2019年中考數學復習 統計 附解析
《2019年中考數學復習 統計 附解析》由會員分享,可在線閱讀,更多相關《2019年中考數學復習 統計 附解析(12頁珍藏版)》請在裝配圖網上搜索。
2019年中考數學復習 統計 附解析 第38講 統 計 1. (2014,河北)五名學生投籃球,規(guī)定每人投20次,統計他們每人投中的次數,得到五個數據.若這五個數據的中位數是6,唯一眾數是7,則他們投中次數的總和可能是( B ) A. 20 B. 28 C. 30 D. 31 【解析】 中位數是6,唯一眾數是7,則最大的三個數的和是6+7+7=20,兩個較小的數一定是小于6的非負整數,且不相等,即兩個較小的數最大為4和5,最小為0和1,總和一定大于等于21且小于等于29. 2. (2015,河北)某廠生產A,B兩種產品,其單價隨市場變化而做相應調整.營銷人員根據前三次單價變化的情況,繪制了如下統計表及不完整的折線圖(如圖),并求得了A產品三次單價的平均數和方差: =5.9,s2A=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150. A,B產品單價變化統計表 第一次第二次第三次 A產品單價/(元/件)65.26.5 B產品單價/(元/件)3.543 第2題圖 (1)補全圖中B產品單價變化的折線圖,B產品第三次的單價比上一次的單價降低了__25__%; (2)求B產品三次單價的方差,并比較哪種產品的單價波動小; (3)該廠決定第四次調價,A產品的單價仍為6.5元/件,B產品的單價比3元/件上調m%(m>0),使得A產品這四次單價的中位數比B產品這四次單價的中位數的2倍少1,求m的值. 【思路分析】 (1)根據題目提供的數據補全折線統計圖并計算即可.(2)計算B產品三次單價的方差并與A產品三次單價的方差比較即可.(3)首先確定A產品這四次單價的中位數,然后確定B產品第四次單價的范圍,根據“A產品這四次單價的中位數比B產品這四次單價的中位數的2倍少1”列方程求m即可. 解:(1)如答圖所示. 25 (2) =13(3.5+4+3)=3.5, s2B=13[(3.5-3.5)2+(4-3.5)2+(3-3.5)2]=16. ∵16<43150, ∴B產品的單價波動?。? (3)第四次調價后, 對于A產品,這四次單價的中位數為6+6.52=254. 對于B產品,∵m>0, ∴第四次的單價大于3元/件. ∵3.5+422-1=132>254, ∴第四次的單價小于4元/件. ∴3(1+m%)+3.522-1=254. ∴m=25. 第2題答圖 3. (2018,河北)為考察甲、乙、丙、丁四種小麥的長勢,在同一時期分別從中隨機抽取部分麥苗,獲得苗高(單位: cm)的平均數與方差為 甲= 丙=13, 乙= ?。?5,s2甲=s2?。?.6,s2乙=s2丙=6.3,則麥苗又高又整齊的是( D ) A. 甲 B. 乙 C. 丙 D. 丁 【解析】 ∵ 乙= ?。?甲= 丙,∴麥苗乙、丁比甲、丙要高.∵s2甲=s2丁<s2乙=s2丙,∴麥苗甲、丁的長勢比乙、丙的長勢整齊.綜上所述,麥苗又高又整齊的是丁. 4. (2018,河北節(jié)選)老師隨機抽查了本學期學生讀課外書冊數的情況,繪制成條形圖(如圖①)和不完整的扇形圖(如圖②),其中條形圖被墨跡遮蓋了一部分. (1)求條形圖中被遮蓋的數,并寫出冊數的中位數; (2)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數據合并后,發(fā)現冊數的中位數沒改變,則最多補查了 3 人. 第4題圖 【思路分析】 (1)用讀課外書為6冊的人數除以其所占的百分比得到抽查的總人數,再用總人數分別減去讀課外書為4冊、6冊和7冊的人數得到讀課外書為5冊的人數,然后根據中位數的定義求冊數的中位數.(2)根據中位數的定義可判斷總人數不能超過27,從而得到最多補查的人數. 解:(1)抽查的學生總數為625%=24, 則讀課外書為5冊的學生數為24-5-6-4=9. 