220kV地區(qū)變電所電氣一次系統(tǒng)設(shè)計03
220kV地區(qū)變電所電氣一次系統(tǒng)設(shè)計03,kv,地區(qū),變電所,電氣,一次,系統(tǒng),設(shè)計,03
Examination of Smart Grids in Island Operation I Vokony PhD student A Dan Dr Senior Member IEEE Abstract This paper is qualified for the assessment of cooperation and interaction of smart grids that means a micro network with about zero transfer power and power system Primarily it examines the effect of the continuously increasing integration of the intelligent energy distribution networks concerning the stability of the power system In the paper the model is published used for simulating the smart grids and how to apply them for island operation assessment With the help of a model network the results of the simulations are presented and also the conclusions can be drawn are evaluated Index Terms Smart grid island operation frequency voltage dependent loads electro mechanical transients I INTRODUCTION he main phases of the electric network development were similar periods everywhere the early local supply was followed by short distance transfers and nowadays strongly meshed national or international networks are in operation The UCTE coordinates the operation and development of the electricity transmission grid of 24 European countries provides a reliable market platform to all participants of the Internal Electricity Market IEM and beyond The peak load of the UCTE in 2007 was about 390 GW and the electric energy consumption 2500 TWh This system supplies power for about 450 million people Fig 1 The topology of the UCTE This global energy network has many advantages however its disadvantages increasingly come to the light because of the expectations of the current market conditions As a consequence of extreme utilization the safety of supply may be dragged into danger which fact is reinforced by some events of the near past There is a need to develop small and simple system structures with easier control and design The micro grid may be a solution for these questions It simplifies the network in respect of control it is able to serve its own consumers and occasionally it can connect to the large network Analyzing of the steady state operation and transient behavior of this network is essential to set up an appropriate model II MODEL DESCRIPTION For set up and examination purposes a network analyzer software package developed by the Department of Electric Power Engineering TU Budapest was used With the help of the program can be analyzed steady states of networks load flow calculations effects of several faults and breaker operations during transients In addition to the steady state analysis dynamic simulations were also calculated The program is able to manage two synchronously operating systems with different frequency A control simulation was calculated by Power World Power Systems Analysis Software for the steady state simulations The model topology is shown in Fig 2 which was made by the Power World SAS The network model consists of high and middle voltage lines and buses 400 120 20 and 10 kV Transformers lines parallel lines generators and loads were involved Fig 2 The topology of the model network T Paper accepted for presentation at 2009 IEEE Bucharest Power Tech Conference June 28th July 2nd Bucharest Romania 978 1 4244 2235 7 09 25 00 2009 IEEE 1 Authorized licensed use limited to NORTH CHINA ELECTRIC POWER UNIVERSITY Downloaded on June 03 2010 at 02 04 41 UTC from IEEE Xplore Restrictions apply The sources can have power and or voltage control In the model there are two wind power parks connected to MO1S and MSZ20 buses three 5 MW gas turbines connected to the MO1G bus and a large machine connected to the G4 bus as a system slack bus in case of parallel operation with large network During island operation the gas turbines constitute the system slack In the two wind parks operate 25 x 2 MW wind turbines The loads are frequency and voltage dependent III SIMULATIONS A Examination of the short circuit power and voltage level The first examination is the effect of wind power sources