制
前 言
我國是生產水果的大國,無論是在面積上還是在水果產品的產量上都是位居世界第一的。但是由于果園管理和種植技術的落后使得水果產品的品質下降,所以果園施肥技術和方式就成了提高水果產品的品質的一大因素。雖然果園施肥方式呈現多樣化的趨勢,但是果園機械化施肥卻處于一種比較低下的水平。甚至在一些地方還采用著人工施肥的方式,這樣使得施肥工作繁重、效率低下、而肥料的腐蝕性對人體造成著傷害等,消耗著大量人力物力卻無法達到提高水果產量和品質的提升。所以機械化施肥和肥料的利用率成了設計的重點。就此果園定量挖坑施肥機可以解決,機械化施肥和提高肥料利用率的難題。
關鍵詞:果園;挖穴;施肥機
目 錄
1緒論 3
1.1課題研究的意義 3
1.2國內外定量挖坑施肥機發(fā)展狀況 3
1.3國內外果園挖坑定量施肥機存在的問題 4
1.4研究的內容和方法 4
1.5預期目標 4
1.6重點研究的關鍵問題及解決思路 5
1.7工作條件及解決方法 5
2果園挖穴施肥機的總體設計 5
2.1果園挖穴施肥機方案的選擇 5
2.2果園挖穴施肥機的結構 7
2.3果園挖穴施肥機的原理 8
3施肥機主要部件的設計 8
3.1土壤收集器的設計 8
3.2螺旋鉆頭的設計 9
4機械傳動部分的設計 10
4.1機械傳動結構 10
4.2傳動比以及傳動轉速的計算 11
5挖穴施肥機的施肥箱設計 12
5.1施肥箱 12
5.2排肥輪的設計與排肥量的計算 12
6果園挖穴施肥機接近開關的設計 13
6.1接近開關的選擇 13
6.2電容式接近開關與其定量施肥的原理 15
7軸的校核 16
7.1主動軸的校核 16
總 結 18
致 謝 19
參考文獻 20
1緒論
1.1課題研究的意義
機械化施肥是提高水果產品的品質和產量的一種有效方式,但是由于我國在研究機械化施肥技術萬面的起步晚對應的研究技術不成熟,在果園施肥方面采用的最多的還是人工施肥。但因其效率低勞動強度大人工成本高等原因已經影響到了我國果林行業(yè)的發(fā)展,人們對于機械化施肥的需求越來越強烈。在這種情況下我國借鑒國外先進的技術和經驗以及結合本土實際情況研究出了符合我國果林行情的各種施肥機械。
但是我國國內缺少著機械化施肥機械使得很多地區(qū)都無法實現機械化施肥,而機械化的顯著優(yōu)點就是對比人工作業(yè)具有更高的效率,在現代農業(yè)快速發(fā)展的前提下我國對于施肥的機械化需求度越來越高而相對應的施肥機械卻有待開發(fā)。特別是針對挖坑機的研究挖。
挖坑機的作用是開挖施肥坑洞,我國在果園施肥主要是先使用挖坑機進行開挖坑洞然后再人工進行施肥及土壤回填。我國針對挖坑機的研究開發(fā)晚于國外,現在我國使用的挖坑機雖都能針對不同環(huán)境進行挖坑,可是功能單一挖坑之后就閑置無法滿足機械化施肥作業(yè)的需求。
雖然現在國內對于果園機械化方面的扶持力度不斷增加,但我國在果園機械化施肥技術及機械上還存在許多問題。特別是近幾年國內果園種植的面積不斷增大如何因地制宜的選擇施肥肥料、施肥量、施肥間隔都是我國需要深入研究的問題。而針對施肥機械的研究應該從挖溝、精量施肥、覆土、壓埋的多功能一體化的機械施肥機開發(fā)為主。所以設計此類的施肥機械成為了不可避免的選擇。
1.2國內外定量挖坑施肥機發(fā)展狀況
1.2.1國外定量挖坑施肥機發(fā)展現狀
國外很早就開始了對于定量施肥機等精確農業(yè)技術的研究和發(fā)展,早在80年代末美國的土壤研究專家們就已經提出了精確農業(yè)這個概念。一直到現在精確農業(yè)在全世界廣泛發(fā)展。精確農業(yè)追求的就是在追求農業(yè)生產效益提高的同時減少農業(yè)生態(tài)環(huán)境的污染。而日本在于定量施肥機械等精確農業(yè)的進展也是相當快的,而其生產的自走式高性能挖坑整地一體化施肥機采用柴油機作為動力,行走裝置輪胎外還配備有行走腳,一般用輪胎行駛,坡地高時用行走腳行走。而英國生產的05H8300型號的掛式挖坑機械和美國的懸掛式挖坑機,鉆頭之間可以調節(jié)距離,工作效率高。
1.2.2國內定量挖坑施肥機發(fā)展現狀
我國對于精確農業(yè)的思想也已經逐步被社會所接受,并將一部分的研究成果應用在了實際中。就精確農業(yè)而講目前我國比較有代表性的研究機構有:中國農業(yè)大學精細農業(yè)研究中心,北京農業(yè)信息技術研究中心,上海精確農業(yè)公司,浙江大學精確農業(yè)研究中心,中國農業(yè)科學院,黑龍江八一農墾大學和吉林大學精確農業(yè)研究中心等。吉林大學馬成林教授作為精確農業(yè)學科帶頭人開辟了精確農業(yè)研究的新方向,他已經完成了國家“九五”攻關項目“變量深施肥機的研制”和吉林省科委項目“精確農業(yè)自動變量施肥技術的研究”,對如何實施精確農業(yè)自動變量施肥技術進行了深入地探討,提出了分步實施“精確農業(yè)”的設想:第一步進行手控變量投入;第二步采用智能化機具進行全自動變量投入。吉林大學為了適第一步手控變量投入技術的應用,已完成了“手動變量深施肥機”的研究開發(fā)。目前正在吉林省榆樹市進行“機械化精確施肥技術示范”,已開始第二步“精確農業(yè)”研究示范應用。
