2019-2020年高中數(shù)學(xué) 全冊教案 新人教A版選修2-2.doc
2019-2020年高中數(shù)學(xué) 全冊教案 新人教A版選修2-2
目 錄 I
第1章 導(dǎo)數(shù)及其應(yīng)用 1
1.1.1變化率問題 1
導(dǎo)數(shù)與導(dǎo)函數(shù)的概念 4
1.1.2導(dǎo)數(shù)的概念 6
1.1.3導(dǎo)數(shù)的幾何意義 9
1.2.1幾個常用函數(shù)的導(dǎo)數(shù) 13
1.2.2基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則 16
1.2.2復(fù)合函數(shù)的求導(dǎo)法則 19
1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(2課時) 22
1.3.2函數(shù)的極值與導(dǎo)數(shù)(2課時) 27
1.3.3函數(shù)的最大(?。┲蹬c導(dǎo)數(shù)(2課時) 31
1.4生活中的優(yōu)化問題舉例(2課時) 34
1.5.3定積分的概念 38
第2章 推理與證明 42
合情推理 42
類比推理 45
演繹推理 48
推理案例賞識 50
直接證明--綜合法與分析法 52
間接證明--反證法 54
數(shù)學(xué)歸納法 56
第3章 數(shù)系的擴充與復(fù)數(shù)的引入 67
3.1數(shù)系的擴充和復(fù)數(shù)的概念 67
3.1.1數(shù)系的擴充和復(fù)數(shù)的概念 67
3.1.2復(fù)數(shù)的幾何意義 70
3.2復(fù)數(shù)代數(shù)形式的四則運算 73
3.2.1復(fù)數(shù)代數(shù)形式的加減運算及幾何意義 73
3.2.2復(fù)數(shù)代數(shù)形式的乘除運算 77
第1章 導(dǎo)數(shù)及其應(yīng)用
1.1.1變化率問題
教學(xué)目標(biāo):
1.理解平均變化率的概念;
2.了解平均變化率的幾何意義;
3.會求函數(shù)在某點處附近的平均變化率
教學(xué)重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率;
教學(xué)難點:平均變化率的概念.
教學(xué)過程:
一.創(chuàng)設(shè)情景
為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學(xué)中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學(xué)中四類問題的處理直接相關(guān):
一、已知物體運動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;
二、求曲線的切線;
三、求已知函數(shù)的最大值與最小值;
四、求長度、面積、體積和重心等。
導(dǎo)數(shù)是微積分的核心概念之一它是研究函數(shù)增減、變化快慢、最大(?。┲档葐栴}最一般、最有效的工具。
導(dǎo)數(shù)研究的問題即變化率問題:研究某個變量相對于另一個變量變化的快慢程度.
二.新課講授
(一)問題提出
問題1 氣球膨脹率
我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?
n 氣球的體積V(單位:L)與半徑r(單位:dm)之間的函數(shù)關(guān)系是
n 如果將半徑r表示為體積V的函數(shù),那么
分析: ,
h
t
o
1 當(dāng)V從0增加到1時,氣球半徑增加了
氣球的平均膨脹率為
2 當(dāng)V從1增加到2時,氣球半徑增加了
氣球的平均膨脹率為
可以看出,隨著氣球體積逐漸增大,它的平均膨脹率逐漸變小了.
思考:當(dāng)空氣容量從V1增加到V2時,氣球的平均膨脹率是多少?
問題2 高臺跳水
在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系h(t)= -4.9t2+6.5t+10.如何用運動員在某些時間段內(nèi)的平均速度粗略地描述其運動狀態(tài)?
思考計算:和的平均速度
在這段時間里,;
在這段時間里,
探究:計算運動員在這段時間里的平均速度,并思考以下問題:
⑴運動員在這段時間內(nèi)使靜止的嗎?
⑵你認為用平均速度描述運動員的運動狀態(tài)有什么問題嗎?
探究過程:如圖是函數(shù)h(t)= -4.9t2+6.5t+10的圖像,結(jié)合圖形可知,,
所以,
雖然運動員在這段時間里的平均速度為,但實際情況是運動員仍然運動,并非靜止,可以說明用平均速度不能精確描述運動員的運動狀態(tài).
(二)平均變化率概念:
1.上述問題中的變化率可用式子 表示, 稱為函數(shù)f(x)從x1到x2的平均變化率
2.若設(shè), (這里看作是對于x1的一個“增量”可用x1+代替x2,同樣)
3. 則平均變化率為
思考:觀察函數(shù)f(x)的圖象
平均變化率表示什么?
f(x2)
y=f(x)
y
△y =f(x2)-f(x1)
f(x1)
直線AB的斜率
△x= x2-x1
x2
x1
x
O
三.典例分析
例1.已知函數(shù)f(x)=的圖象上的一點及臨近一點,則 .
解:,
∴
例2. 求在附近的平均變化率。
解:,所以
所以在附近的平均變化率為
四.課堂練習(xí)
1.質(zhì)點運動規(guī)律為,則在時間中相應(yīng)的平均速度為 .
2.物體按照s(t)=3t2+t+4的規(guī)律作直線運動,求在4s附近的平均變化率.
3.過曲線y=f(x)=x3上兩點P(1,1)和Q (1+Δx,1+Δy)作曲線的割線,求出當(dāng)Δx=0.1時割線的斜率.