on the three phase short circuit in the following 3 sc power of the MO1 120 kV bus In island operation the wind park is part of the smart grid The simulation result shows how influenced of the 3 sc power of the MO1 bus by an electrically far big power plant and an electrically near small wind power plant Interesting results can be expected if in the network the wind does not blow i e the power from the wind power plants is zero In this case the missing capacity has to be given by the G4 system slack bus and the sc capacity changes accordingly The model was used for voltage stability examinations To verify this fact the voltage conditions of the network have to be compared when the grid is in island operation and when the grid is connected to the network B Island operation examinations The island operation was established with a switch on MT1A VN1A and MT1B VN1B lines and so the two system frequencies were developed The following examination consisted of several steps the network operates as an island i e the MO1 bus and geographically close loads and sources form an island yellow area in Fig 3 The feasibility of island operation was examined Different operation situations and faults were simulated and the scale of voltage change was examined Fig 3 Topology of the island 1 Power changes The power generation of the wind power plant connected to the MO1S bus was reduced or increased by 0 5 MW steps until the frequency deviation as compared to the other system and compared to the 50 Hz as well exceeded 2 0 Hz A greater deviation would have such effect on the load that may cause failures This way however operating within the range of the limit e g in case of an interconnected system collapse the grid can become detached and stay operable by itself 2 Load changes Similar examinations were performed in relation to the 10 and 20 kV load connected to the MO1 bus In this case not the power but the consumption changed The robustness of the grid was observed how large consumption changes will not result 2 Hz frequency limit override 3 Shunt faults In the third trial group the grid was subject to extreme utilization Firstly one phase to ground short circuit in the following 1 G sc and then 3 sc was simulated on connection bus of 120 kV wind power plant and 3 sc on the 20 kV wind power plant From these simulation examinations a conclusion was wanted to be drawn down regarding the island operation conditions of a smart grid The conclusion should include the survey both of stability and voltage conditions C Reclosing the grid to the large network During these simulations it was examined how it is possible to switch back the in island operating grid to the large network and how the frequency of steady state level could be find First the grid was reclosed in normal stead state power balance and after it different situations were simulated The power was reduced and increased in 2 MW steps which is 2 Authorized licensed use limited to NORTH CHINA ELECTRIC POWER UNIVERSITY Downloaded on June 03 2010 at 02 04 41 UTC from IEEE Xplore Restrictions apply the size of one wind turbine in the grid so the frequency changed and after it back switch was attempted IV SIMULATION RESULTS AND EVALUATION Here will be reported the simulation results in the same order like in chapter III A Examination of the short circuit power and voltage level The 3 sc power was examined to find out how the network is influenced by the wind power plant park Diagram 1 and 2 show two important things first of all it can been seen that the gas turbine connected to the MO1G bus suffers larger oscillation in case of no wind power This means that it can operate more stable with the wind power plant park than without The simulation process was the following the system operates at steady state At t 1 sec 3 short circuit was simulated on the given bus The clearing time is 0 2 sec Diagram 1 Diagram 2 On the other hand the oscillations of the wind generators connected to the MSZ20 bus are smaller in amplitude and in periodic time when there is no power input from