1.3國內外果園挖坑定量施肥機存在的問題
目前,我國使用的施肥機也只能完成機械鉆孔和人工輔助施肥,施肥量不能實現精密控制,而且作業(yè)成本高,生產率低下,勞動強度高。相比之下外國的施肥機械采用了電子、液壓、計算機等新型技術進行自動化控制來提高作業(yè)質量,實現精量施肥,但是其機械成本高,一次性投入較大,且于我國傳統(tǒng)的果園種植模式也并不匹配,不利于機具的的通過作業(yè)。
1.4研究的內容和方法
就針對于目前果園挖坑施肥中存在的問題,可以從兩個方面來考慮:第一是依靠園藝技術來改善種植模式,實現機具于園藝技術配套,從而保證機具順利進行果園田間施肥作業(yè),但就依目前來看,調整傳統(tǒng)的果園施肥模式是很難實現的;第二是根據果樹生長情況及營養(yǎng)需求,進行挖坑定量施肥,一次性完成挖坑、施肥、覆土工作,有效的提高肥料的利用率和工作效率。
所以必須根據我國的實際情況,結合果樹的營養(yǎng)需求,設計一個能夠實現挖坑、施肥、覆土一體化的果園挖坑施肥機,并且具備一定的檢測和精確施肥的能力,成為本設計重點內容。
1.5預期目標
(1)果園挖坑施肥機作業(yè)方便,結構簡單,通用性好,噪音小,使用壽命長。
(2)施肥機施肥效率高、能實現精密施肥、并有一定覆土能力。
(3)可以在田間、果樹林上作業(yè),人工勞動量少,同時動力上要消耗少。
(4)制造價格便宜,容易普及,能滿足果園農戶的使用的要求。
1.6重點研究的關鍵問題及解決思路
該果園定量施肥機的主要動力源是由拖拉機的后動力輸出來實現動力提供的,并由齒輪的傳動作用傳動給各個工作部件,實現挖坑、施肥、和覆土。在施肥過程中由電渦式接近開關實現施肥量的精確控制。
(1)選擇合適動力傳遞方式,設計工作裝置和傳動裝置。
(2)運用Auto CAD軟件,繪制二維零件圖和裝配圖。
(3)利用有限元分析和Solidworks進行虛擬樣機設計,完成整機各零部件的三維建模。
1.7工作條件及解決方法
塔里木大學位于南疆中心位置,校內有實習工廠、土槽實驗室、農業(yè)工程重點實驗室等,設計條件較好,為項目開展提供了場地和基本條件。校內擁有優(yōu)良的硬件環(huán)境,機械電氣化工程學院擁有先進的實驗設備和機械加工制造設備,并且?guī)熧Y力量雄厚,完全可以滿足果園挖穴施肥機的工作條件
2果園挖穴施肥機的總體設計
2.1果園挖穴施肥機方案的選擇
2.1.1果園挖穴施肥機的幾種樣式
目前,在果園施肥工作和過程中,多數果園農戶仍采用傳統(tǒng)的人工挖溝或挖穴撒肥的方式,該方法的肥料利用率低,大大增加了果農的工作強度。相比開溝施肥等其他的施肥方式來講,挖穴施肥減少了對果樹根部的傷害、有利于肥料的持續(xù)性吸收,更加節(jié)約能耗。
圖片2-1中所展示的是一種小型手提式果園挖穴施肥機,此類施肥機已被多數果農采用,得到了一定程度的推廣。這種挖穴機采用的是一汽油機作為動力,動力強勁,由單人或是雙人手提操作,方便使用效率又高,而且可以根據果園的需要來跟換不同的鉆頭。實用、方便,但是挖穴工作結束以后要使用人力來將液體或固體肥料填埋到坑穴中,比較適合于拖拉機無法通過的地形復雜的山地、丘陵等地區(qū)。
圖2-1 手提式挖穴施肥機
圖片2-2所展示的是懸掛挖穴式施肥機,廣泛用于果樹的挖穴施肥作業(yè),也可以用于獨立的挖穴作業(yè)。其挖穴機設置在機架的后端,拖拉機設置在機架的后部,但其施肥工作需要人工操作,所以雖然提高了施肥作業(yè)效率但是肥料利用率卻低下。
圖2-2 懸掛式挖穴施肥機
圖片2-3為山東農業(yè)大學韓大勇等人根據果樹標準化施肥技術的要求,研制設計的一種自走式施肥機,該施肥機由發(fā)動機驅動液壓泵供油,電磁閥控制馬達旋轉,帶動鉆頭轉動,另外一個電磁閥控制升降液壓缸,帶動鉆頭由上往下進行鉆孔作業(yè),挖出的土壤搜集器,由單片機控制步進電機來驅動排肥器工作,實現定量施肥。
圖2-3 自走式施肥機
2.1.2果園挖穴施肥機方案的制定
為了實現預定功能制定了一個方案:
使用已拖拉機為輸出動力源的挖穴施肥機,施肥機鉆頭轉速由拖拉機馬力和減速器的減速作用來確定,并采用土壤收集器來進行土壤的混合和施肥。為滿足定量施肥的要求,利用電容式接近開關來檢查于土壤的距離來封閉或是開啟施肥管來控制施肥量。
2.2果園挖穴施肥機的結構
果園挖穴施肥機主要由,機架、施肥箱、后動力輸出軸、齒輪箱總成、土壤收集器等構成。本機能在果園施肥作業(yè)中實現挖穴、施肥、覆土作業(yè),大幅度減少勞動力,提高肥料利用率。比較使用果樹農戶的需要。
1 3點懸掛裝置、 2 機架、 3 鏈條、 4 施肥箱、 5 排肥輪、
6 覆土裝置 、7 排肥管、8 土壤收集器、 9 彈簧、
10 挖穴鉆頭、 11 齒輪箱總成、 12 主動軸、 13 從動軸、
14 后動力輸出軸。
圖2-4 果園挖穴機結構圖
2.3果園挖穴施肥機的原理
本果園施肥機主要有齒輪箱總成、傳動箱總成、3點懸掛裝置、覆土裝置、排肥箱、土壤收集器、機架等部分組成如圖4.工作原理如下所述:
(1)利用拖拉機的牙也懸掛系統(tǒng)將施肥機掛在施肥機后方。
(2)施肥機的動力由拖拉機的后動力輸出軸經傳動軸總成傳至于齒輪箱。
