2019年高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何初步 課時(shí)分層作業(yè) 四十 7.2 空間幾何體的表面積與體積 文.doc
2019年高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 立體幾何初步 課時(shí)分層作業(yè) 四十 7.2 空間幾何體的表面積與體積 文
一、選擇題(每小題5分,共35分)
1.某幾何體的三視圖如圖所示(圖中網(wǎng)格的邊長(zhǎng)為1個(gè)單位),其中俯視圖為扇形,則該幾何體的體積為 ( )
A. B. C. D.
【解析】選B.由三視圖知幾何體是圓錐的一部分,由俯視圖可得:底面扇形的圓心角為120,又由側(cè)視圖知幾何體的高為3,底面圓的半徑為2,所以幾何體的體積V=π223=.
2.已知一個(gè)空間幾何體的三視圖如圖所示,其中俯視圖是邊長(zhǎng)為6的正三角形,若這個(gè)空間幾何體存在唯一的一個(gè)內(nèi)切球(與該幾何體各個(gè)面都相切),則這個(gè)幾何體的表面積是 ( )
A.18 B.36 C.45 D.54
【解析】選D.由三視圖知,幾何體為正三棱柱.
因?yàn)楦┮晥D是邊長(zhǎng)為6的正三角形,
所以幾何體的內(nèi)切球的半徑R=6=,所以三棱柱的側(cè)棱長(zhǎng)為2.
所以幾何體的表面積S=266+362=54.
3.已知某幾何體的外接球的半徑為,其三視圖如圖所示,圖中均為正方形,則該幾何體的體積為( )
A.16 B. C. D.8
【解析】選C.由該三視圖可知:該幾何體是一個(gè)正方體,切去四個(gè)角所得的正四面體,其外接球等同于該正方體的外接球,設(shè)正方體的棱長(zhǎng)為a,則有=,a=2,故該正四面體的體積為V=23-423=.
【變式備選】已知三棱錐的三視圖如圖所示,其中側(cè)視圖是邊長(zhǎng)為的正三角形,則該幾何體的外接球的體積為 ( )
A. B. C.4 D.16π
【解析】選B.由已知中的三視圖,可得該幾何體的直觀圖如圖所示:
取AB的中點(diǎn)F,AF的中點(diǎn)E,
由三視圖可得:AB垂直平面CDE,且平面CDE是邊長(zhǎng)為的正三角形,AB=1+3=4,
所以AF=BF=2,EF=1,
所以CF=DF==2,
故F即為棱錐外接球的球心,半徑R=2,
故外接球的體積V=πR3=.
4.已知在長(zhǎng)方體ABCD-A1B1C1D1中,底面是邊長(zhǎng)為2的正方形,高為4,則點(diǎn)A1到截面AB1D1的距離是 ( )
A. B. C. D.
【解析】選C.設(shè)點(diǎn)A1到截面AB1D1的距離是h,由=,可得h=AA1,解得h=.
【一題多解】選C.取B1D1的中點(diǎn)E1,連接A1E1,AE1,根據(jù)幾何體的結(jié)構(gòu)特征,可知,作A1H⊥AE1,垂足為H,A1H⊥平面AB1D1,A1H即為所求.A1E1=,A1A=4,A1A⊥A1E1,A1H=(等面積法).
【變式備選】如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PD⊥底面ABCD,M,N分別為AB,PC的中點(diǎn),PD=AD=2,AB=4.則點(diǎn)A到平面PMN的距離為_(kāi)___________.
【解析】取PD的中點(diǎn)E,連接AE,NE,則
因?yàn)樗睦忮FP-ABCD中,底面ABCD是矩形,M,N分別為AB,PC的中點(diǎn),
所以NE∥AM,NE=AM,所以四邊形AENM是平行四邊形,所以AE∥MN,
所以點(diǎn)A到平面PMN的距離等于點(diǎn)E到平面PMN的距離,設(shè)為h,在△PMN中,PN=,PM=2,MN=,所以S△PMN=2=,
由VE-PMN=VM-PEN,可得h=122,
所以h=.