the MO1S wind power plant This is interesting that the MSZ20 s wind turbines supply own consumers in this area while power is provided from the MO1S wind power plant park If it is out of operation the interconnected system supplies the whole network so the MSZ20 bus s generators have smaller tension Diagram 3 and 4 Diagram 3 Diagram 4 It is possible to hold the voltage level in the grid in island operation as well Those nodes which are not voltage holder points have lower voltage level in the island than in the cooperation operation Diagram 5 And the remaining part of the network has a bit larger voltage level when the grid is in the island So the island operation does not mean a voltage level problem Diagram 5 The dark color nodes are together in the grid 3 Authorized licensed use limited to NORTH CHINA ELECTRIC POWER UNIVERSITY Downloaded on June 03 2010 at 02 04 41 UTC from IEEE Xplore Restrictions apply B Island operation examinations The main goal of this examination was to find out how flexible the system is Load was changed until the frequency change remains between 2 Hz Most of the consumers can tolerate this change of frequency but larger frequency deviation may cause system failures Diagram 6 Diagram 6 shows how the MO1G tries to compensate the lack of source power as a consequence of power generation decrease of MO1S wind turbine park The whole primary reserve of MO1G is 7 MW which is fully activated at 0 5 Hz frequency deviation The primary control effect is not instantaneously limited by the gas turbine control dynamics After reaching the primary control MW limit the frequency of the island collapsed Because of frequency sensitivity of loads about 8MW wind power generation decrease is possible to correspond to the frequency criteria The built in power of the grid is 56 MW so the grid is able to compensate almost 15 of the full built in power The simulation process was the following the system operates at steady state From t 1 sec the generated power was reduced on the MO1S bus in each second by 0 5MW Diagram 7 In diagram 7 as a consequence of increasing wind power generation the frequency is rising In case of 2 MW generated power increase up to 100 load of machines the frequency will change by 281 mHz The next examination was to reduce the consumption by 0 5 MW sec The full reserve capacity of MO1G was utilized 7 MW referring to initial state and the frequency change was almost 1 1 1Hz This indicates that our grid s robustness is good Diagram 8 Diagram 9 The third type of simulations in this chapter is fault analysis 1 G sc and 3 sc were simulated The 1 G sc s clearing time is 0 3 sec afterwards the failure phase is switched off till 1 sec and the normal operation is back The 3 sc s clearing time is 0 2 sec Three parameters were observed generator frequency system frequency and bus voltages These diagrams are in the Appendix Diagram 10 15 18 19 C Reclosing the grid to the large network During these examinations it was observed how it is possible to switch back the grid to the large network How the system frequency responds and how it is possible to set back the cooperation operation Firstly both systems were in steady state operation As next step it was attempted to find out the maximum amount of generation change when it is possible to reclose the grid to the interconnected network It is amazing as in an extreme 10MW load change situation it was possible to switch back Diagram 17 In island operation the power was increased in the grid by 10 MW so the frequency falls down to 48 25 Hz After this it was possible to make the back switch 4 Authorized licensed use limited to NORTH CHINA ELECTRIC POWER UNIVERSITY Downloaded on June 03 2010 at 02 04 41 UTC from IEEE Xplore Restrictions apply Diagram 16 Diagram 17 V SUMMARY Summarizing the main results A simulation model was established that is very similar to a part of the Hungarian power system This area is capable for island operation this way it is convenient to be examined as a smart grid The examinations after model creation can be