(3)動力經過齒輪箱的減速、換向,作用于豎直方向和水平方向的兩傳動軸,帶動排肥裝置實施肥料添加。
(4)在螺旋鉆頭于土壤接近時電容式接近開關開始開啟排肥管,螺旋鉆頭開始鉆孔時由其螺旋的提升作用,將土壤和肥料至于土壤收集器內混合;在螺旋鉆孔結束提升過程中,肥料和土壤由土壤收集器置入鉆孔中,并在施肥機前進是由覆土裝置覆土。來實現整機鉆孔、施肥、覆土一體化要求。
3施肥機主要部件的設計
3.1土壤收集器的設計
土壤收集器主要以外套筒、內套筒和彈簧構成。其外套同和內套筒因為要和土壤、肥料相接觸所以采用耐磨性能比較好65Mn 剛。在螺旋鉆頭對土壤開始進行鉆孔工作時,土壤收集器的內套筒受力向上收縮,通過螺旋鉆的螺旋葉片的提升作用,將土壤提升至搜集器內部,隨后土壤與肥料接觸混合并在螺旋鉆提升后隨著土壤收集器向下進入鉆孔內部,其結構圖如下3-1所示。
圖3-1 土壤收集器結構圖
3.2螺旋鉆頭的設計
3.1.1 螺旋刀片的參數的選擇
刀片的選擇:選用梯形刀片比較事宜,安裝角度以小于30°比較合適。
刀片的厚度/mm:8~10;
刀刃的厚度/mm:0.2~0.8;
刀片的材料:65 SiMnRe 鋼或65Mn 剛
刀片的硬度:HRC46~HRC60
3.1.2 螺旋鉆頭的外徑
螺旋鉆頭的外徑是根據施肥坑洞的直徑確定的,螺旋鉆頭的外徑應略微大于施肥坑洞的直徑,而隨著土壤類型的不同其差異也有所不同。所以其螺旋鉆的外徑可以以下面的公式確定;
D=0.92~0.98D0 (3-1)
其中,D為螺旋鉆頭的外徑;D0為施肥坑洞的直徑,取0.38m。將數據代入式子(1),得出
D=0.349~0.372m
根據果園挖穴施肥機的工作要去,固取D=0.36m。
3.1.3 螺旋鉆頭的長度的確定
一般的螺旋鉆頭的長度H應不小于坑深H0,即H≥H0;該施肥機的挖穴深度H0=0.30m,故取=0.30m。
挖穴鉆頭的螺旋升角α,有
α<90°-(ρ1+ρ2) (3-2)
其中,ρ1為土壤對于剛的摩擦角,取30°;ρ2為土壤之間的摩擦角,取40°
把以上的數據都代入式子(2)中,得到
α<90°-(30°+40°),得到α<20°
根據我國國內挖穴用的螺旋鉆的實驗要求,α=(15°~22°),因此該設計中取α=16° 。
螺旋鉆頭的導程h。有公式為
h=πDtanα=0.18m (3-3)
所以螺旋鉆頭的設計為
圖3-2 螺旋鉆頭圖
4機械傳動部分的設計
4.1機械傳動結構
本挖穴施肥機根據功能要求采用了兩級齒輪傳動,傳動部分借助于后動力減速器和其3個直傘齒輪構成,其結構圖如圖4-1所示
圖4-1 機械傳動部分結構圖
其中,1為后動力傳輸裝置, 2為主動齒輪,3從動齒輪為其鏈輪和螺旋鉆頭提供動力輸出。
根據螺旋鉆頭的傳動需要的總傳矩,分別設計了直傘齒輪(2、3、4)其參數如下
齒輪 2:z1=20,d1=285mm
齒輪 3:z2=25,d2=367mm
齒輪 4:z3=15,d3=285mm
齒輪 1、2、4傳動:模數m1=6,寬度b1=60
4.2傳動比以及傳動轉速的計算
本施肥機采用的是以拖拉機后動力輸出軸為傳動提供動力,如果采用東風904農用拖拉機為動力源其傳輸轉速為540(r/min)。已知傳動公式為;
i=z1z2=D2D1 (4-2)
本施肥機后動力輸出裝置是采用傳動比1:1減速來輸出的動力經過齒輪1和各個齒輪減速來改變轉速,已知齒輪2的齒數為20齒輪3為25其傳動比為;
i=2025=0.8
其于螺旋鉆頭的齒輪之間的傳動比為;
i=2515=1.6
求出其傳動比后計算其轉速,其公式為;
n1=i×n0
其中n0為東風904農用拖拉機轉速540(r/min),n1為從動齒輪轉速
n1=0.8×540=432(r/min)
在算出螺旋鉆孔的速度,將n0=432,i=1.6 代入得到
n1=1.6×432=691(r/min)
為后續(xù)計算排肥量方便,將大鏈輪和小鏈輪傳動比和轉速計算出來,所以將z1為27、z2為13得到傳動比為
i=2713=2
計算出小鏈輪轉速為
n1=2×432=864(r/min)
5挖穴施肥機的施肥箱設計
5.1施肥箱
施肥箱為整體式焊接結構,采用單一的排種口,箱體采用了厚度為1mm的鐵板,采用等腰梯形結構,箱體沒有死角,使肥料的殘余量少,有利于肥料進入排肥輪中。
根據施肥裝置的通用尺寸參數,并結合果園施肥機的設計要求,確定了如下尺寸:
施肥箱的開口出寬度為度a1=600mm;施肥箱下底的寬度為b1=500mm;施肥箱高度h=600mm;工作幅度l=300mm;排肥箱容積為V=ha+bl2=98L。
排肥口尺寸設置為:長a2=100mm;b2=50mm。
5.2排肥輪的設計與排肥量的計算
排肥輪應便于制造和清理,并且能使化肥均勻地落到筒底的輸送管道中。為了充分利用重力輸送化肥,排肥元件置于排肥器的下部,使排肥性能不受箱內化肥充滿程度以及地面斜度和沖擊力的影響。本施肥機械要求排肥量在5~90kg之間,因此選用外槽星輪式排肥裝置,星輪每轉排肥量q為:
q=aFZσ+hr1000 (5-1)
式子中 F-排肥輪每單個齒槽面積(cm2),R=5cm,F=πR22=39.25;
δ0-排肥輪每個齒厚(cm),取δ0=0.5;