五.回顧總結(jié)
1.平均變化率的概念
2.函數(shù)在某點處附近的平均變化率
六.布置作業(yè)
導(dǎo)數(shù)與導(dǎo)函數(shù)的概念
教學(xué)目標(biāo):
1、知識與技能:理解導(dǎo)數(shù)的概念、掌握簡單函數(shù)導(dǎo)數(shù)符號表示和求解方法;
理解導(dǎo)數(shù)的幾何意義;
理解導(dǎo)函數(shù)的概念和意義;
2、過程與方法:先理解概念背景,培養(yǎng)解決問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程,培養(yǎng)轉(zhuǎn)化問題的能力
3、情感態(tài)度及價值觀;讓學(xué)生感受事物之間的聯(lián)系,體會數(shù)學(xué)的美。
教學(xué)重點:
1、導(dǎo)數(shù)的求解方法和過程;2、導(dǎo)數(shù)符號的靈活運用
教學(xué)難點:
1、導(dǎo)數(shù)概念的理解;2、導(dǎo)函數(shù)的理解、認識和運用
教學(xué)過程:
一、情境引入
在前面我們解決的問題:
1、求函數(shù)在點(2,4)處的切線斜率。
,故斜率為4
2、直線運動的汽車速度V與時間t的關(guān)系是,求時的瞬時速度。
,故斜率為4
二、知識點講解
上述兩個函數(shù)和中,當(dāng)()無限趨近于0時,()都無限趨近于一個常數(shù)。
歸納:一般的,定義在區(qū)間(,)上的函數(shù),,當(dāng)無限趨近于0時,無限趨近于一個固定的常數(shù)A,則稱在處可導(dǎo),并稱A為在處的導(dǎo)數(shù),記作或,
上述兩個問題中:(1),(2)
三、幾何意義:
我們上述過程可以看出
在處的導(dǎo)數(shù)就是在處的切線斜率。
四、例題選講
例1、求下列函數(shù)在相應(yīng)位置的導(dǎo)數(shù)
(1), (2),
(3),
例2、函數(shù)滿足,則當(dāng)x無限趨近于0時,
(1)
(2)
變式:設(shè)f(x)在x=x0處可導(dǎo),
(3)無限趨近于1,則=___________
(4)無限趨近于1,則=________________
(5)當(dāng)△x無限趨近于0,所對應(yīng)的常數(shù)與的關(guān)系。
總結(jié):導(dǎo)數(shù)等于縱坐標(biāo)的增量與橫坐標(biāo)的增量之比的極限值。
例3、若,求和
注意分析兩者之間的區(qū)別。
例4:已知函數(shù),求在處的切線。
導(dǎo)函數(shù)的概念涉及:的對于區(qū)間(,)上任意點處都可導(dǎo),則在各點的導(dǎo)數(shù)也隨x的變化而變化,因而也是自變量x的函數(shù),該函數(shù)被稱為的導(dǎo)函數(shù),記作。
五、小結(jié)與作業(yè)
1.1.2導(dǎo)數(shù)的概念
教學(xué)目標(biāo):
1.了解瞬時速度、瞬時變化率的概念;
2.理解導(dǎo)數(shù)的概念,知道瞬時變化率就是導(dǎo)數(shù),體會導(dǎo)數(shù)的思想及其內(nèi)涵;
3.會求函數(shù)在某點的導(dǎo)數(shù)
教學(xué)重點:瞬時速度、瞬時變化率的概念、導(dǎo)數(shù)的概念;
教學(xué)難點:導(dǎo)數(shù)的概念.
教學(xué)過程:
一.創(chuàng)設(shè)情景
(一)平均變化率
(二)探究:計算運動員在這段時間里的平均速度,并思考以下問題:
⑴運動員在這段時間內(nèi)使靜止的嗎?
⑵你認為用平均速度描述運動員的運動狀態(tài)有什么問題嗎?
探究過程:如圖是函數(shù)h(t)= -4.9t2+6.5t+10的圖像,結(jié)合圖形可知,,
h
t
o
所以,
雖然運動員在這段時間里的平均速度為,但實際情況是運動員仍然運動,并非靜止,可以說明用平均速度不能精確描述運動員的運動狀態(tài).
二.新課講授
1.瞬時速度
我們把物體在某一時刻的速度稱為瞬時速度。運動員的平均速度不能反映他在某一時刻的瞬時速度,那么,如何求運動員的瞬時速度呢?比如,時的瞬時速度是多少?考察附近的情況:
思考:當(dāng)趨近于0時,平均速度有什么樣的變化趨勢?
結(jié)論:當(dāng)趨近于0時,即無論從小于2的一邊,還是從大于2的一邊趨近于2時,平均速度都趨近于一個確定的值.
從物理的角度看,時間間隔無限變小時,平均速度就無限趨近于史的瞬時速度,因此,運動員在時的瞬時速度是
為了表述方便,我們用
表示“當(dāng),趨近于0時,平均速度趨近于定值”
小結(jié):局部以勻速代替變速,以平均速度代替瞬時速度,然后通過取極限,從瞬時速度的近似值過渡到瞬時速度的精確值。
2 導(dǎo)數(shù)的概念
從函數(shù)y=f(x)在x=x0處的瞬時變化率是:
我們稱它為函數(shù)在出的導(dǎo)數(shù),記作或,即
說明:(1)導(dǎo)數(shù)即為函數(shù)y=f(x)在x=x0處的瞬時變化率
(2),當(dāng)時,,所以
三.典例分析
例1.(1)求函數(shù)y=3x2在x=1處的導(dǎo)數(shù).
分析:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx)2
再求再求
解:法一(略)
法二:
(2)求函數(shù)f(x)=在附近的平均變化率,并求出在該點處的導(dǎo)數(shù).
解:
例2.(課本例1)將原油精煉為汽油、柴油、塑膠等各種不同產(chǎn)品,需要對原油進行冷卻和加熱,如果第時,原油的溫度(單位:)為,計算第時和第時,原油溫度的瞬時變化率,并說明它們的意義.
解:在第時和第時,原油溫度的瞬時變化率就是和
根據(jù)導(dǎo)數(shù)定義,
所以
同理可得:
在第時和第時,原油溫度的瞬時變化率分別為和5,說明在附近,原油溫度大約以的速率下降,在第附近,原油溫度大約以的速率上升.
注:一般地,反映了原油溫度在時刻附近的變化情況.
四.課堂練習(xí)
1.質(zhì)點運動規(guī)律為,求質(zhì)點在的瞬時速度為.
2.求曲線y=f(x)=x3在時的導(dǎo)數(shù).
3.例2中,計算第時和第時,原油溫度的瞬時變化率,并說明它們的意義.
五.回顧總結(jié)
1.瞬時速度、瞬時變化率的概念
2.導(dǎo)數(shù)的概念
六.布置作業(yè)
1.1.3導(dǎo)數(shù)的幾何意義
教學(xué)目標(biāo):
1.了解平均變化率與割線斜率之間的關(guān)系;
2.理解曲線的切線的概念;
3.通過函數(shù)的圖像直觀地理解導(dǎo)數(shù)的幾何意義,并會用導(dǎo)數(shù)的幾何意義解題;
教學(xué)重點:曲線的切線的概念、切線的斜率、導(dǎo)數(shù)的幾何意義;
教學(xué)難點:導(dǎo)數(shù)的幾何意義.
教學(xué)過程:
一.創(chuàng)設(shè)情景
(一)平均變化率、割線的斜率
(二)瞬時速度、導(dǎo)數(shù)
我們知道,導(dǎo)數(shù)表示函數(shù)y=f(x)在x=x0處的瞬時變化率,反映了函數(shù)y=f(x)在x=x0附近的變化情況,導(dǎo)數(shù)的幾何意義是什么呢?
二.新課講授
(一)曲線的切線及切線的斜率:如圖3.1-2,當(dāng)沿著曲線趨近于點時,割線的變化趨勢是什么?
圖3.1-2
我們發(fā)現(xiàn),當(dāng)點沿著曲線無限接近點P即Δx→0時,割線趨近于確定的位置,這個確定位置的直線PT稱為曲線在點P處的切線.