所以條形圖中被遮蓋的數為9. 把冊數按從小到大的順序排列,處于最中間的兩個數的平均數為5, 所以冊數的中位數為5. (2)3 數據的收集 例1 (2018,樂山)下列調查中,適宜采用全面調查方式的是( D ) A. 調查全國中學生心理健康現狀 B. 調查一片試驗田里某種大麥的穗長情況 C. 調查冷飲市場上冰淇淋的質量情況 D. 調查你所在班級的每一個同學所穿鞋子的尺碼情況 【解析】 A. 調查全國中學生心理健康現狀調查范圍廣,適合抽樣調查,故錯誤.B. 調查一片試驗田里某種大麥的穗長情況調查范圍廣,適合抽樣調查,故錯誤.C. 調查冷飲市場上冰淇淋的質量情況調查范圍廣,適合抽樣調查,故錯誤.D. 調查你所在班級的每一個同學所穿鞋子的尺碼情況,適合全面調查,故正確. 針對訓練1 (2018,貴陽)在“生命安全”主題教育活動中,為了解甲、乙、丙、丁四所學校學生對生命安全知識掌握情況,小麗制定了如下方案,你認為最合理的是( D ) A. 抽取乙校初二年級學生進行調查 B. 在丙校隨機抽取600名學生進行調查 C. 隨機抽取150名老師進行調查 D. 在四所學校各隨機抽取150名學生進行調査 【解析】 為了解甲、乙、丙、丁四所學校學生對生命安全知識掌握情況,在四所學校各隨機抽取150名學生進行調査最具有廣泛性和代表性. 數據的表示 例2 (2018,云南)2017年12月8日,以“‘數字工匠’玉汝于成,‘數字工坊’溪達四?!睘橹黝}的2017一帶一路數字科技文化節(jié)?玉溪暨第10屆全國三維數字化創(chuàng)新設計大賽(簡稱“全國3D大賽”)總決賽在玉溪圓滿閉幕.某學校為了解學生對這次大賽的了解程度,在全校1 300名學生中隨機抽取部分學生進行了一次問卷調查,并根據收集到的信息進行了統計,繪制了如圖所示的兩幅統計圖.下列四個選項,錯誤的是( D ) 例2題圖 A. 抽取的學生共有50人 B. “非常了解”的人數占抽取的學生人數的12% C. α=72 D. 全?!安涣私狻钡膶W生估計有428人 【解析】 抽取的學生共有6+10+16+18=50(人),故選項A正確.“非常了解”的人數占抽取的學生人數的650=12%,故選項B正確.α=3601050=72,故選項C正確.全校“不了解”的學生估計有1 3001850=468(人),故選項D錯誤. 針對訓練2 (2018,舟山)2018年1月至4月我國新能源乘用車的月銷量情況如圖所示,則下列說法錯誤的是( D ) 訓練2題圖 A. 1月份的銷量為2.2萬輛 B. 從2月到3月的月銷量增長最快 C. 4月份銷量比3月份增加了1萬輛 D. 1月至4月新能源乘用車銷量逐月增加 【解析】 1月份的銷量為2.2萬輛,故選項A正確.從2月到3月的月銷量增長最快,故選項B正確.4月份銷量比3月份增加了4.3-3.3=1(萬輛),故選項C正確.1月至2月新能源乘用車銷量減少,2月至4月新能源乘用車銷量逐月增加,故選項D錯誤. 數據的分析 例3 (2012,河北)某社區(qū)準備在甲、乙兩位射箭愛好者中選出一人參加集訓,兩人各射了5箭,他們的總成績(單位:環(huán))相同.小宇根據他們的成績繪制了尚不完整的統計圖(如圖)表,并計算了甲成績的平均數和方差(見小宇的作業(yè)). 例3題圖 甲、乙兩人射箭成績統計表 第1次第2次第3次第4次第5次 甲成績/環(huán)94746 乙成績/環(huán)757a7 (1)a= 4 , 乙= 6 ; (2)請完成圖中表示乙成績變化情況的折線; (3)①觀察圖,可以看出 乙 的成績比較穩(wěn)定(填“甲”或“乙”).參照小宇的計算方法,計算乙成績的方差,并驗證你的判斷; ②請你從平均數和方差的角度分析,誰將被選中. 【思路分析】 (1)根據他們的總成績相同,求解.(2)根據(1)中所得a的值完成折線圖即可.(3)①觀察完成的折線圖,即可得出乙的成績比較穩(wěn)定.計算驗證即可.