h-活門的開度(cm),即活門至星輪最下端的距離,取h=20;
α-肥料充滿系數,決定于肥料物理狀態(tài)、濕度和其流動性,一般取α=0.7;
Z-排肥輪輪齒的槽數,取Z=10;
r-排肥單位容積質量(gL),取r=1500。
將以上所示的各個參數帶入式子(1),得星輪每轉排肥料量q為
q=8.4kg
根據已知條件,可以按照下列公式計算出施肥機每公頃排肥量Q,即;
Q=15mnq1000δ (5-1)
式子中,m為排肥器數量,取m=1;n為排肥器轉動速(rmin),n=864;δ為排肥輪損失率(%)取δ=30。
將各個參數代入式(2),得每公頃排肥量Q為
Q=362kg
每個鉆孔內應排出的化肥量q0為
q0=Qj
其中,j為每公頃果園內的果樹株數,設取為j=500。則
q0=0.72kg
所以每株果樹的施肥量約為0.5kg。
6果園挖穴施肥機接近開關的設計
6.1接近開關的選擇
接近開關是一中無需要與運動部件進行機械直接的接觸而可以操作的位置開關,當物體接近開關的感應面到動作距離的時候,不需要機械接觸及施加任何壓力即可使開關動作,從而使驅動直流電器或給計算機(plc)裝置提供控制指令。接近開關是種開關型傳感器(即無觸點開關),它既有行程開關、微動開關的特性,同時具有傳感性能,且動作可靠強,性能穩(wěn)定,頻率響應快,應用壽命長,抗干擾能力強等、并具有防水、防震、耐腐蝕等特點。產品有電感式、電容式、霍爾式、交、直流型。
接近開關又稱是無觸點式接近開關,是理想的電子開關量的傳感器。當金屬檢測體接近開關的感應區(qū)域時候,開關就能無接觸,無壓力、無火花、迅速發(fā)出電氣指令,準確反應出運動機構的位置和行程,即使用于一般的行程控制,其定位精度、操作頻率、使用壽命、安裝調整的方便性和對惡劣環(huán)境的適用能力上,是一般機械式行程開關所不能相比較的。它廣泛地應用于機床、冶金、化工、輕紡和印刷等行業(yè)。在自動控制系統(tǒng)中可作為限位、計數、定位控制和其自動保護環(huán)節(jié)等。
而接近開關的種類和原理分別有;
電容式接近開關
圖6-1 為電容式接近開關
這種開關的測量通常是構成電容器的一個極板,而另一個極板是開關的外殼。這個外殼在測量過程中通常是接地或與設備的機殼相連接。當有物體移向接近開關時,不論它是否為導體,由于它的接近,總要使電容的介電常數發(fā)生變化,從而使電容量發(fā)生變化,使得和測量頭相連的電路狀態(tài)也隨之發(fā)生變化,由此便可控制開關的接通或斷開。這種接近開關檢測的對象,不限于導體,可以絕緣的液體或粉狀物等。
霍爾接近開關
圖6-2 霍爾接近開關
霍爾元件是一種磁敏元件。利用霍爾元件做成的開關,叫做霍爾開關。當磁性物件移近霍爾開關時,開關檢測面上的霍爾元件因產生霍爾效應而使開關內部電路狀態(tài)發(fā)生變化,由此識別附近有磁性物體存在,進而控制開關的通或斷。這種接近開關的檢測對象必須是磁性物體。
光電式接近開關
圖6-3 光電式接近開關
利用光電效應做成的開關叫光電開關。將發(fā)光器件與光電器件按一定方向裝在同一個檢測頭內。當有反光面(被檢測物體)接近時,光電器件接收到反射光后便在信號輸出,由此便可“感知”有物體接近。
而本施肥機才用在接近開關與地面的距離來控制施肥管封閉與開啟,所以只有電容式接近開關比較合適于本施肥機的要求,故選擇電容式接近開過作為感應和開關裝置。
6.2電容式接近開關與其定量施肥的原理
電容式接近開關屬于一種具有開關量輸出的位置傳感器,它是由兩個同軸金屬電極構成,很象“打開的”電容器電極,該兩個電極構成一個電容,串聯在RC振蕩的回路內。電源接通時,RC振蕩器不振蕩,當一個目標朝著電容器的電極靠近時,電容器的容量增加,使振蕩器開始振蕩,通過后級電路的處理,將停振和振蕩兩種信號轉換成開關信號,從而起到了檢測有無物體存在的目的。該傳感器能檢測金屬物體,也能檢測非金屬物體,對金屬物體可以獲得最大的動作距離,對非金屬物體動作距離決定于材料的介電系數,介電系數變得越大,可獲得的動作距離越大。大多數的電容式接近開關都有一個多圈的螺旋電位器,用于開關距離的調整,其部分材料的介電常數如圖;
圖6-4 部分材料的介電常數
本果園施肥機其在挖穴過程中利用施肥機與地面距離的變化來實現感應器感應地面來實現,肥料的定量施肥的。但其中重點在于感應器與地面達到多少距離時施肥,本果園施肥機螺旋鉆頭與地面開始接觸到開始鉆孔時施肥管開啟使肥料進入土壤收集器來與土壤混合為宜,所以根據材料介電常數來確定電容式接近開關于地面距離為15cm時施肥比較時候于本施肥機,也合理于傳感器的感應范圍。
7軸的校核
7.1傳動軸的校核
軸的校核是選擇軸和其強度計算的重要已經,計算其扭轉強度。
圖7-1 主動軸的結構視圖
選用45#調制,硬度為217~255HBS
軸的直徑約為d=36mm
轉速為n1=540
根據軸直徑公式得出其扭轉強度
WT=πd316=0.2d3=9331 mm2 (7-1)
7.1.2軸長支反力
根據軸承支反力的作用點以及軸承和齒輪在軸上的安裝位置,建立力學模型。
水平面的支反力:RA=RB=Ft/2 =1606.43 N
垂直面的支反力:由于選用深溝球軸承則Fa=0