問題:⑴割線的斜率與切線PT的斜率有什么關(guān)系?
⑵切線PT的斜率為多少?
容易知道,割線的斜率是,當(dāng)點沿著曲線無限接近點P時,無限趨近于切線PT的斜率,即
說明:(1)設(shè)切線的傾斜角為α,那么當(dāng)Δx→0時,割線PQ的斜率,稱為曲線在點P處的切線的斜率.
這個概念: ①提供了求曲線上某點切線的斜率的一種方法;
②切線斜率的本質(zhì)—函數(shù)在處的導(dǎo)數(shù).
(2)曲線在某點處的切線:1)與該點的位置有關(guān);2)要根據(jù)割線是否有極限位置來判斷與求解.如有極限,則在此點有切線,且切線是唯一的;如不存在,則在此點處無切線;3)曲線的切線,并不一定與曲線只有一個交點,可以有多個,甚至可以無窮多個.
(二)導(dǎo)數(shù)的幾何意義:
函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)等于在該點處的切線的斜率,
即
說明:求曲線在某點處的切線方程的基本步驟:
①求出P點的坐標(biāo);
②求出函數(shù)在點處的變化率 ,得到曲線在點的切線的斜率;
③利用點斜式求切線方程.
(二)導(dǎo)函數(shù):
由函數(shù)f(x)在x=x0處求導(dǎo)數(shù)的過程可以看到,當(dāng)時, 是一個確定的數(shù),那么,當(dāng)x變化時,便是x的一個函數(shù),我們叫它為f(x)的導(dǎo)函數(shù).記作:或,
即:
注:在不致發(fā)生混淆時,導(dǎo)函數(shù)也簡稱導(dǎo)數(shù).
(三)函數(shù)在點處的導(dǎo)數(shù)、導(dǎo)函數(shù)、導(dǎo)數(shù) 之間的區(qū)別與聯(lián)系。
1)函數(shù)在一點處的導(dǎo)數(shù),就是在該點的函數(shù)的改變量與自變量的改變量之比的極限,它是一個常數(shù),不是變數(shù)。
2)函數(shù)的導(dǎo)數(shù),是指某一區(qū)間內(nèi)任意點x而言的, 就是函數(shù)f(x)的導(dǎo)函數(shù)
3)函數(shù)在點處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在處的函數(shù)值,這也是 求函數(shù)在點處的導(dǎo)數(shù)的方法之一。
三.典例分析
例1:(1)求曲線y=f(x)=x2+1在點P(1,2)處的切線方程.
(2)求函數(shù)y=3x2在點處的導(dǎo)數(shù).
解:(1),
所以,所求切線的斜率為2,因此,所求的切線方程為即
(2)因為
所以,所求切線的斜率為6,因此,所求的切線方程為即
(2)求函數(shù)f(x)=在附近的平均變化率,并求出在該點處的導(dǎo)數(shù).
解:
例2.(課本例2)如圖3.1-3,它表示跳水運動中高度隨時間變化的函數(shù)
,根據(jù)圖像,請描述、比較曲線在、、附近的變化情況.
解:我們用曲線在、、處的切線,刻畫曲線在上述三個時刻附近的變化情況.
(1) 當(dāng)時,曲線在處的切線平行于軸,所以,在附近曲線比較平坦,幾乎沒有升降.
(2) 當(dāng)時,曲線在處的切線的斜率,所以,在附近曲線下降,即函數(shù)在附近單調(diào)遞減.
(3) 當(dāng)時,曲線在處的切線的斜率,所以,在附近曲線下降,即函數(shù)在附近單調(diào)遞減.
從圖3.1-3可以看出,直線的傾斜程度小于直線的傾斜程度,這說明曲線在附近比在附近下降的緩慢.
例3.(課本例3)如圖3.1-4,它表示人體血管中藥物濃度(單位:)隨時間(單位:)變化的圖象.根據(jù)圖像,估計時,血管中藥物濃度的瞬時變化率(精確到).
解:血管中某一時刻藥物濃度的瞬時變化率,就是藥物濃度在此時刻的導(dǎo)數(shù),從圖像上看,它表示曲線在此點處的切線的斜率.
如圖3.1-4,畫出曲線上某點處的切線,利用網(wǎng)格估計這條切線的斜率,可以得到此時刻藥物濃度瞬時變化率的近似值.
作處的切線,并在切線上去兩點,如,,則它的斜率為:
所以
下表給出了藥物濃度瞬時變化率的估計值:
0.2
0.4
0.6
0.8
藥物濃度瞬時變化率
0.4
0
-0.7
-1.4
四.課堂練習(xí)
1.求曲線y=f(x)=x3在點處的切線;
2.求曲線在點處的切線.
五.回顧總結(jié)
1.曲線的切線及切線的斜率;
2.導(dǎo)數(shù)的幾何意義
六.布置作業(yè)
1.2.1幾個常用函數(shù)的導(dǎo)數(shù)
教學(xué)目標(biāo):
1.使學(xué)生應(yīng)用由定義求導(dǎo)數(shù)的三個步驟推導(dǎo)四種常見函數(shù)、、、的導(dǎo)數(shù)公式;
2.掌握并能運用這四個公式正確求函數(shù)的導(dǎo)數(shù).
教學(xué)重點:四種常見函數(shù)、、、的導(dǎo)數(shù)公式及應(yīng)用
教學(xué)難點: 四種常見函數(shù)、、、的導(dǎo)數(shù)公式
教學(xué)過程:
一.創(chuàng)設(shè)情景
我們知道,導(dǎo)數(shù)的幾何意義是曲線在某一點處的切線斜率,物理意義是運動物體在某一時刻的瞬時速度.那么,對于函數(shù),如何求它的導(dǎo)數(shù)呢?
由導(dǎo)數(shù)定義本身,給出了求導(dǎo)數(shù)的最基本的方法,但由于導(dǎo)數(shù)是用極限來定義的,所以求導(dǎo)數(shù)總是歸結(jié)到求極限這在運算上很麻煩,有時甚至很困難,為了能夠較快地求出某些函數(shù)的導(dǎo)數(shù),這一單元我們將研究比較簡捷的求導(dǎo)數(shù)的方法,下面我們求幾個常用的函數(shù)的導(dǎo)數(shù).
二.新課講授
1.函數(shù)的導(dǎo)數(shù)
根據(jù)導(dǎo)數(shù)定義,因為
所以
函數(shù)
導(dǎo)數(shù)
表示函數(shù)圖像(圖3.2-1)上每一點處的切線的斜率都為0.若表示路程關(guān)于時間的函數(shù),則可以解釋為某物體的瞬時速度始終為0,即物體一直處于靜止?fàn)顟B(tài).