divided into three main groups 1 island operation vs cooperating operation 2 voltage conditions 3 frequency limits of island operation Conclusion the wind power plant in the model increases the stability of the system if the grid operates synchronously with the interconnected system the voltage conditions of the concerned busses are not worse the modelled smart grid has great tolerance limit in respect of generation change consumption change and network faults VI REFERENCES 1 Technical And Economic Feasibility of Microgrid Based Power Systems Phil Barker Doug Herman Seventh EPRI Distributed Resources Conference and Exhibition Dallas TX March 20 22 2002 2 Daniel Kirschen Towards Decentralised Power Systems ECCE meeting in Bruxels oct 2003 3 Khaled A Nigim Wei Jen Lee Micro Grid Integration Opportunities and Challenges IEEE 2007 General Meeting Tampa USA 24 28 June 2007 4 A Faludi L Szabo Power System Operation and Control Hungarian Lecture notes on vet bme hu okt foszak ver veri index htm Budapest 2002 VII BIOGRAPHY Istvan Vokony was born in Mosonmagyarovar in Hungary on October 19 1983 He graduated at Revai Miklos grammar school in Gyor and studied at the Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Department of Electric Power Engineering He is PhD student at Budapest University of Technology and Economics Faculty of Energetic and Electrotechnics He is member of the Hungarian Electrotechnical Association and the BUTE Student Association of Energy Andras Dan Dr is Professor with the Department of Electric Power Engineering Budapest University of Technology and Economics He received M Sc degree from Budapest Technical University in 1966 Ph D and D Sc degrees in Electrical Engineering from the Academy of Sciences in 1983 and 2005 respectively His expertise is in power electronics power quality and reactive power compensation especially associated with power system harmonics 5 Authorized licensed use limited to NORTH CHINA ELECTRIC POWER UNIVERSITY Downloaded on June 03 2010 at 02 04 41 UTC from IEEE Xplore Restrictions apply VIII APPENDIX Diagram 10 Diagram 11 Diagram 12 Diagram 13 Diagram 14 Diagram 15 6 Authorized licensed use limited to NORTH CHINA ELECTRIC POWER UNIVERSITY Downloaded on June 03 2010 at 02 04 41 UTC from IEEE Xplore Restrictions apply Diagram 18 Diagram 19 7 Authorized licensed use limited to NORTH CHINA ELECTRIC POWER UNIVERSITY Downloaded on June 03 2010 at 02 04 41 UTC from IEEE Xplore Restrictions apply
華 北 電 力 大 學(xué) 科 技 學(xué) 院
畢 業(yè) 設(shè) 計(論 文)附 件
外 文 文 獻 翻 譯
學(xué) 號: 081901320234 姓 名: 張嘉
所在系別: 電力工程系 專業(yè)班級: 農(nóng)電08k2
指導(dǎo)教師: 趙飛
原文標(biāo)題: 220kV地區(qū)變電所電氣一次系統(tǒng)設(shè)計:
220/110/10kV,進/出線回數(shù)2/6/11(電纜)
2012 年 6 月 1日
智能電網(wǎng)小島運行測試 原文出處及作者:I. Vokony PhD. student, A. Dan Dr. Senior Member, IEEE
I.Vokony博士。學(xué)生A.DAN。博士高級會員,IEEE
摘要
本文為評估資格智能電網(wǎng)(一個微型網(wǎng)絡(luò)傳輸功率約為零)和電力系統(tǒng)的合作和互動。它主要研究不斷增加的一體化智能能源分配網(wǎng)絡(luò)關(guān)于電力系統(tǒng)的穩(wěn)定的效果。設(shè)計模型已經(jīng)發(fā)布,用來模擬智能電網(wǎng),以及如何應(yīng)用為孤島運行評估。在模型網(wǎng)絡(luò)的幫助下得到模擬結(jié)果并且也可以得出的結(jié)論進行評估。
索引條款——智能電網(wǎng),孤島運行,頻率電壓取決于負(fù)載,機電暫態(tài)。
一、導(dǎo)言
電網(wǎng)發(fā)展的主要階段相同時期隨處可見:早期的本地供應(yīng)其次是短距離的傳輸和時下強大的國家網(wǎng)絡(luò)或國際網(wǎng)絡(luò)在進行。
UCTE協(xié)調(diào)的運作和發(fā)展24個歐洲國家的電力輸電網(wǎng),為所有內(nèi)部電力市場(IEM)的參與者提供了可靠的市場平臺內(nèi)部電力市場和超越。
UCTE在2007年的高峰負(fù)荷約390萬千瓦,2500億千瓦時的電能消耗。該系統(tǒng)供電約450萬人。
圖1.UCTE的拓?fù)?
這種全球能源網(wǎng)絡(luò)有許多優(yōu)點,但是其越來越多的缺點來因為光線在目前的市場條件下的期望。作為一個極端利用率后果:供應(yīng)安全,也許會拖成危險,這其實是在重復(fù)不久的過去的事件。
有必要發(fā)展小而簡單的系統(tǒng)結(jié)構(gòu)更容易控制和設(shè)計。微型框架可能是對這些問題的解決方案。它簡化了網(wǎng)絡(luò)的控制,它能夠為自己的消費者和偶爾它可以連接到大型網(wǎng)絡(luò)。必要設(shè)立一個適當(dāng)?shù)哪P驼莆辗€(wěn)態(tài)運行分析和網(wǎng)絡(luò)的瞬時狀況。
二、型號說明
為了設(shè)置和測試網(wǎng)絡(luò)目的使用由電力工程部,杜葉錫恩布達(dá)佩斯開發(fā)的分析儀軟件包。使用該程序可以分析網(wǎng)絡(luò)(負(fù)載流量計算)在幾個故障和斷路器操作過程中的瞬時效果的穩(wěn)定狀態(tài)。除了穩(wěn)態(tài)分析還可進行動態(tài)模擬計算。此方案是能夠管理兩個同步操作不同頻率的系統(tǒng)。由電力世界電力系統(tǒng)的分析軟件為穩(wěn)態(tài)模擬進行控制仿真演算。模型的拓?fù)浣Y(jié)構(gòu)圖2由世界電能SAS制作.. 網(wǎng)絡(luò)模型包括:
- 高,中壓線
- 總線(400-120-20和10千伏)。
- 變壓器
- 線,平行線
- 發(fā)電機和負(fù)荷。
圖2.模型的網(wǎng)絡(luò)拓?fù)?