那么RA’=RB’ =Fr×65.5/131=584.695 N
畫彎矩圖
主動軸剖面處的彎矩:
水平面的彎矩:MC=RA×65.5×0.001=105.221 Nm
垂直面的彎矩:MC1’= MC2’=RA’×65.5×0.001=38.297 Nm
合成彎矩:
(7-2)
畫轉矩圖: T= Ft×d1/2=3212.86×70/2×0.001=112.45 Nm
畫當量彎矩圖
因為是單向回轉,轉矩為脈動循環(huán),α=0.6
可得右起第三段剖面C處的當量彎矩:
(7-3)
7.1.3判斷危險截面并驗算強度
右起第三段剖面C處當量彎矩最大,而其直徑與相鄰段相差不大,所以剖面C為危險截面。
已知MeC2=130.34Nm ,由課本表13-1有:
[σ-1]=60Mpa 則:
σe= MeC2/W= MeC2/(0.1·D43)
=130.34×1000/(0.1×553)=7.8 Nm<[σ-1]
右起第一段D處雖僅受轉矩但其直徑較小,故該面也為危險截面:
(7-4)
σe= MD/W= MD/(0.1·D13)
=67.47×1000/(0.1×303)=34.99 Nm<[σ-1]
所以確定的尺寸是安全的 。
總 結
此次設計的任務是完成果園挖穴施肥機的設計。這是我們在大學期間所進行的一次非常全面的設計,為自己在大學四年所學習知識的全面總結和鞏固,使我們初步了解和掌握做設計的基本步驟、基本方法,通過本環(huán)節(jié)把我們在大學期間所學課程中所獲得的理論知識在設計實踐中加以綜合和運用,把大學四年以來來所學的知識貫穿起來,使理論知識和生產實踐密切的結合起來,為我將來的實際工作打下了堅實的基礎。
這是一個非常全面而系統(tǒng)的設計題目,非常鍛煉人。從方案的論證到最終的設計,涉及的領域包括:機械制圖,機械原理,工程材料,機械設計等等。通過設計實踐,提高我計算、制圖能力;使我們能熟練地應用有關參考資料、計算圖表、手冊、圖集、規(guī)范,熟悉有關的國家標準。機械方面知識得到系統(tǒng)的鞏固和提升。在進行畢業(yè)設計的同時,我還學到了許多新的知識,如Solidworks,CAD2008的使用和WORD、POWERPOINT等軟件的應用。
我深刻的認識到,要想成為一名合格的工程設計人員只是掌握本專業(yè)的知識是遠遠不夠的,應該具有更加淵博的知識,如應該對計算機應用,農產品的特性,農業(yè)經濟的發(fā)展現狀等各個方面能力進行加強。
在設計過程中也曾遇到很多的問題,但通過查閱相關的書籍、手冊以及老師的精心指導,都得到了解決,設計過程基本順利完成。
致 謝
畢業(yè)在即,四年的大學生活已接近尾聲,經過三個多月的不斷努力,在賀小偉老師的悉心指導下,設計任務基本完成了。在撰寫論文期間,我要衷心的感謝我的指導老師賀小偉,從設計的選題、實施到撰寫、修改和定稿,賀小偉均傾注了大量的心血。導師的悉心指導、熱忱鼓勵不僅使我樹立了深遠的學術目標、掌握了基本的研究方法,還使我明白了許多待人接物與為人處事的道理。還有,導師淵博的專業(yè)知識,嚴謹的治學態(tài)度,精益求精的工作作風,誨人不倦的高尚師德,嚴以律己、寬以待人的崇高風范,樸實無華、平易近人的人格魅力將使我終生受益。同時我還要感謝大學期間各位任課老師在學習上給予我的指導和幫助,感謝他們四年來的辛勤栽培,他們的關懷和熏陶讓我在這四年里收獲頗豐。
最后,也感謝和我一起學習的同窗朋友,他們給了我無數的關心和鼓勵,也讓我的大學生活充滿了溫暖和歡樂,感謝他們的陪伴與幫助,愿我們以后的人生都可以充實、多彩與快樂!
參考文獻
[1]張洪,張學軍,鄢金山,史增錄,牟國良,于蒙杰. 密植果園挖穴施肥機挖穴鉆頭的設計及試驗研究[J]. 農業(yè)科技與裝備,2013,02:39-41.
[2]張靜,楊宛章. 果園挖穴施肥機的現狀分析與探討[J]. 現代農業(yè)裝備,2013,02:69-72.
[3]郭偉,凌芝,何增富. 一種間歇式穴施肥機構的研制[J]. 農業(yè)裝備技術,2014,01:19-21.
[4]連瀟,徐萬鵬. 一種果園追肥器的設計[J]. 隴東學院學報,2014,03:29-31.
[5]蘇子昊,蘭峰,黎子明,謝舒,李奇. 國內外果園開溝施肥機械現狀分析[J]. 農業(yè)機械,2014,15:134-137.
[6]蘇子昊,蘭峰,黎子明,謝舒,李奇. 果園定向施肥機施肥系統(tǒng)結構設計[J]. 農業(yè)工程,2014,04:116-119+124. [7]王先進. 果園機械化施肥技術應用與探討[J]. 中國農業(yè)信息,2014,17:59.
[8]韓大勇. 果樹挖坑定量施肥機的研制[D].山東農業(yè)大學,2011.
[9]汪官健,趙衛(wèi)林,吳永林,郜寧. 多功能果樹開溝施肥機的研制[J]. 農機化,2011,06:26-27.
[10]張涵,周嶺,丁羽,李平,張有強,孟煒. 果園固態(tài)有機肥施肥機的絞龍設計[J]. 中國農機化學報,2016,01:69-72.
[11]韓冰,劉斐,慕軍營,馬陽. 一種果園挖坑施肥機結構設計[J]. 農機化研究,2015,03:123-125+129.