2.函數(shù)的導(dǎo)數(shù)
因為
所以
函數(shù)
導(dǎo)數(shù)
表示函數(shù)圖像(圖3.2-2)上每一點處的切線的斜率都為1.若表示路程關(guān)于時間的函數(shù),則可以解釋為某物體做瞬時速度為1的勻速運動.
3.函數(shù)的導(dǎo)數(shù)
因為
所以
函數(shù)
導(dǎo)數(shù)
表示函數(shù)圖像(圖3.2-3)上點處的切線的斜率都為,說明隨著的變化,切線的斜率也在變化.另一方面,從導(dǎo)數(shù)作為函數(shù)在一點的瞬時變化率來看,表明:當(dāng)時,隨著的增加,函數(shù)減少得越來越慢;當(dāng)時,隨著的增加,函數(shù)增加得越來越快.若表示路程關(guān)于時間的函數(shù),則可以解釋為某物體做變速運動,它在時刻的瞬時速度為.
4.函數(shù)的導(dǎo)數(shù)
因為
所以
函數(shù)
導(dǎo)數(shù)
(2)推廣:若,則
三.課堂練習(xí)
1.課本P13探究1
2.課本P13探究2
4.求函數(shù)的導(dǎo)數(shù)
四.回顧總結(jié)
函數(shù)
導(dǎo)數(shù)
五.布置作業(yè)
1.2.2基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則
教學(xué)目標(biāo):
1.熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;
2.掌握導(dǎo)數(shù)的四則運算法則;
3.能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù).
教學(xué)重點:基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運算法則
教學(xué)難點: 基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則的應(yīng)用
教學(xué)過程:
一.創(chuàng)設(shè)情景
函數(shù)
導(dǎo)數(shù)
四種常見函數(shù)、、、的導(dǎo)數(shù)公式及應(yīng)用
二.新課講授
(一)基本初等函數(shù)的導(dǎo)數(shù)公式表
函數(shù)
導(dǎo)數(shù)
(二)導(dǎo)數(shù)的運算法則
導(dǎo)數(shù)運算法則
1.
2.
3.
(2)推論:
(常數(shù)與函數(shù)的積的導(dǎo)數(shù),等于常數(shù)乘函數(shù)的導(dǎo)數(shù))
三.典例分析
例1.假設(shè)某國家在20年期間的年均通貨膨脹率為,物價(單位:元)與時間(單位:年)有如下函數(shù)關(guān)系,其中為時的物價.假定某種商品的,那么在第10個年頭,這種商品的價格上漲的速度大約是多少(精確到0.01)?
解:根據(jù)基本初等函數(shù)導(dǎo)數(shù)公式表,有
所以(元/年)
因此,在第10個年頭,這種商品的價格約為0.08元/年的速度上漲.
例2.根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)運算法則,求下列函數(shù)的導(dǎo)數(shù).
(1)
(2)y =;
(3)y =x sin x ln x;
(4)y =;
(5)y =.
(6)y =(2 x2-5 x +1)ex
(7) y =
【點評】
① 求導(dǎo)數(shù)是在定義域內(nèi)實行的.② 求較復(fù)雜的函數(shù)積、商的導(dǎo)數(shù),必須細心、耐心.
例3日常生活中的飲水通常是經(jīng)過凈化的.隨著水純凈度的提高,所需凈化費用不斷增加.已知將1噸水凈化到純凈度為時所需費用(單位:元)為
求凈化到下列純凈度時,所需凈化費用的瞬時變化率:(1) (2)
解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù).
(1) 因為,所以,純凈度為時,費用的瞬時變化率是52.84元/噸.
(2) 因為,所以,純凈度為時,費用的瞬時變化率是1321元/噸.
函數(shù)在某點處導(dǎo)數(shù)的大小表示函數(shù)在此點附近變化的快慢.由上述計算可知,.它表示純凈度為左右時凈化費用的瞬時變化率,大約是純凈度為左右時凈化費用的瞬時變化率的25倍.這說明,水的純凈度越高,需要的凈化費用就越多,而且凈化費用增加的速度也越快.
四.課堂練習(xí)
1.課本P92練習(xí)
2.已知曲線C:y =3 x 4-2 x3-9 x2+4,求曲線C上橫坐標(biāo)為1的點的切線方程;
(y =-12 x +8)
五.回顧總結(jié)
(1)基本初等函數(shù)的導(dǎo)數(shù)公式表
(2)導(dǎo)數(shù)的運算法則
六.布置作業(yè)
1.2.2復(fù)合函數(shù)的求導(dǎo)法則
教學(xué)目標(biāo) 理解并掌握復(fù)合函數(shù)的求導(dǎo)法則.
教學(xué)重點 復(fù)合函數(shù)的求導(dǎo)方法:復(fù)合函數(shù)對自變量的導(dǎo)數(shù),等于已知函數(shù)對中間變量的導(dǎo)數(shù)乘以中間變量對自變量的導(dǎo)數(shù)之積.
教學(xué)難點 正確分解復(fù)合函數(shù)的復(fù)合過程,做到不漏,不重,熟練,正確.
一.創(chuàng)設(shè)情景
(一)基本初等函數(shù)的導(dǎo)數(shù)公式表
函數(shù)
導(dǎo)數(shù)
(二)導(dǎo)數(shù)的運算法則
導(dǎo)數(shù)運算法則
1.
2.
3.
(2)推論:
(常數(shù)與函數(shù)的積的導(dǎo)數(shù),等于常數(shù)乘函數(shù)的導(dǎo)數(shù))
二.新課講授
復(fù)合函數(shù)的概念 一般地,對于兩個函數(shù)和,如果通過變量,可以表示成的函數(shù),那么稱這個函數(shù)為函數(shù)和的復(fù)合函數(shù),記作。
復(fù)合函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)的導(dǎo)數(shù)和函數(shù)和的導(dǎo)數(shù)間的關(guān)系為,即對的導(dǎo)數(shù)等于對的導(dǎo)數(shù)與對的導(dǎo)數(shù)的乘積.
若,則
三.典例分析
例1求y =sin(tan x2)的導(dǎo)數(shù).
【點評】
求復(fù)合函數(shù)的導(dǎo)數(shù),關(guān)鍵在于搞清楚復(fù)合函數(shù)的結(jié)構(gòu),明確復(fù)合次數(shù),由外層向內(nèi)層逐層求導(dǎo),直到關(guān)于自變量求導(dǎo),同時應(yīng)注意不能遺漏求導(dǎo)環(huán)節(jié)并及時化簡計算結(jié)果.
例2求y =的導(dǎo)數(shù).
【點評】本題練習(xí)商的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù).求導(dǎo)數(shù)后要予以化簡整理.
例3求y =sin4x +cos 4x的導(dǎo)數(shù).