②因為兩人成績的平均數相同,根據方差得出乙的成績比甲穩(wěn)定,所以乙將被選中. 解:(1)4 6 (2)如答圖所示. 例3答圖 (3)①乙 s2乙=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=15(1+1+1+4+1)=1.6. 因為s2乙<s2甲,所以上述判斷正確. ②因為兩人成績的平均數相同,根據方差得出乙的成績比甲穩(wěn)定,所以乙將被選中. 針對訓練3 (2013,河北,導學號5892921)某校260名學生參加植樹活動,要求每人植4~7棵,活動結束后隨機抽查了20名學生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數繪制成扇形圖(如圖①)和條形圖(如圖②),經確認扇形圖是正確的,而條形圖尚有一處錯誤. 訓練3題圖 回答下列問題: (1)寫出條形圖中存在的錯誤,并說明理由; (2)寫出這20名學生每人植樹量的眾數、中位數; (3)在求這20名學生每人植樹量的平均數時,小宇是這樣分析的: ①小宇的分析是從哪一步開始出現錯誤的? ②請你幫他計算出正確的平均數,并估計這260名學生共植樹多少棵. 【思路分析】 (1)條形圖中D的人數錯誤,應為2010%=2.(2)根據條形圖及扇形圖得出眾數與中位數即可.(3)①小宇的分析是從第二步開始出現錯誤的.②求出正確的平均數,乘260即可得到結果. 解:(1)D類型的人數有錯.理由:D類型的人數為2010%=2,2≠3. (2)眾數為5,中位數為5. (3)①第二步. ② =44+58+66+7220=5.3,估計這260名學生共植樹5.3260=1 378(棵). 一、選擇題 1. (2018,葫蘆島)下列調查中,調查方式選擇最合理的是( A ) A. 調查“烏金塘水庫”的水質情況,采用抽樣調查 B. 調查一批飛機零件的合格情況,采用抽樣調查 C. 檢驗一批進口罐裝飲料的防腐劑含量,采用全面調查 D. 企業(yè)招聘人員,對應聘人員進行面試,采用抽樣調查 【解析】 調查“烏金塘水庫”的水質情況,不宜采用全面調查,適合采用抽樣調查,故選項A正確.調查一批飛機零件的合格情況,適合采用全面調查,故選項B錯誤.檢驗一批進口罐裝飲料的防腐劑含量,調查范圍廣,適合采用抽樣調查,故選項C錯誤.企業(yè)招聘人員,對應聘人員進行面試,適合采用全面調查,故選項D錯誤. 2. (2017,河北)甲、乙兩組各有12名學生,組長分別繪制了本組5月份家庭用水量的統計圖(如圖)和統計表(如下表).比較5月份兩組家庭用水量的中位數,下列說法正確的是( B ) 甲組12戶家庭用水量統計表 用水量/t4569 戶數4521 乙組12戶家庭用水量統計圖 第2題圖 A. 甲組比乙組大 B. 甲、乙兩組相同 C. 乙組比甲組大 D. 無法判斷 【解析】 由統計表知甲組家庭用水量的中位數為5+52=5.乙組家庭用水量為4 t和6 t的各有1290360=3(戶),家庭用水量為7 t的有1260360=2(戶),則家庭用水量為5 t的有12-(3+3+2)=4(戶),∴乙組家庭用水量的中位數為5+52=5.∴甲組和乙組家庭用水量的中位數相等. 3. (2018,唐山豐潤區(qū)模擬)某專賣店專營某品牌的襯衫,店主對上一周不同尺碼的襯衫銷售情況統計如下: 尺碼3940414243 平均每天銷售數量/件1012201212 該店主決定本周進貨時,增加一些41碼的襯衫,影響該店主決策的統計量是( C ) A. 平均數 B. 方差 C. 眾數 D. 中位數 【解析】 由于眾數是數據中出現次數最多的數,故影響該店主決策的統計量是眾數. 4. (2018,保定二模)一組數據4,x,5,10,11的平均數為7,則這組數據的眾數是( B) A. 4 B. 5 C. 10 D. 11 【解析】 根據題意,得(4+x+5+10+11)5=7.解得x=5.根據眾數的定義可得這組數據的眾數是5. 5. (2018,邵陽)根據李飛與劉亮射擊訓練的成績繪制了如圖所示的折線統計圖.