[12]羅進軍,湯智輝,何義川,孟祥金,屈年巍. 紅棗開溝施肥機的試驗研究[J]. 農業(yè)機械,2015,11:122-123.
[13]張俊寧. 精準施肥技術現狀及挑戰(zhàn)[J]. 高科技與產業(yè)化,2015,07:64-68.
[14]王金武,紀文義,馮金龍,王金峰. 液態(tài)施肥機的設計與試驗研究[J]. 農業(yè)工程學報,2008,06:157-159.
[15]李潔,吳明亮,湯遠菊,龔昕. 有機肥施肥機械的研究現狀與發(fā)展趨勢[J]. 湖南農業(yè)大學學報(自然科學版),2013,S1:97-100.
.Automation in Construction 9 2000 421435 rlocaterautcon Impedance control of a hydraulically actuated robotic excavator Q.P. Ha ) , Q.H. Nguyen, D.C. Rye, H.F. Durrant-Whyte Australian Center for Field Robotics, The Uniersity of Sydney, J07, Sydney, 2006 NSW, Australia Abstract In robotic excavation, hybrid positionrforce control has been proposed for bucket digging trajectory following. In hybrid positionrforce control, the control mode is required to switch between position- and force-control depending on whether the bucket is in free space or in contact with the soil during the process. Alternatively, impedance control can be applied such that one control mode is employed in both free and constrained motion. This paper presents a robust sliding controller that implements impedance control for a backhoe excavator. The control law consists of three components: an equivalent control, a switching control and a tuning control. Given an excavation task in world space, inverse kinematic and dynamic models are used to convert the task into a desired digging trajectory in joint space. The proposed controller is applied to provide good tracking performance with attenuated vibration at bucketsoil contact points. From the control signals and the joint angles of the excavator, the piston position and ram force of each hydraulic cylinder for the axis control of the boom, arm, and bucket can be determined. The problem is then how to find the control voltage applied to each servovalve to achieve force and position tracking of each electrohydraulic system for the axis motion of the boom, arm, and bucket. With an observer-based compensation for disturbance force including hydraulic friction, tracking of the piston ram force and position is guaranteed using robust sliding control. High performance and strong robustness can be obtained as demonstrated by simulation and experiments performed on a hydraulically actuated robotic excavator. The results obtained suggest that the proposed control technique can provide robust performance when employed in autonomous excavation with soil contact considerations. q 2000 Elsevier Science B.V. All rights reserved. Keywords: Robotic excavator; Hybrid positionrforce control; Sliding controller 1. Introduction The usual task of a backhoe excavator is to free and remove material from its original location and to transfer it to another location by lowering the bucket, digging by dragging the bucket through the soil, then ) Corresponding author. Department of Mechanics and Mecha- tronic Engineering, The University of Sydney, J07, 2006 NSW, Australia. Tel.: q61-2-9351-3098; fax: q61-2-9351-7474. .E-mail address: quang.hamech.eng.usyd.edu.au Q.P. Ha . lifting, slewing and dumping the bucket. In moving towards automatic excavation, there is a need for the development of a controller that is robust to uncer- wx tainties associated with these operations 1 . For control purposes, kinematic and dynamic models of excavators that assume the hydraulic actuators act as infinitely powerful force sources are presented in wx Refs. 24 . Position control with a conventional proportional and derivative controller is used in Refs. wx 4,5 for simulation of the digging process with limited soil interaction. Excavators are, however, subject to a wide varia- tion of soiltool interaction forces. When digging, 0926-5805r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved. .PII: S0926-5805 00 00056-X ()Q.P. Ha et al.rAutomation in Construction 9 2000 421435422 the bucket tip motion is effectively force-constrained by the nonlinear constitutive equations of the envi- ronment, and by the hydraulic forces. Compliance control approaches may therefore be considered to be more suitable than position control for the shap- ing of excavator dynamics. Compliant motion con- trol can generally be classified into two broad classes: hybrid positionrforce control and interactive control or impedanceradmittance control. In hybrid forcerposition control, the Cartesian space of the end-effector co-ordinates is decomposed into a posi- tion sub-space and a force sub-space. Separate posi- tion- and force-trajectory tracking objectives are specified in each sub-space. Excessive force tran- sients may, however, occur at the instant of contact between the tool and the environment. Rather than tracking desired position and force trajectories, inter- active control seeks to regulate the relationship be- tween the end-effector position and the interaction force. It is known that impedance control provides a unified approach to both unconstrained and con- wx strained motion 6 . If hybrid positionrforce control is adopted, the control mode should be switched between position control and force control according to whether the excavator bucket is in free space or in contact with the soil during an excavation task. Impedance control is believed to be better suited to excavation tasks in the sense that it can be applied continuously to both free and constrained motions wx 1 . An impedance controller has recently been re- wx ported for an excavator arm 7 . This paper proposes a robust sliding mode control technique to imple- ment impedance control for an excavator using gen- eralised excavator dynamics. The bucket tip is con- trolled to track a desired digging trajectory in the presence of environment and system parameter un- certainties. In impedance control of hydraulic exca- vators, the piston position and the ram force of each hydraulic cylinder for the axis control of the boom, arm, and bucket can be determined. The problem is then how to find the control voltage applied to the servovalves to track these desired commands. Taking into account friction and nonlinearities, a discontinu- ous observer is developed for estimating both piston displacement velocity and disturbance including load force and friction. With an observer-based compen- sation for the disturbance force, robust tracking the piston ram force and position is guaranteed using robust sliding mode controllers for electrohydraulic systems. The validity of the proposed method is verified through simulation and filed tests performed on the Komatsu PC-05 mini-excavator. The remain- der of this paper is organised as follows. Section 2 is devoted to the derivation of the excavator dynamic model. The problem formulation and the develop- ment of impedance control for excavator dynamics are presented in Section 3. The control of electrohy- draulic systems is addressed in Section 4. The hard- ware organisation for the robotic excavator is de- scribed in Section 5 together with computer simula- tions and experimental results. Finally, conclusions are provided in Section 6. 