歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

九年級數(shù)學(xué)上冊 第2章 對稱圖形-圓 2.4 圓周角 第1課時 圓周角的概念與性質(zhì)練習(xí) (新版)蘇科版.doc

  • 資源ID:3732053       資源大?。?span id="q6kigg6" class="font-tahoma">193.50KB        全文頁數(shù):4頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

九年級數(shù)學(xué)上冊 第2章 對稱圖形-圓 2.4 圓周角 第1課時 圓周角的概念與性質(zhì)練習(xí) (新版)蘇科版.doc

2.4 圓周角 第1課時 圓周角的概念與性質(zhì) 知|識|目|標(biāo) 1.通過閱讀、觀察、討論,了解圓周角的概念. 2.經(jīng)歷探索圓周角和圓心角的關(guān)系的過程,理解圓周角與圓心角及其與所對的弧的關(guān)系. 目標(biāo)一 識別圓周角 例1 教材補充例題如圖2-4-1所示,圖中的圓周角有__________________________,圓心角有________,所對的圓周角有__________________. 圖2-4-1 【歸納總結(jié)】圓周角需滿足的兩個條件: (1)角的頂點在圓上;(2)角的兩邊都和圓相交. 這兩個條件缺一不可. 目標(biāo)二 掌握圓周角與圓心角、弧之間的關(guān)系 例2 教材補充例題xx徐州一模如圖2-4-2,AB是⊙O的直徑.若∠D=30,則∠AOE的度數(shù)是(  )     圖2-4-2 A.30 B.60 C.100 D.120 【歸納總結(jié)】解決與圓有關(guān)的角度的相關(guān)計算時,一般先判斷角是圓周角還是圓心角,再轉(zhuǎn)化成同弧或等弧所對的圓周角或圓心角,利用同弧或等弧所對的圓周角相等,同弧或等弧所對的圓周角等于圓心角的一半等關(guān)系求解. 例3 教材補充例題如圖2-4-3,在⊙O中,弦AB與CD相交于點E,AB=CD. 求證:△AEC≌△DEB. 圖2-4-3 【歸納總結(jié)】要判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.本題中要注意圓心角、弧、弦之間的關(guān)系和圓周角定理的運用. 知識點一 圓周角的概念 頂點在______,并且兩邊都和圓相交的角叫做圓周角. 知識點二 圓周角定理 圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的______,同弧或等弧所對的圓周角______. [點撥] 定理中,若丟掉“它所對弧上的”這一條件,而簡單地說成“圓周角等于圓心角的一半”是錯誤的. 在半徑為R的圓內(nèi),求長為R的弦所對的圓周角的度數(shù). 解:如圖2-4-4所示,⊙O的半徑為R,AB=R,∠ACB為弦AB所對的圓周角,連接OA,OB,則OA=OB=AB=R,∴△OAB為等邊三角形,∴∠AOB=60,∴∠ACB=∠AOB=30. 圖2-4-4 上述解法正確嗎?若不正確,請說明理由,并寫出正確的解答過程. 詳解詳析 【目標(biāo)突破】 例1 [答案] ∠ADB,∠CAD,∠CBD,∠ACB ∠COB ∠CAD,∠CBD [解析] 根據(jù)圓周角、圓心角的概念去尋找. 例2 [解析] D ∵∠D=30, ∴∠BOE=60, ∴∠AOE=180-∠BOE=120. 故選D. 例3 [解析] 要證明兩個三角形全等,我們先看有什么已知的條件.這兩個三角形中已知的只有一組對頂角,題中告訴我們AB=CD,那么我們可得出:=,再減去同一段后,可得=,因此DB=AC,由∠B,∠C均為所對的圓周角,可得∠B=∠C,這樣就構(gòu)成了兩個三角形全等的判定條件(AAS),即可證明兩個三角形全等. 證明:∵AB=CD, ∴=,∴=, ∴DB=AC. ∵∠B,∠C均為所對的圓周角, ∴∠B=∠C. 又∵∠CEA=∠BED, ∴△AEC≌△DEB(AAS). 備選目標(biāo) 圓周角與其他知識的綜合應(yīng)用 例 如圖所示,在小島周圍的內(nèi)有暗礁,在A,B兩點處建兩座航標(biāo)燈塔,且∠APB=θ,某船要在兩航標(biāo)的北側(cè)繞過暗礁區(qū),應(yīng)怎樣航行?為什么? [解析] 可以看出在內(nèi)的觀測角(例如∠ADB)都大于θ,在外的觀測角(例如∠ACB)都小于θ. 解:要繞過暗礁區(qū),應(yīng)使船到兩燈塔處的觀測角小于θ.理由如下: 如圖所示,在外(兩航標(biāo)北側(cè))任取一點C,連接AC交于點F,連接BF,BC,則∠1=∠APB.∵∠1是△CFB的外角, ∴∠1>∠C,即∠APB>∠C. 當(dāng)在內(nèi)(兩航標(biāo)北側(cè))任取一點D,同理可得∠ADB>∠APB. ∴只要船到兩燈塔處的觀測角小于θ就能繞過暗礁區(qū). [歸納總結(jié)] 這是關(guān)于圓周角、點與圓的位置關(guān)系的綜合性題目,解題的關(guān)鍵是對船的位置正確分類. 【總結(jié)反思】 [小結(jié)] 知識點一 圓上 知識點二 一半 相等 [反思] 不正確.理由:產(chǎn)生錯解的原因是只考慮了長為R的弦所對的圓周角的頂點在優(yōu)弧上,而忽略了圓周角的頂點在劣弧上的情況. 正解:如圖①所示,當(dāng)圓周角的頂點在優(yōu)弧上時,同題干解法. 如圖②所示,當(dāng)長為R的弦AB所對的圓周角的頂點在劣弧上時, 連接OA,OB,同理可得△OAB為等邊三角形,∴∠AOB=60, ∴所對的圓心角為360-60=300, ∴所對的圓周角∠ACB=300=150. 綜上所述,長為R的弦所對的圓周角的度數(shù)為30或150.

注意事項

本文(九年級數(shù)學(xué)上冊 第2章 對稱圖形-圓 2.4 圓周角 第1課時 圓周角的概念與性質(zhì)練習(xí) (新版)蘇科版.doc)為本站會員(xt****7)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