答案:
【方法技巧】求點(diǎn)到平面的距離(1)能作出高線的則直接作出高線,轉(zhuǎn)化為求線段的長(zhǎng)度;(2)不能直接求時(shí),①可轉(zhuǎn)化為與平面平行的直線上一點(diǎn)到平面的距離.②或利用等體積法求解.
5.已知A,B是球O的球面上兩點(diǎn),∠AOB=90,C為該球面上的動(dòng)點(diǎn),若三棱錐O-ABC體積的最大值為36,則球O的表面積為 ( )
A.36π B.64π
C.144π D.256π
【解析】選C.如圖所示,當(dāng)點(diǎn)C位于垂直于面AOB的直徑端點(diǎn)時(shí),三棱錐O-ABC的體積最大,設(shè)球O的半徑為R,此時(shí)VO-ABC=VC-AOB=R2R=R3=36,故R=6,則球O的表面積為S=4πR2=144π.
6.某幾何體的三視圖如圖所示,其內(nèi)切球的體積為 ( )
A.π B.π C.π D.π
【解析】選A.根據(jù)圖示可得幾何體為正八面體,內(nèi)切球心為O,過(guò)O作OH垂直AD于點(diǎn)H,連接S1H,作OR垂直S1H,OR即為內(nèi)切球O的半徑.所以R=,V0=π.
7.如圖,在透明塑料制成的長(zhǎng)方體ABCD-A1B1C1D1容器內(nèi)灌進(jìn)一些水(未滿),現(xiàn)將容器底面一邊BC固定在底面上,再將容器傾斜,隨著傾斜度的不同,有下列四種說(shuō)法:
①水的部分始終呈棱柱狀;
②水面四邊形EFGH的面積為定值;
③棱A1D1始終與水面EFGH平行;
④若E∈AA1,F∈BB1,則AE+BF是定值.
則其中正確命題的個(gè)數(shù)是 ( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
【解析】選C.結(jié)合題設(shè)中提供的圖形信息可知:當(dāng)容器底面一邊BC固定時(shí),BC∥FG∥A1D1,故由線面平行的判定定理可知結(jié)論“棱A1D1始終與水面EFGH平行”成立;同時(shí)由于四邊形ABFE≌四邊形DCGH,且互相平行,則由棱柱的定義可知結(jié)論“水的部分始終呈棱柱狀”正確;如圖,由于水平放置時(shí),水的高度是定值,所以當(dāng)一部分上升的同時(shí),另一面下降相同的高度,因?yàn)锽F=h-FD,AE=h+D1E且FD=D1E,所以BF+AE=h-FD+h+D1E=2h(定值),即結(jié)論“若E∈AA1,F∈BB1,則AE+BF是定值”是正確的;因?yàn)樗嫠倪呅蜤FGH的邊長(zhǎng)在變化,因此其面積是變化的,故結(jié)論“水面四邊形EFGH的面積為定值”的說(shuō)法不正確.即命題①③④是正確的.
【題目溯源】本題來(lái)源于人教A版必修2P29A組第4題.
【變式備選】水平桌面上放置著一個(gè)容積為V的密閉長(zhǎng)方體玻璃容器ABCD-A1B1C1D1,其中裝有V的水,給出下列操作與結(jié)論:
①把容器一端慢慢提起,使容器的一條棱BC保持在桌面上,這個(gè)過(guò)程中,水的狀態(tài)始終是柱體;
②在①中的運(yùn)動(dòng)過(guò)程中,水面始終是矩形;
③把容器提離桌面,隨意轉(zhuǎn)動(dòng),水面始終過(guò)長(zhǎng)方體內(nèi)一個(gè)定點(diǎn);
④在③中的轉(zhuǎn)動(dòng)中水與容器的接觸面積始終不變.
以上說(shuō)法正確的是__________.(把所有正確命題的序號(hào)都填上)
【解析】①水的部分始終呈棱柱狀;從棱柱的特征及平面ABFE平行平面DCGH即可判斷①正確;如圖,
②在①中的運(yùn)動(dòng)過(guò)程中,水面四邊形EFGH的對(duì)邊始終保持平行,且EF⊥FG,故水面始終是矩形,②是正確的;
③由于始終裝有V的水,而平分長(zhǎng)方體體積的平面必定經(jīng)過(guò)長(zhǎng)方體的中心,即水面始終過(guò)長(zhǎng)方體內(nèi)一個(gè)定點(diǎn);所以結(jié)論③正確;
④在③中的轉(zhuǎn)動(dòng)中水與容器接觸時(shí),由于水的體積是定值,所以水與容器的接觸面的面積是正方體表面積的一半,故始終保持不變,所以④正確.