【解法一】y =sin 4x +cos 4x=(sin2x +cos2x)2-2sin2cos2x=1-sin22 x
=1-(1-cos 4 x)=+cos 4 x.y′=-sin 4 x.
【解法二】y′=(sin 4 x)′+(cos 4 x)′=4 sin 3 x(sin x)′+4 cos 3x (cos x)′=4 sin 3 x cos x +4 cos 3 x (-sin x)=4 sin x cos x (sin 2 x -cos 2 x)=-2 sin 2 x cos 2 x=-sin 4 x
【點評】
解法一是先化簡變形,簡化求導(dǎo)數(shù)運算,要注意變形準確.解法二是利用復(fù)合函數(shù)求導(dǎo)數(shù),應(yīng)注意不漏步.
例4曲線y =x(x +1)(2-x)有兩條平行于直線y =x的切線,求此二切線之間的距離.
【解】y =-x 3 +x 2 +2 x y′=-3 x 2+2 x +2
令y′=1即3 x2-2 x -1=0,解得 x =-或x =1.
于是切點為P(1,2),Q(-,-),
過點P的切線方程為,y -2=x -1即 x -y +1=0.
顯然兩切線間的距離等于點Q 到此切線的距離,故所求距離為=.
四.課堂練習(xí)
1.求下列函數(shù)的導(dǎo)數(shù) (1) y =sinx3+sin33x;(2);(3)
2.求的導(dǎo)數(shù)
五.回顧總結(jié)
六.布置作業(yè)
1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(2課時)
教學(xué)目標(biāo):
1.了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;
2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次;
教學(xué)重點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間
教學(xué)難點: 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間
教學(xué)過程:
一.創(chuàng)設(shè)情景
函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時,了解函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個基本的了解.下面,我們運用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會導(dǎo)數(shù)在研究函數(shù)中的作用.
二.新課講授
1.問題:圖3.3-1(1),它表示跳水運動中高度隨時間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺跳水運動員的速度隨時間變化的函數(shù)的圖像.
運動員從起跳到最高點,以及從最高點到入水這兩段時間的運動狀態(tài)有什么區(qū)別?
通過觀察圖像,我們可以發(fā)現(xiàn):
(1) 運動員從起點到最高點,離水面的高度隨時間的增加而增加,即是增函數(shù).相應(yīng)地,.
(2) 從最高點到入水,運動員離水面的高度隨時間的增加而減少,即是減函數(shù).相應(yīng)地,.
2.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負的關(guān)系.
如圖3.3-3,導(dǎo)數(shù)表示函數(shù)在
點處的切線的斜率.
在處,,切線是“左下右上”式的,
這時,函數(shù)在附近單調(diào)遞增;
在處,,切線是“左上右下”式的,
這時,函數(shù)在附近單調(diào)遞減.
結(jié)論:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
在某個區(qū)間內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減.
說明:(1)特別的,如果,那么函數(shù)在這個區(qū)間內(nèi)是常函數(shù).
3.求解函數(shù)單調(diào)區(qū)間的步驟:
(1)確定函數(shù)的定義域;
(2)求導(dǎo)數(shù);
(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;
(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間.
三.典例分析
例1.已知導(dǎo)函數(shù)的下列信息:
當(dāng)時,;
當(dāng),或時,;
當(dāng),或時,
試畫出函數(shù)圖像的大致形狀.
解:當(dāng)時,,可知在此區(qū)間內(nèi)單調(diào)遞增;
當(dāng),或時,;可知在此區(qū)間內(nèi)單調(diào)遞減;
當(dāng),或時,,這兩點比較特殊,我們把它稱為“臨界點”.
綜上,函數(shù)圖像的大致形狀如圖3.3-4所示.
例2.判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間.
(1); (2)
(3); (4)
解:(1)因為,所以,
因此,在R上單調(diào)遞增,如圖3.3-5(1)所示.
(2)因為,所以,
當(dāng),即時,函數(shù)單調(diào)遞增;
當(dāng),即時,函數(shù)單調(diào)遞減;
函數(shù)的圖像如圖3.3-5(2)所示.
(3)因為,所以,
因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示.
(4)因為,所以 .
當(dāng),即 時,函數(shù) ;
當(dāng),即 時,函數(shù) ;
函數(shù)的圖像如圖3.3-5(4)所示.
注:(3)、(4)生練
例3 如圖3.3-6,水以常速(即單位時間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應(yīng)的水的高度與時間的函數(shù)關(guān)系圖像.
分析:以容器(2)為例,由于容器上細下粗,所以水以常速注入時,開始階段高度增加得慢,以后高度增加得越來越快.反映在圖像上,(A)符合上述變化情況.同理可知其它三種容器的情況.
解:
思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢.結(jié)合圖像,你能從導(dǎo)數(shù)的角度解釋變化快慢的情況嗎?
一般的,如果一個函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,
那么函數(shù)在這個范圍內(nèi)變化的快,
這時,函數(shù)的圖像就比較“陡峭”;
反之,函數(shù)的圖像就“平緩”一些.
如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,
在或內(nèi)的圖像“平緩”.
例4 求證:函數(shù)在區(qū)間內(nèi)是減函數(shù).
證明:因為
當(dāng)即時,,所以函數(shù)在區(qū)間內(nèi)是減函數(shù).
說明:證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性步驟:
(1)求導(dǎo)函數(shù);
(2)判斷在內(nèi)的符號;
(3)做出結(jié)論:為增函數(shù),為減函數(shù).
例5 已知函數(shù) 在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
解:,因為在區(qū)間上是增函數(shù),所以對恒成立,即對恒成立,解之得:
所以實數(shù)的取值范圍為.
說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系:即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來求解,注意此時公式中的等號不能省略,否則漏解.
四.課堂練習(xí)
1.求下列函數(shù)的單調(diào)區(qū)間
1.f(x)=2x3-6x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx
2.課本 練習(xí)
五.回顧總結(jié)
(1)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
(2)求解函數(shù)單調(diào)區(qū)間
(3)證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性
六.布置作業(yè)
1.3.2函數(shù)的極值與導(dǎo)數(shù)(2課時)
教學(xué)目標(biāo):
1.理解極大值、極小值的概念;
2.能夠運用判別極大值、極小值的方法來求函數(shù)的極值;
3.掌握求可導(dǎo)函數(shù)的極值的步驟;
教學(xué)重點:極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.
教學(xué)難點:對極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟.
教學(xué)過程:
一.創(chuàng)設(shè)情景
觀察圖3.3-8,我們發(fā)現(xiàn),時,高臺跳水運動員距水面高度最大.那么,函數(shù)在此點的導(dǎo)數(shù)是多少呢?此點附近的圖像有什么特點?相應(yīng)地,導(dǎo)數(shù)的符號有什么變化規(guī)律?