來源有電源和/或電壓控制。在模型中有:
- 兩個風(fēng)力發(fā)電場連接到MO1S的MSZ20總線,
- 3個5兆瓦的燃?xì)鉁u輪機(連接到MO1G總線)
- 大型機器(連接到總線G4)在大型網(wǎng)絡(luò)總線并行操作的情況下作系統(tǒng)閑置。
在孤島運行期間,燃?xì)廨啓C構(gòu)成系統(tǒng)閑置。這兩個風(fēng)力發(fā)電場運行25個2兆瓦風(fēng)力渦輪機。負(fù)載頻繁電壓依賴。
3、 模擬
A.短路功率的檢查和電壓等級
第一次測試是對風(fēng)力發(fā)電來源功率MO1120千伏母線三個相短路(在以下3ΦSC中)。 (孤島運行的風(fēng)力發(fā)電場是智能電網(wǎng)的一部分)。仿真結(jié)果表明較遠(yuǎn)的大電廠和附近的小型(風(fēng)力)電廠如何影響MO1總線3ΦSC電源的。
有趣的結(jié)果可以預(yù)料,如果在網(wǎng)絡(luò)中“風(fēng)不吹”,即從功率的風(fēng)力發(fā)電廠為零。在這種情況下容量缺口必須由G4系統(tǒng)閑置總線和SC.容量發(fā)生相應(yīng)的變化。
利用該模型對電壓穩(wěn)定的測試。為了驗證這一事實當(dāng)電網(wǎng)孤島運行和電網(wǎng)連接到網(wǎng)絡(luò)時對網(wǎng)絡(luò)電壓條件進行比較。
B.孤島操作測試
島上的操作在MT1A-VN1A和MT1B-VN1B線間建立一個開關(guān),因此兩個系統(tǒng)頻率是變化的。以下測試包括以下幾個步驟:作為一個小島即MO1總線網(wǎng)絡(luò)運行和地理上接近負(fù)載和電源形成一個島嶼(黃色區(qū)域圖3)。島嶼的可行性操作檢查。不同的運行狀況和故障模擬;電壓變化的規(guī)模檢查。
圖3.島上的拓?fù)浣Y(jié)構(gòu)
1)功率變化
風(fēng)力發(fā)電廠的發(fā)電連接到MO1S總線減少或增加0.5兆瓦的步驟,直到相比其他系統(tǒng)頻率偏差相比50赫茲超過 2.0赫茲較好。負(fù)載上偏差很大可能導(dǎo)致失敗。然而,這樣的范圍內(nèi)經(jīng)營限制(例如,在一個相互聯(lián)系的系統(tǒng)崩潰的情況下)網(wǎng)格可以分離和保持本身的可操作性。
2)負(fù)載變化
在10 - 和20千伏負(fù)載連接的MO1總線進行了類似的測試。在這種情況下能源不變但需求改變了。觀察電網(wǎng)的穩(wěn)定(多么大需求的變化不會導(dǎo)致+/ - 2赫茲頻率上限變化)。
3)并聯(lián)故障
在第三個試驗組的電網(wǎng)控制到極端利用率。首先一相對地短路(在1Φ-G sc.),然后3ΦSC.在模擬上連接120千伏風(fēng)力發(fā)電廠的總線且3ΦSC.連接上20千伏風(fēng)力發(fā)電廠。
從這些公布的模擬測試的結(jié)論制定智能電網(wǎng)孤島運行條件。結(jié)論應(yīng)包括穩(wěn)定性和電壓條件調(diào)。
C.重合閘的電網(wǎng)的大型網(wǎng)絡(luò)
在這些模擬研究中,它是如何把島經(jīng)營的電網(wǎng)切換回大電網(wǎng)網(wǎng)絡(luò),以及如何找到穩(wěn)態(tài)水平的頻率。首先網(wǎng)絡(luò)重合正常,電能平衡,在不同的情況進行模擬。 功率減少和增加在2兆瓦的步驟 - 這是一個風(fēng)力發(fā)電機組的大小 - 在電網(wǎng)中,所以頻率改變,然后嘗試切換回去。
四、模擬結(jié)果以評價
這里將報告的模擬結(jié)果與第三章順序相同。