答案:①②③④
二、填空題(每小題5分,共15分)
8.如圖直三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)都在半徑為1的半球面上,AB=AC,側(cè)面BCC1B1是半球底面圓的內(nèi)接正方形,則側(cè)面ABB1A1的面積為_(kāi)_____________.
【解析】由題意知,球心在側(cè)面BCC1B1的中心O上,BC為截面圓的直徑,所以
∠BAC=90,△ABC的外接圓圓心N是BC的中點(diǎn),同理△A1B1C1的外心M是B1C1的中點(diǎn).設(shè)正方形BCC1B1的邊長(zhǎng)為x.在Rt△OMC1中,OM=,MC1=,OC1=R=1(R為球的半徑),
所以+=1,
即x=,則AB=AC=1,
所以=1=.
答案:
9.(xx浙江高考)某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是________cm3.
【解析】幾何體為兩個(gè)相同長(zhǎng)方體組合而成,長(zhǎng)方體的長(zhǎng)、寬、高分別為4,2,2,所以體積為2(224)=32(cm3),由于兩個(gè)長(zhǎng)方體重疊部分為一個(gè)邊長(zhǎng)為2的正方形,所以表面積為2(222+244)-222=72(cm2).
答案:72 32
10.一個(gè)圓錐的表面積為π,它的側(cè)面展開(kāi)圖是圓心角為120的扇形,則該圓錐的高為_(kāi)_________.
【解析】設(shè)圓錐底面半徑是r,母線長(zhǎng)為l,所以πr2+πrl=π,即r2+rl=1,根據(jù)圓心角公式π=,即l=3r,所以解得r=,l=,那么高h(yuǎn)==.
答案:
【變式備選】已知圓錐側(cè)面展開(kāi)圖的圓心角為90,則該圓錐的底面半徑與母線長(zhǎng)的比為_(kāi)_________.
【解析】設(shè)圓錐的母線長(zhǎng)是R,則扇形的弧長(zhǎng)是=,
設(shè)底面半徑是r,
則=2πr,
所以r=,
所以圓錐的底面半徑與母線長(zhǎng)的比為1∶4.
答案:
1.(5分)如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某多面體的三視圖,則該多面體的表面積為 ( )
A.18+36 B.54+18
C.90 D.81
【解題指南】根據(jù)三視圖作出原幾何體是關(guān)鍵.
【解析】選B.根據(jù)三視圖可知原幾何體是一個(gè)斜四棱柱,上下底面為邊長(zhǎng)為3的正方形,左右為寬為3,長(zhǎng)為3的矩形,前后為底邊長(zhǎng)為3,且底邊上的高為6的平行四邊形,所以S=9+9+18+18+9+9=54+18.
2.(5分)如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為 ( )
A.90π B.63π C.42π D.36π
【解析】選B.由三視圖知,該幾何體為一個(gè)底面半徑為3,高為4的圓柱和一個(gè)底面半徑為3,高為6的圓柱的一半,故其體積為V=π326+π324=63π.
3.(10分)已知一個(gè)平放的各棱長(zhǎng)為4的三棱錐內(nèi)有一個(gè)小球,現(xiàn)從該三棱錐頂端向錐內(nèi)注水,小球慢慢上浮.當(dāng)注入的水的體積是該三棱錐體積的時(shí),小球恰與該三棱錐各側(cè)面及水面相切(小球完全浮在水面上方),求小球的表面積.
【解析】由題意,沒(méi)有水的部分的體積是三棱錐體積的,
因?yàn)槿忮F的各棱長(zhǎng)均為4,所以三棱錐體積為42=,
所以沒(méi)有水的部分的體積是,
設(shè)其棱長(zhǎng)為a,則a2a=,
所以a=2.
設(shè)小球的半徑為r,則422r=,
所以r=,
所以小球的表面積S=4π=π.