放大附近函數(shù)的圖像,如圖3.3-9.可以看出;在,當(dāng)時,函數(shù)單調(diào)遞增,;當(dāng)時,函數(shù)單調(diào)遞減,;這就說明,在附近,函數(shù)值先增(,)后減(,).這樣,當(dāng)在的附近從小到大經(jīng)過時,先正后負,且連續(xù)變化,于是有.
對于一般的函數(shù),是否也有這樣的性質(zhì)呢?
附:對極大、極小值概念的理解,可以結(jié)合圖象進行說明.并且要說明函數(shù)的極值是就函數(shù)在某一點附近的小區(qū)間而言的. 從圖象觀察得出,判別極大、極小值的方法.判斷極值點的關(guān)鍵是這點兩側(cè)的導(dǎo)數(shù)異號
二.新課講授
1.問題:圖3.3-1(1),它表示跳水運動中高度隨時間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺跳水運動員的速度隨時間變化的函數(shù)的圖像.
運動員從起跳到最高點,以及從最高點到入水這兩段時間的運動狀態(tài)有什么區(qū)別?
通過觀察圖像,我們可以發(fā)現(xiàn):
(3) 運動員從起點到最高點,離水面的高度隨時間的增加而增加,即是增函數(shù).相應(yīng)地,.
(4) 從最高點到入水,運動員離水面的高度隨時間的增加而減少,即是減函數(shù).相應(yīng)地,.
2.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負的關(guān)系.
如圖3.3-3,導(dǎo)數(shù)表示函數(shù)在點處的切線的斜率.在處,,切線是“左下右上”式的,這時,函數(shù)在附近單調(diào)遞增;在處,,切線是“左上右下”式的,這時,函數(shù)在附近單調(diào)遞減.
結(jié)論:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
在某個區(qū)間內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減.
說明:(1)特別的,如果,那么函數(shù)在這個區(qū)間內(nèi)是常函數(shù).
3.求解函數(shù)單調(diào)區(qū)間的步驟:
(1)確定函數(shù)的定義域;
(2)求導(dǎo)數(shù);
(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;
(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間.
三.典例分析
例1.已知導(dǎo)函數(shù)的下列信息:
當(dāng)時,;
當(dāng),或時,;
當(dāng),或時,
試畫出函數(shù)圖像的大致形狀.
解:當(dāng)時,,可知在此區(qū)間內(nèi)單調(diào)遞增;
當(dāng),或時,;可知在此區(qū)間內(nèi)單調(diào)遞減;
當(dāng),或時,,這兩點比較特殊,我們把它稱為“臨界點”.
綜上,函數(shù)圖像的大致形狀如圖3.3-4所示.
例2.判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間.
(1); (2)
(3); (4)
解:(1)因為,所以,
因此,在R上單調(diào)遞增,如圖3.3-5(1)所示.
(2)因為,所以,
當(dāng),即時,函數(shù)單調(diào)遞增;
當(dāng),即時,函數(shù)單調(diào)遞減;
函數(shù)的圖像如圖3.3-5(2)所示.
(5) 因為,所以,
因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示.
(6) 因為,所以 .
當(dāng),即 時,函數(shù) ;
當(dāng),即 時,函數(shù) ;
函數(shù)的圖像如圖3.3-5(4)所示.
注:(3)、(4)生練
例6 如圖3.3-6,水以常速(即單位時間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應(yīng)的水的高度與時間的函數(shù)關(guān)系圖像.
分析:以容器(2)為例,由于容器上細下粗,所以水以常速注入時,開始階段高度增加得慢,以后高度增加得越來越快.反映在圖像上,(A)符合上述變化情況.同理可知其它三種容器的情況.
解:
思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢.結(jié)合圖像,你能從導(dǎo)數(shù)的角度解釋變化快慢的情況嗎?
一般的,如果一個函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化的快,這時,函數(shù)的圖像就比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些.如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,在或內(nèi)的圖像“平緩”.
例7 求證:函數(shù)在區(qū)間內(nèi)是減函數(shù).
證明:因為
當(dāng)即時,,所以函數(shù)在區(qū)間內(nèi)是減函數(shù).
說明:證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性步驟:
(1)求導(dǎo)函數(shù);
(2)判斷在內(nèi)的符號;
(3)做出結(jié)論:為增函數(shù),為減函數(shù).
例8 已知函數(shù) 在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
解:,因為在區(qū)間上是增函數(shù),所以對恒成立,即對恒成立,解之得:
所以實數(shù)的取值范圍為.
說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系:即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來求解,注意此時公式中的等號不能省略,否則漏解.
四.課堂練習(xí)
1.求下列函數(shù)的單調(diào)區(qū)間
1.f(x)=2x3-6x2+7 2.f(x)=+2x
3. f(x)=sinx , x 4. y=xlnx
2.課本P101練習(xí)
五.回顧總結(jié)
(1)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
(2)求解函數(shù)單調(diào)區(qū)間
(3)證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性
六.布置作業(yè)
1.3.3函數(shù)的最大(?。┲蹬c導(dǎo)數(shù)(2課時)
教學(xué)目標(biāo):
⒈使學(xué)生理解函數(shù)的最大值和最小值的概念,掌握可導(dǎo)函數(shù)在閉區(qū)間上所有點(包括端點)處的函數(shù)中的最大(或最?。┲当赜械某浞謼l件;
⒉使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法和步驟
教學(xué)重點:利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法.
教學(xué)難點:函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系.
教學(xué)過程:
一.創(chuàng)設(shè)情景
我們知道,極值反映的是函數(shù)在某一點附近的局部性質(zhì),而不是函數(shù)在整個定義域內(nèi)的性質(zhì).也就是說,如果是函數(shù)的極大(?。┲迭c,那么在點附近找不到比更大(?。┑闹担?,在解決實際問題或研究函數(shù)的性質(zhì)時,我們更關(guān)心函數(shù)在某個區(qū)間上,哪個至最大,哪個值最?。绻呛瘮?shù)的最大(?。┲?,那么不?。ù螅┯诤瘮?shù)在相應(yīng)區(qū)間上的所有函數(shù)值.
二.新課講授
觀察圖中一個定義在閉區(qū)間上的函數(shù)的圖象.圖中與是極小值,是極大值.函數(shù)在上的最大值是,最小值是.
1.結(jié)論:一般地,在閉區(qū)間上函數(shù)的圖像是一條連續(xù)不斷的曲線,那么函數(shù)在上必有最大值與最小值.