A.短路功率和電壓等級測試
通過測試3ΦSC.電源找出電網(wǎng)受風(fēng)力發(fā)電廠的影響。圖1和2顯示了兩個重要的事情:首先可以發(fā)現(xiàn),氣體渦輪機連接的MO1G總線遭受較大振蕩,在沒有風(fēng)電的情況下。這意味著,有風(fēng)力發(fā)電廠可以比沒有風(fēng)力發(fā)電廠運行更穩(wěn)定,。
模擬過程如下:系統(tǒng)運行在穩(wěn)定狀態(tài)。在t=1秒3Φ給定的總線上模擬短路。結(jié)算時間為0.2秒。
圖1. MO1G總線的輸出功率
圖2MSZ20總線的輸出功率
另一方面,連接MSZ20總線的風(fēng)力發(fā)電機的振蕩幅度和周期時間較小,當(dāng)從MO1S風(fēng)力發(fā)電廠沒有輸入功率時。這很有趣,該MSZ20風(fēng)渦輪機在這方面供應(yīng)自己的需求,而能源是從MO1S風(fēng)力發(fā)電廠公園提供的。如果是反操作,互聯(lián)系統(tǒng)供應(yīng)全網(wǎng)絡(luò),使MSZ20總線的發(fā)電機會有些緊張。(圖3和4)
圖3.G1-K1線上的功率流
圖4.MO20-MSZ20線上的功率流
保持有島電網(wǎng)的電壓水平這是可能的。這些不是電壓控制點的節(jié)點比合作經(jīng)營在島電壓水平較低。(圖5)當(dāng)電網(wǎng)在島上網(wǎng)絡(luò)的其余部分電壓水平較高。因此,島上操作并不意味著電壓層次的問題。
圖5.標(biāo)幺值的節(jié)點電壓水平
表格中的深色部分是一起的
B.小島操作測試
這次測試的主要目的是找出靈活的系統(tǒng)。負(fù)荷直到頻率變化保持在+/ - 2赫茲之間。大部分需求能容忍這種頻率的變化,但更大的頻率偏差可能會導(dǎo)致系統(tǒng)故障。
圖6.MO1S的負(fù)荷減少對MO1G的影響
圖6演示如何的MO1G嘗試,以彌補缺乏源功率發(fā)電的后果減少MO1S風(fēng)力發(fā)電廠。整個MO1G系統(tǒng)初級儲備的是7兆瓦,這是在0,5赫茲頻率偏差下的充分利用。主要的控制效果并不由燃?xì)廨啓C控制動力隨時控制。到達(dá)主控制兆瓦的限制后,島上頻率崩潰。由于負(fù)載的頻率靈敏度減少約8兆瓦的風(fēng)力發(fā)電是可能的對應(yīng)的頻率標(biāo)準(zhǔn)。內(nèi)置電源為56兆瓦,使電網(wǎng)能夠彌補近15%全內(nèi)置電源。
模擬過程如下:系統(tǒng)運行在穩(wěn)定狀態(tài)。MO1S總線從t =1秒的發(fā)電量每一秒減少0.5MW。
圖7.MO1S負(fù)荷增長對MO1G的影響
在圖7中為提高風(fēng)力發(fā)電的效果,頻率正在上升。在2兆瓦的情況下發(fā)電量增加(高達(dá)100%的機器負(fù)荷)由281兆赫的頻率會改變。
接下來的測試是由0,5MW/秒減少損耗。充分MO1G儲備能力利用(7兆瓦提到初始狀態(tài)),頻率的變化幾乎1-1,1赫茲。這表明,我們的電網(wǎng)的穩(wěn)健性好。
圖8.MO10負(fù)荷減少對MO1G的影響
圖9.MO20負(fù)荷增長對MO1G的影響
第三類是本章的模擬故障分析。1Φ-G sc.和3Φsc.進行了模擬。在1Φ-G sc.的結(jié)算時間是0.3秒,之后被關(guān)閉,直到故障相1秒,正常運行。3Φsc的結(jié)算時間是0.2秒。觀察三個參數(shù):發(fā)電機頻率,系統(tǒng)頻率和總線電壓。附錄中圖(圖10-15,18,19)