根據統計圖所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應推薦( C ) 第5題圖 A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定 【解析】 根據統計圖中數據的變化趨勢,可知劉亮的成績較穩(wěn)定.所以應推薦劉亮. 二、填空題 6. 某校學生來自甲、乙、丙三個地區(qū),其人數比為2∶7∶3.若繪制成扇形統計圖,則甲地區(qū)人數所在扇形的圓心角度數為 60. 【解析】 甲地區(qū)人數所在扇形的圓心角度數為22+7+3360=60. 7. (2018,泰州)某鞋廠調查了商場一個月內不同尺碼男鞋的銷量,在平均數、中位數、眾數和方差等數個統計量中,該鞋廠最關注的是 眾數. 【解析】 眾數是數據中出現次數最多的數.鞋廠最關注的是銷售量最多的男鞋的尺碼即這組數據的眾數. 8. (2018,金華)如圖所示的是我國2013—2017年國內生產總值增長速度統計圖,則這5年增長速度的眾數是6.9%. 第8題圖 【解析】 這5年的增長速度分別是7.8%,7.3%,6.9%,6.7%,6.9%,則這5年增長速度的眾數是6.9%. 三、 解答題 9. (2018,包頭)某公司招聘職員兩名,對甲、乙、丙、丁四名候選人進行了筆試和面試,各項成績滿分均為100分,然后再按筆試占60%、面試占40%計算候選人的綜合成績(滿分為100分).他們的各項成績如下表所示: 候選人筆試成績/分面試成績/分 甲9088 乙8492 丙x90 丁8886 (1)直接寫出這四名候選人面試成績的中位數; (2)現得知候選人丙的綜合成績?yōu)?7.6分,求表中x的值; (3)求出其余三名候選人的綜合成績,并以綜合成績排序確定所要招聘的前兩名的人選. 【思路分析】 (1)根據中位數的概念求解.(2)根據題意列出方程,解方程即可.(3)根據加權平均數的計算公式分別求出其余三名候選人的綜合成績,比較即可. 解:(1)這四名候選人面試成績的中位數為88+902=89. (2)由題意,得x?60%+9040%=87.6.解得x=86.所以表中x的值為86. (3)甲候選人的綜合成績?yōu)?060%+8840%=89.2(分), 乙候選人的綜合成績?yōu)?460%+9240%=87.2(分), 丁候選人的綜合成績?yōu)?860%+8640%=87.2(分), 所以以綜合成績排序確定所要招聘的前兩名的人選是甲和丙. 1. (2018,吉林,導學號5892921)為了調查甲、乙兩臺包裝機分裝標準質量為400 g奶粉的情況,質檢員進行了抽樣調查,過程如下,請補全表一、表二中的空白,并回答提出的問題. 【收集數據】 從甲、乙兩臺包裝機分裝的奶粉中各隨機抽取10袋,測得實際質量(單位:g)如下: 甲:400,400,408,406,410,409,400,393,394,395. 乙:403,404,396,399,402,402,405,397,402,398. 【整理數據】 表一 393≤x <396396≤x <399399≤x <402402≤x <405405≤x <408408≤x <411 甲30 3 013 乙0 3 15 1 0 【分析數據】 表二 種類平均數中位數眾數方差 甲401.5 400 40036.85 乙400.8402 402 8.56 【得出結論】 包裝機分裝情況比較好的是 乙 (填“甲”或“乙”),說明你的理由. 【思路分析】 【整理數據】由題干中的數據結合表中范圍確定個數即可得.【分析數據】根據眾數和中位數的定義求解可得.【得出結論】根據方差的意義,方差小分裝質量較為穩(wěn)定即可得. 解:【整理數據】 表一 393≤x <396396≤x <399399≤x <402402≤x <405405≤x <408408≤x <411 甲303013 乙031510 【分析數據】 表二 種類平均數中位數眾數方差 甲401.540040036.85 乙400.84024028.56 【得出結論】乙 理由:由表二知,乙包裝機分裝的奶粉質量的方差小,分裝質量比較穩(wěn)定, 所以包裝機分裝情況比較好的是乙. 