說明:⑴如果在某一區(qū)間上函數(shù)的圖像是一條連續(xù)不斷的曲線,則稱函數(shù)在這個區(qū)間上連續(xù).(可以不給學(xué)生講)
⑵給定函數(shù)的區(qū)間必須是閉區(qū)間,在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值.如函數(shù)在內(nèi)連續(xù),但沒有最大值與最小值;
⑶在閉區(qū)間上的每一點必須連續(xù),即函數(shù)圖像沒有間斷,
⑷函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件.(可以不給學(xué)生講)
2.“最值”與“極值”的區(qū)別和聯(lián)系
⑴最值”是整體概念,是比較整個定義域內(nèi)的函數(shù)值得出的,具有絕對性;而“極值”是個局部概念,是比較極值點附近函數(shù)值得出的,具有相對性.
⑵從個數(shù)上看,一個函數(shù)在其定義域上的最值是唯一的;而極值不唯一;
⑶函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個,而函數(shù)的極值可能不止一個,也可能沒有一個
⑷極值只能在定義域內(nèi)部取得,而最值可以在區(qū)間的端點處取得,有極值的未必有最值,有最值的未必有極值;極值有可能成為最值,最值只要不在端點必定是極值.
3.利用導(dǎo)數(shù)求函數(shù)的最值步驟:
由上面函數(shù)的圖象可以看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點的函數(shù)值進行比較,就可以得出函數(shù)的最值了.
一般地,求函數(shù)在上的最大值與最小值的步驟如下:
⑴求在內(nèi)的極值;
⑵將的各極值與端點處的函數(shù)值、比較,其中最大的一個是最大值,最小的一個是最小值,得出函數(shù)在上的最值
三.典例分析
例1.(課本例5)求在的最大值與最小值
解: 由例4可知,在上,當(dāng)時,有極小值,并且極小值為,又由于,
因此,函數(shù)在的最大值是4,最小值是.
上述結(jié)論可以從函數(shù)在上的圖象得到直觀驗證.
四.課堂練習(xí)
1.下列說法正確的是( )
A.函數(shù)的極大值就是函數(shù)的最大值 B.函數(shù)的極小值就是函數(shù)的最小值
C.函數(shù)的最值一定是極值 D.在閉區(qū)間上的連續(xù)函數(shù)一定存在最值
2.函數(shù)y=f(x)在區(qū)間[a,b]上的最大值是M,最小值是m,若M=m,則f′(x) ( )
A.等于0 B.大于0 C.小于0 D.以上都有可能
3.函數(shù)y=,在[-1,1]上的最小值為( )
A.0 B.-2 C.-1 D.
4.求函數(shù)在區(qū)間上的最大值與最小值.
5.課本 練習(xí)
五.回顧總結(jié)
1.函數(shù)在閉區(qū)間上的最值點必在下列各種點之中:導(dǎo)數(shù)等于零的點,導(dǎo)數(shù)不存在的點,區(qū)間端點;
2.函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件;
3.閉區(qū)間上的連續(xù)函數(shù)一定有最值;開區(qū)間內(nèi)的可導(dǎo)函數(shù)不一定有最值,若有唯一的極值,則此極值必是函數(shù)的最值
4.利用導(dǎo)數(shù)求函數(shù)的最值方法.
六.布置作業(yè)
1.4生活中的優(yōu)化問題舉例(2課時)
教學(xué)目標(biāo):
1. 使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導(dǎo)數(shù)在解決實際問題中的作用
提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力
教學(xué)重點:利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題.
教學(xué)難點:利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題.
教學(xué)過程:
一.創(chuàng)設(shè)情景
生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題.
二.新課講授
導(dǎo)數(shù)在實際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實際問題,主要有以下幾個方面:1、與幾何有關(guān)的最值問題;2、與物理學(xué)有關(guān)的最值問題;3、與利潤及其成本有關(guān)的最值問題;4、效率最值問題。
解決優(yōu)化問題的方法:首先是需要分析問題中各個變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個過程中,導(dǎo)數(shù)是一個有力的工具.
利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:
建立數(shù)學(xué)模型
解決數(shù)學(xué)模型
作答
用函數(shù)表示的數(shù)學(xué)問題
優(yōu)化問題
用導(dǎo)數(shù)解決數(shù)學(xué)問題
優(yōu)化問題的答案
三.典例分析
例1.汽油的使用效率何時最高
我們知道,汽油的消耗量(單位:L)與汽車的速度(單位:km/h)之間有一定的關(guān)系,汽油的消耗量是汽車速度的函數(shù).根據(jù)你的生活經(jīng)驗,思考下面兩個問題:
(1) 是不是汽車的速度越快,汽車的消耗量越大?
(2) “汽油的使用率最高”的含義是什么?
分析:研究汽油的使用效率(單位:L/m)就是研究秋游消耗量與汽車行駛路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(單位:L),表示汽油行駛的路程(單位:km).這樣,求“每千米路程的汽油消耗量最少”,就是求的最小值的問題.
通過大量的統(tǒng)計數(shù)據(jù),并對數(shù)據(jù)進行分析、研究,
人們發(fā)現(xiàn),汽車在行駛過程中,汽油平均消耗率
(即每小時的汽油消耗量,單位:L/h)與汽車行駛的
平均速度(單位:km/h)之間有
如圖所示的函數(shù)關(guān)系.
從圖中不能直接解決汽油使用效率最高的問題.因此,我們首先需要將問題轉(zhuǎn)化為汽油平均消耗率(即每小時的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間關(guān)系的問題,然后利用圖像中的數(shù)據(jù)信息,解決汽油使用效率最高的問題.
解:因為
這樣,問題就轉(zhuǎn)化為求的最小值.從圖象上看,表示經(jīng)過原點與曲線上點的直線的斜率.進一步發(fā)現(xiàn),當(dāng)直線與曲線相切時,其斜率最小.在此切點處速度約為90.
因此,當(dāng)汽車行駛距離一定時,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此時的車速約為90.從數(shù)值上看,每千米的耗油量就是圖中切線的斜率,即,約為 L.
例2.磁盤的最大存儲量問題
計算機把數(shù)據(jù)存儲在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長弧段可作為基本存儲單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個基本單元通常被稱為比特(bit)。
為了保障磁盤的分辨率,磁道之間的寬度必需大于,每比特所占用的磁道長度不得小于。為了數(shù)據(jù)檢索便利,磁盤格式化時要求所有磁道要具有相同的比特數(shù)。
問題:現(xiàn)有一張半徑為的磁盤,它的存儲區(qū)是半徑介于與之間的環(huán)形區(qū)域.
(1) 是不是越小,磁盤的存儲量越大?
(2) 為多少時,磁盤具有最大存儲量(最外面的磁道不存儲任何信息)?