C.重合閘的電網(wǎng)的大型網(wǎng)絡(luò)
在這些測試中,有人指出,它是如何可能切換回電網(wǎng)的大型網(wǎng)絡(luò)。系統(tǒng)如何頻率響應(yīng),以及它是如何設(shè)置合作經(jīng)營。首先,這兩個系統(tǒng)在穩(wěn)態(tài)運行。作為下一步,試圖找出最大量一代變化時,它可能是重合閘的電網(wǎng)互聯(lián)網(wǎng)絡(luò)。令人吃驚的是,作為一個極端的10MW負(fù)荷變化情況,它是可能的切換回來的。(圖17)在島內(nèi)的能量運行電網(wǎng)增加10兆瓦,頻率下降48,25赫茲。在此之后,它可能切換回來。
圖16.傳輸功率0MW時兩系統(tǒng)合閘時的頻率
圖17. 傳輸功率10MW時兩系統(tǒng)合閘時的頻率
五、總結(jié)
總結(jié)的主要結(jié)果﹕
仿真模型的建立,這是非常類似匈牙利電力系統(tǒng)的一部分。這片區(qū)域是有能力進行孤島運行,這種方式是作為智能電網(wǎng)的一個方便檢查。模型建立后的測試分為三個主要群體:
1.島與合作經(jīng)營的運作
2.電壓條件
3.孤島運行的頻率范圍
結(jié)論:
·模型中的風(fēng)力發(fā)電廠增加系統(tǒng)的穩(wěn)定性
·如果與電網(wǎng)同步運行互聯(lián)系統(tǒng)的電壓條件有關(guān)總線是不差的
·本智能電網(wǎng)的藍(lán)本在這基本變化,需求變化及網(wǎng)絡(luò)故障方面有極大的容忍極限。
六、傳記
Istvan Vokony出生在Mosonmagyarovar匈牙利1983年10月19日。他畢業(yè)于在Gyor的Revai Miklos文法學(xué)校,并在布達(dá)佩斯理工大學(xué)經(jīng)濟學(xué)院電氣工程和信息部電力工程學(xué)習(xí)。
他是在布達(dá)佩斯大學(xué)技術(shù)和經(jīng)濟系的活力電工的PhD學(xué)生。他是匈牙利電工協(xié)會和BUTE能源學(xué)生協(xié)會的成員。
博士Andras Dan是布達(dá)佩斯大學(xué)技術(shù)和經(jīng)濟電力工程部教授。他在1966年獲得碩士布達(dá)佩斯技術(shù)大學(xué)學(xué)士學(xué)位,博士和D.Sc.在電氣工程學(xué)位從科學(xué)研究院分別于1983年和2005年獲得。他的專長是在電力電子,電能質(zhì)量和無功補償尤其是與電力系統(tǒng)諧波。
七、附錄
圖10.MO1 1Φ-G sc.發(fā)電機變化
圖11.MO1 3Φ sc.發(fā)電機變化
圖12.MO1 1Φ-G sc.的電網(wǎng)頻率
圖13. MO1 3Φ sc.的電網(wǎng)頻率
圖14. MO1 1Φ-G sc.的總線電壓水平
圖15. MO1 3Φ sc.的總線電壓水平
圖18. 傳輸功率0MW合閘時G1-K1上的功率流
圖19. 傳輸功率10MW合閘時G1-K1上的功率流
14
收藏
編號:3971940
類型:共享資源
大小:2.59MB
格式:ZIP
上傳時間:2019-12-27
30
積分
- 關(guān) 鍵 詞:
-
kv
地區(qū)
變電所
電氣
一次
系統(tǒng)
設(shè)計
03
- 資源描述:
-
220kV地區(qū)變電所電氣一次系統(tǒng)設(shè)計03,kv,地區(qū),變電所,電氣,一次,系統(tǒng),設(shè)計,03
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。