2. (導學號5892921)為了了解學生關注科教類新聞的情況,小明對某班學生一周內收看科教類新聞的次數作了調查,統計調查結果如圖所示(其中男生收看3次的人數沒有標出). 根據上述信息,解答下列問題: (1)該班的女生人數是 20 ,女生收看科教類新聞次數的中位數是 3 ; (2)對于某個群體,我們把一周內收看某類新聞次數不低于3次的人數占其所在群體總人數的百分比叫做該群體該類新聞的“關注指數”.如果該班男生對科教類新聞的“關注指數”比女生低5%,試求該班的男生人數; (3)為進一步分析該班男、女生收看科教類新聞次數的特點,小明給出了男生的部分統計量,根據你所學過的統計知識,適當計算女生的有關統計量,進而比較該班男、女生收看科教類新聞次數的波動大?。? 第2題圖 男生部分統計量 統計量平均數中位數眾數方差… 男生3342… 【思路分析】 (1)將統計圖中的女生人數相加即可求得總人數.根據中位數的定義求解可得.(2)先求出該班女生對科教類新聞的“關注指數”,即可得出該班男生對科教類新聞的“關注指數”,再列方程解答即可.(3)比較該班男、女生收看科教類新聞次數的波動大小,需要求出女生收看科教類新聞次數的方差. 解:(1)20 3 (2)由題意,得該班女生對科教類新聞的“關注指數”為6+5+220=65%. 所以男生對科教類新聞的“關注指數”為65%-5%=60%. 設該班的男生有x人. 根據題意,得x-(1+3+6)x=60%. 解得x=25. 答:該班的男生有25人. (3)該班女生收看科教類新聞次數的平均數為120(12+25+36+45+52)=3, 該班女生收看科教類新聞次數的方差為120[2(3-1)2+5(3-2)2+6(3-3)2+5(3-4)2+2(3-5)2]=1310. 因為2>1310, 所以該班男生收看科教類新聞次數的波動比女生大. 3. (2014,河北,導學號5892921)如圖①,A,B,C是三個垃圾存放點,點B,C分別位于點A的正北和正東方向,AC=100 m.四人分別測得∠C的度數如下表: 甲乙丙丁 ∠C的度數34363840 他們又調查了各點的垃圾量,并繪制了下列尚不完整的統計圖(如圖②和圖③). 第3題圖 (1)求表中∠C度數的平均數 ; (2)求A處的垃圾量,并將圖②補充完整; (3)用(1)中的 作為∠C的度數,要將A處的垃圾沿道路AB運到B處.已知運送1 kg垃圾每米的費用為0.005元,求運垃圾所需的費用.(注:sin 37≈0.6,cos 37≈0.8,tan 37≈0.75) 【思路分析】 (1)直接求平均數即可.(2)利用扇形統計圖以及條形統計圖可得出C處的垃圾量及其所占百分比,進而求出垃圾總量,進而得出A處的垃圾量.(3)利用銳角三角函數得出AB的長,進而得出運垃圾所需的費用. 解:(1) =34+36+38+404=37. (2)∵C處的垃圾量為320 kg,在扇形統計圖中所占百分比為50%, ∴垃圾總量為32050%=640(kg). ∴A處的垃圾量為(1-50%-37.5%)640=80(kg). 補全的條形統計圖如答圖. 第3題答圖 (3)在Rt△ABC中,∵AC=100 m,∠C=37,∴tan 37=ABAC. ∴AB=AC?tan 37≈1000.75=75(m). ∵運送1 kg垃圾每米的費用為0.005元, ∴運垃圾所需的費用約為75800.005=30(元).- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019年中考數學復習 統計 附解析 2019 年中 數學 復習 解析
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-2812657.html