2. Excavator dynamics The equations of motion for a generic excavator can be derived by applying the EulerLagrange equations to a Lagrangian energy function, or by writing the NewtonEuler equations successively for each link of the machine. In the latter approach, the dynamics of each link are described by equations that recurse through the link index. The driving joint torques of the boom, arm, and bucket are generated by the forces of the hydraulic ram actuators. The translational and rotational motions of these links are described by the dynamic model of the excavator system. Dynamic models of excavators are presented wx wx in Ref. 2 with refinements in Ref. 4 . Firstly, a 4 Cartesian co-ordinate frame Oxyz fixed to the 0000 excavator body is chosen. Other Cartesian co-ordinate frames are systematically assigned by applying the wx Denavit and Hartenberg procedure as in Refs. 24 . 4 4 The frames Oxyz , Oxyz , Oxyz , 1111 2 222 3333 4 and Oxyz are respectively attached to the 4444 boom, arm, bucket, and bucket tip as seen in Fig. 1. Note that the movements of the excavator mecha- nism during digging usually occur in the vertical plane. It is therefore assumed that no boom-swing motion occurs during excavation, so that the boom . swing angle u is therefore held constant u s0 11 during digging. The model equations can be written for each link of the excavator by considering the link as a rigid free body. By combining Newton and Euler equations for all links, the dynamical model for the excavator can be expressed concisely in a ()Q.P. Ha et al.rAutomation in Construction 9 2000 421435 423 Fig. 1. Excavator joint variables. well-known form of manipulator equations of motion wx 4: D uuqC u ,uuqB u qG u . . . . sA u FyT F ,F ,1 . . . Ltn wx T where us uuu is the vector of measured 234 shaft angles: u for the boom joint, u for the arm joint, and u for the bucket joint; T represents the 4L load torques as functions of the tangential and nor- mal components, F and F , of the soil reaction force tn at the bucket, and F are the ram forces of the hydraulic actuators that produce the torques acting on the joint shafts. The tangential component, F , t which is parallel to the digging direction, represents the resistance to the digging of ground by excavators bucket teeth. This resistance is considered as the sum of soils resistance to cutting, the friction between the bucket and the ground, and the resistance to movement of the prism of soil and soil movement in the bucket. The tangential component can be calcu- wx lated according to Ref. 8 as F skbh,2 . t1 w y2 x where k is the specific digging force N m , and 1 h and b are respectively the thickness and width of wx the cut slice of soil m . The normal component, F , n is calculated as F sC F ,3 . nt . where cs 0.10.45 is a factor depending on the digging angle, digging conditions, and the wear and wx tear of the cutting edge 8 . The determination of the . matrices of inertia, D u , of Coriolis and centripetal . . effects, C u,uu, of gravity forces, G u , and of . functions of the moment arms, A u , is comprehen- wx sively described in Refs. 24 . All entries in these wx matrices are given in Ref. 4 . The 3=1-matrix of . viscous friction B u is treated in this paper as a source of uncertainty. . In the digging plane, the Jacobian J u defined as xsJ uu,4 . . wx w can be obtained from Ref. 3 , where xs xz 44 x T u represents the Cartesian co-ordinates and orien- O 4 . tation of the bucket tip O with respect to 4 4 . Oxyz . Assuming that the Jacobian matrix J e 0000 . is non-singular, Eq. 1 in joint space can be rewrit- ten in Cartesian space as: H xxqC x, xxqB x qG x . . . . xx yT sJAFyF ,5 . e where HsJ yT DJ y1 , C sJ yT CyDJ y1 JJ y1 , . x G sJ yT G, B sJ yT B,6 . xx and F sJ I T T denotes the generalised forces of eL . interaction between the end-effector bucket tip and . the environment soil . They consist of digging forces acting on the bucket with force entries for the co- . ordinates x , z and a torque entry around y . 44 4 The determination of the forward and inverse . y1 . kinematic relationships, xsL u and usL x wx . is detailed in Ref. 3 . As Eq. 5 has the form of the generalised robotic manipulator dynamics where x is a vector of the co-ordinates of the contact point of the manipulator with the environment, below and in the next section, we will consider in general xgR n and ugR n . We assume A1: HsHqAH, C sC qDC , xx x G sG qDG , AsAqD A, F sF qD F , xx x ee e 7 . where matrices H, C , G , and A are known, F is to xx e be measured by force sensors such as load pins, and DH, DC , DG , D A, and D F are uncertainties. xx e Denoting friction and uncertainties by Df x, x, x sDH xqDC xqDG qB x . xx yT qD F yJ D AF,8 . e ()Q.P. Ha et al.rAutomation in Construction 9 2000 421435424 . Eq. 5 can be rewritten as H xxqC x, xxqG x . . . xx suyF yDf x, x, x ,9 . . e where yT usJAF 10 . is the control input. . Remark 1. As D u is a 3=3-symmetric positive- definite matrix satisfying the skew symmetric prop- wx . . erty 9 , for the nominal dynamics Df x, x, x s0 w . .x of the excavator, H x -2C x, x is also a skew- x symmetric matrix, i.e. T xHxy2C x, xxs0, ;x.11 . . . x 3. Excavator dynamics impedance control 3.1. Problem formulation One of the excavating task elements is penetration of the soil by an excavator bucket to follow a pre-planned digging trajectory. During digging, three main tangential resistance forces arise: the resistance to soil cutting, the frictional force acting on the bucket surface in contact with the soil, and the resistance to movement of the prism of soil ahead of and in the bucket. The magnitude of the digging resistance forces depends on many factors such as the digging angle, volume of the soil prism, volume of material ripped into the bucket, and the specific resistance to cutting. These factors are generally variable and unavailable. Moreover, due to soil plas- ticity, spatial variation in soil properties, and poten- tial severe inhomogeneity of material under excava- tion, it is impossible to exactly define the force needed for certain digging conditions. The objective of impedance control is to establish a desired dynamical relationship between the end-ef- . fector bucket tip position and the contact force. This dynamical relationship is referred to as the . target impedance. Let x t be the desired trajectory r of the end-effector. Typically, the target impedance is chosen as a linear second-order system to mimic mass-spring-damper dynamics: Z ses M s 2 qB sqK e . . t P tttP sM e qB e qK e se ,12 . t P t P t PF where s is the derivative operator and the constant positive-definite n=n-matrices M , B and K are tt t respectively the matrices of inertia, damping and stiffness. The position error, e , and the force error, P e , are defined as F e sx yx, e sF yyF ,13 . . P r F r e . where F t sM x qB x qK x is the force rtrtrtr set-point. The control problem is to asymptotically drive the . system state to implement the target impedance 12 even in the presence of uncertainty. If the position error e approaches zero, the force error e also PF approaches zero and vice versa, according to a speci- fied dynamical relationship defined by the numerical . values of the matrices M , B and K in Eq. 12 . In tt t some contact tasks, the force set-point, F , will be r specified to be constant rather than time-varying. During free-space motion where there is no contact with the environment, F syF s0, so e tends to r e P . 