解:由題意知:存儲量=磁道數(shù)每磁道的比特數(shù)。
設(shè)存儲區(qū)的半徑介于與R之間,由于磁道之間的寬度必需大于,且最外面的磁道不存儲任何信息,故磁道數(shù)最多可達。由于每條磁道上的比特數(shù)相同,為獲得最大存儲量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特數(shù)可達。所以,磁盤總存儲量
(1) 它是一個關(guān)于的二次函數(shù),從函數(shù)解析式上可以判斷,不是越小,磁盤的存儲量越大.
(2) 為求的最大值,計算.
令,解得
當(dāng)時,;當(dāng)時,.
因此時,磁盤具有最大存儲量。此時最大存儲量為
例3.飲料瓶大小對飲料公司利潤的影響
(1)你是否注意過,市場上等量的小包裝的物品一般比大包裝的要貴些?
(2)是不是飲料瓶越大,飲料公司的利潤越大?
【背景知識】:某制造商制造并出售球型瓶裝的某種飲料.瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm
問題:(1)瓶子的半徑多大時,能使每瓶飲料的利潤最大?
(2)瓶子的半徑多大時,每瓶的利潤最?。?
解:由于瓶子的半徑為,所以每瓶飲料的利潤是
令 解得 (舍去)
當(dāng)時,;當(dāng)時,.
當(dāng)半徑時,它表示單調(diào)遞增,即半徑越大,利潤越高;
當(dāng)半徑時, 它表示單調(diào)遞減,即半徑越大,利潤越低.
(1) 半徑為cm 時,利潤最小,這時,表示此種瓶內(nèi)飲料的利潤還不夠瓶子的成本,此時利潤是負值.
(2) 半徑為cm時,利潤最大.
換一個角度:如果我們不用導(dǎo)數(shù)工具,直接從函數(shù)的圖像上觀察,會有什么發(fā)現(xiàn)?
有圖像知:當(dāng)時,,即瓶子的半徑為3cm時,飲料的利潤與飲料瓶的成本恰好相等;當(dāng)時,利潤才為正值.
當(dāng)時,,為減函數(shù),其實際意義為:瓶子的半徑小于2cm時,瓶子的半徑越大,利潤越小,半徑為cm 時,利潤最?。?
說明:
四.課堂練習(xí)
1.用總長為14.8m的鋼條制作一個長方體容器的框架,如果所制作的容器的底面的一邊比另一邊長0.5m,那么高為多少時容器的容積最大?并求出它的最大容積.(高為1.2 m,最大容積)
5.課本 練習(xí)
五.回顧總結(jié)
建立數(shù)學(xué)模型
1.利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:
解決數(shù)學(xué)模型
作答
用函數(shù)表示的數(shù)學(xué)問題
優(yōu)化問題
用導(dǎo)數(shù)解決數(shù)學(xué)問題
優(yōu)化問題的答案
2.解決優(yōu)化問題的方法:通過搜集大量的統(tǒng)計數(shù)據(jù),建立與其相應(yīng)的數(shù)學(xué)模型,再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得到解決.在這個過程中,導(dǎo)數(shù)往往是一個有利的工具。
六.布置作業(yè)
1.5.3定積分的概念
授課人:陳聯(lián)沁 班級:高二(13) 時間:2007-12-10
教學(xué)目標(biāo):
1.通過求曲邊梯形的面積和汽車行駛的路程,了解定積分的背景;
2.借助于幾何直觀定積分的基本思想,了解定積分的概念,能用定積分定義求簡單的定積分;
3.理解掌握定積分的幾何意義.
教學(xué)重點:定積分的概念、用定義求簡單的定積分、定積分的幾何意義.
教學(xué)難點:定積分的概念、定積分的幾何意義.
教學(xué)過程:
一.創(chuàng)設(shè)情景
復(fù)習(xí):
1. 回憶前面曲邊梯形的面積,汽車行駛的路程等問題的解決方法,解決步驟:
分割→近似代替(以直代曲)→求和→取極限(逼近)
2.對這四個步驟再以分析、理解、歸納,找出共同點.
二.新課講授
1.定積分的概念
一般地,設(shè)函數(shù)在區(qū)間上連續(xù),用分點
將區(qū)間等分成個小區(qū)間,每個小區(qū)間長度為(),在每個小區(qū)間上任取一點,作和式:
如果無限接近于(亦即)時,上述和式無限趨近于常數(shù),那么稱該常數(shù)為函數(shù)在區(qū)間上的定積分。記為:,
其中積分號,-積分上限,-積分下限,-被積函數(shù),-積分變量,-積分區(qū)間,-被積式。
說明:(1)定積分是一個常數(shù),即無限趨近的常數(shù)(時)記為,而不是.
(2)用定義求定積分的一般方法是:①分割:等分區(qū)間;②近似代替:取點;③求和:;④取極限:
(3)曲邊圖形面積:;變速運動路程;變力做功
2.定積分的幾何意義
從幾何上看,如果在區(qū)間上函數(shù)連續(xù)且恒有,那么定積分表示由直線和曲線所圍成的曲邊梯形(如圖中的陰影部分)的面積,這就是定積分的幾何意義。
說明:一般情況下,定積分的幾何意義是介于軸、函數(shù)的圖形以及直線之間各部分面積的代數(shù)和,在軸上方的面積取正號,在軸下方的面積去負號。
分析:一般的,設(shè)被積函數(shù),若在上可取負值。
考察和式
不妨設(shè)
于是和式即為
陰影的面積—陰影的面積(即軸上方面積減軸下方的面積)
思考:根據(jù)定積分的幾何意義,你能用定積分表示圖中陰影部分的面積S嗎?
3.定積分的性質(zhì)
根據(jù)定積分的定義,不難得出定積分的如下性質(zhì):
性質(zhì)1;
性質(zhì)2(定積分的線性性質(zhì));
性質(zhì)3(定積分的線性性質(zhì));
性質(zhì)4(定積分對積分區(qū)間的可加性)
(1) ; (2) ;
說明:①推廣:
②推廣:
③性質(zhì)解釋:
性質(zhì)4
性質(zhì)1
三.典例分析
例1.利用定積分的定義,計算的值。
分析:令;
(1)分割
把區(qū)間n等分,則第i個區(qū)間為:,每個小區(qū)間長度為:;
(2)近似代替、求和
取,則(3)取極限
.
例2.計算定積分
1
2
y
x
O
分析:所求定積分是所圍成的梯形面積,即為如圖陰影部分面積,面積為。
即:
思考:若改為計算定積分呢?
改變了積分上、下限,被積函數(shù)在上
出現(xiàn)了負值如何解決呢?(后面解決的問題)
例3.計算定積分
分析:利用定積分性質(zhì)有,
利用定積分的定義分別求出,,就能得到的值。
四.課堂練習(xí)
計算下列定積分
1.
2.
3.課本練習(xí):計算的值,并從幾何上解釋這個值表示什么?
五.回顧總結(jié)