2 zero since Z s sM s qB sqK is stable. The tttt choice of the matrices M , B and K will determine tt t the shape of the desired transient response of the system. When the end-effector contacts the environ- ment, the interaction is characterised by the target . impedance 12 , which results in a compromise be- tween the position error and the force error. If the end-effector position tracks the desired trajectory . xx then the contact force follows the force r . set-point yF F . e r 3.2. Controller deelopment Consider a manipulator dynamical model of the . . form 5 with uncertainty satisfying condition 7 . It wx is well known 10 that robustness is the most distin- guished feature of variable structure control with sliding mode. In this section, a robust sliding mode controller will be developed for the manipulator . . dynamics 5 . As Eq. 5 represents a 2n-dimen- ()Q.P. Ha et al.rAutomation in Construction 9 2000 421435 425 sional system with an n-dimensionalcontrol input, a sliding surface in the state space will be a manifold wx w of dimension 2nynsn 10 . Let us define ss s 1 . . .x T x , s x ,., s x , the sliding functions, as 2 n wx follows 11 : ssye yM y1 B e yM y1 K e dt H P ttP ttP qM y1 e dts xyx ,14 . H t F s where x sx qM y1 B e qM y1 K e dtyM y1 e dt . HH sr ttP ttP t F 15 . The existence of a sliding mode, ss0, requires that ssye yM y1 B e yM y1 K e qM y1 e s0. P ttP ttP t F 16 . It can be seen that once the system state is in the . . sliding mode associated with Eq. 14 , condition 16 . guarantees that the target impedance 12 is reached. . . Thus, in the sliding mode s x s0, is1,2, . . . ,n , i . the force error tends to zero. The magnitudes s x i . is1,2, . . . ,n represent then the deviations of the system state from the sliding surface. We assume further that: . A2: Each entry of the uncertainty Df x, x, x is bounded: D f x, x, x Fb , . ii ; x, x, x is1,2,.,n .17 . . . Let us now define the control input usuyQ sgn s ,18 . . where usH x qC x qG qF ,19 . sxsx e T Qs Q sgn s ,.,Q sgn s , . . 11 nn Q )b is1,2,.,n .20 . ii . Remark 2. The control law 18 consists of two . components. The component 19 , calculated with the nominal system dynamic model, is called the equialent control. The other component, with the . discontinuous gain given in Eq. 20 , is called the switching control. () Theorem 1. Consider the system of Eq. 5 associ- () ated with sliding functions 14 and the target () impedance 12 . If the assumptions A1 and A2 are () satisfied, and the control law 18 is employed, then () the impedance error 14 asymptotically conerges to zero 9 . Implementation implies that sufficiently large switching gains, Q , are available. Large values of i Q will, however, tend to excite chattering. To accel- i erate the reaching phase and to reduce chattering, the . control law 18 is added by a tuning component: usuyQ sgn s yKs,21 . . where Ksdiag Ks is1,2,.,n .22 . . . ii Employing the fuzzy tuning technique proposed in wx . Ref. 12 , the expressions for Ks)0 are chosen ii as: K sK 1yexp y s rd . iimax ii is1,2,.,n ,23 . . where K and d are some positive constants. i max i () Theorem 2. Consider the system of Eq. 5 associ- () ated with the sliding functions 14 and the target () impedance 12 . If the assumptions A1 and A2 are () satisfied, and the control law 21 is employed then () the impedance error 14 asymptotically conerges to zero 9 . Remark 3. The switching component is for ensuring robust stability only. It can be omitted in practice. Note that from the geometry of the excavator, there exists a trigonometric mapping between each joint angle u and the corresponding linear displace- i ment y of each hydraulic cylinder piston, is2,3,4 i wx . 13 . Using this relationship and Eq. 10 , the cylin- wx T der positions ys yyy and the ram forces F 234 of the hydraulic actuators can be determined. They are considered as the control references to the exca- vator hydraulic systems. The following section is devoted to the control of electrohydraulic systems in order to track these desired commands. ()Q.P. Ha et al.rAutomation in Construction 9 2000 421435426 4. Electrohydraulic systems control 4.1. Hydraulic modelling . The control 10 requires the ram force generated at each cylinder of the excavator arms follow a desired function of time when executing digging tasks in impedance control. Nonlinear effects occur- ring during the toolsoil interaction, and in the hydraulic system itself, complicate the control strat- egy requirements. It is known that gravitational and friction between the piston and cylinder should be compensated for to achieve high performance of heavy-duty hydraulic machines, such as excavators wx 13 . Furthermore, oil viscosity, oil flow through the hydraulic servovalve, and variable loading, will cause hydraulic control systems to suffer from highly non- linear time-variant dynamics, load sensitivity, and wx parameter uncertainty 14 . Thus, these factors have to be taken into account in servo hydraulic modelling and control. The hydraulic actuators incorporated in the blade, boom swing, boom, arm, and bucket attachments of the excavator are axial hydraulic cylinders. The flow of hydraulic oil to the cylinder is regulated by a direct drive servovalve with an elec- trically controlled closed loop that controls spool position. This system could be generally described by a six-order differential equation. For simplicity, the following linear expression can be used with little loss of accuracy for frequencies up to 200 Hz: x sKu,24 . vvv where x is the spool valve displacement and u is the valve input voltage. Thus, a nonlinear state model wx can be obtained as in Ref. 15 , based on the relation- ship between the valve displacement x and the
收藏