《高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 課時分層訓(xùn)練31 等差數(shù)列及其前n項和 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 課時分層訓(xùn)練31 等差數(shù)列及其前n項和 理 北師大版(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
課時分層訓(xùn)練(三十一) 等差數(shù)列及其前n項和
A組 基礎(chǔ)達(dá)標(biāo)
一、選擇題
1.已知數(shù)列{an}是等差數(shù)列,a1+a7=-8,a2=2,則數(shù)列{an}的公差d等于( )
A.-1 B.-2
C.-3 D.-4
C [法一:由題意可得
解得a1=5,d=-3.
法二:a1+a7=2a4=-8,∴a4=-4,
∴a4-a2=-4-2=2d,∴d=-3.]
2.(20xx全國卷Ⅰ)已知等差數(shù)列{an}前9項的和為27,a10=8,則a100=( )
A.10
2、0 B.99
C.98 D.97
C [法一:∵{an}是等差數(shù)列,設(shè)其公差為d,
∴S9=(a1+a9)=9a5=27,∴a5=3.
又∵a10=8,∴∴
∴a100=a1+99d=-1+991=98.故選C.
法二:∵{an}是等差數(shù)列,
∴S9=(a1+a9)=9a5=27,∴a5=3.
在等差數(shù)列{an}中,a5,a10,a15,…,a100成等差數(shù)列,且公差d′=a10-a5=8-3=5.
故a100=a5+(20-1)5=98.故選C.]
3.設(shè)Sn為等差數(shù)列{an}的前n項和,若a1=1,公差d=2,Sn+2-Sn=36,則n=( )
A.5 B.6
C
3、.7 D.8
D [由題意知Sn+2-Sn=an+1+an+2=2a1+(2n+1)d=2+2(2n+1)=36,解得n=8.]
4.(20xx全國卷Ⅲ)等差數(shù)列{an}的首項為1,公差不為0.若a2,a3,a6成等比數(shù)列,則{an}前6項的和為( )
A.-24 B.-3
C.3 D.8
A [由已知條件可得a1=1,d≠0,
由a=a2a6可得(1+2d)2=(1+d)(1+5d),
解得d=-2.
所以S6=61+=-24.
故選A.]
5.(20xx云南二檢)已知等差數(shù)列{an}中,a1=11,a5=-1,則{an}的前n項和Sn的最大值是( )
【導(dǎo)學(xué)號:7
4、9140173】
A.15 B.20
C.26 D.30
C [設(shè)數(shù)列{an}的公差為d,則d=(a5-a1)=-3,所以an=11-3(n-1)=14-3n,令an=14-3n≥0,解得n≤,所以Sn的最大值為S4=411+(-3)=26,故選C.]
二、填空題
6.在等差數(shù)列{an}中,公差d=,前100項的和S100=45,則a1+a3+a5+…+a99=________.
10 [S100=(a1+a100)=45,a1+a100=0.9
a1+a99=a1+a100-d=0.4,則a1+a3+a5+…+a99=(a1+a99)=0.4=10.]
7.《九章算術(shù)》是我國
5、第一部數(shù)學(xué)專著,下面有源自其中的一個問題:“今有金箠(chu),長五尺,斬本一尺,重四斤,斬末一尺,重二斤,問金箠重幾何?”意思是:“現(xiàn)有一根金箠,長5尺,一頭粗,一頭細(xì),在粗的一端截下1尺,重4斤;在細(xì)的一端截下1尺,重2斤;問金箠重多少斤?”根據(jù)上面的已知條件,若金箠由粗到細(xì)的重量是均勻變化的,則答案是________.
15斤 [由題意可知金箠由粗到細(xì)各尺的重量成等差數(shù)列,且a1=4,a5=2,則S5==15,故金箠重15斤.]
8.在等差數(shù)列{an}中,a1=7,公差為d,前n項和為Sn,當(dāng)且僅當(dāng)n=8時Sn取得最大值,則d的取值范圍為________.
【導(dǎo)學(xué)號:791401
6、74】
[由題意,當(dāng)且僅當(dāng)n=8時Sn有最大值,可得即解得-1<d<-.]
三、解答題
9.在等差數(shù)列{an}中,a1=1,a3=-3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=-35,求k的值.
[解] (1)設(shè)等差數(shù)列{an}的公差為d,
則an=a1+(n-1)d.
由a1=1,a3=-3,可得1+2d=-3,
解得d=-2.
從而an=1+(n-1)(-2)=3-2n.
(2)由(1)可知an=3-2n,
所以Sn==2n-n2.
由Sk=-35,可得2k-k2=-35,
即k2-2k-35=0,解得k=7或k=-5.
又k
7、∈N+,故k=7.
10.已知等差數(shù)列的前三項依次為a,4,3a,前n項和為Sn,且Sk=110.
(1)求a及k的值;
(2)設(shè)數(shù)列{bn}的通項公式bn=,證明:數(shù)列{bn}是等差數(shù)列,并求其前n項和Tn.
[解] (1)設(shè)該等差數(shù)列為{an},則a1=a,a2=4,a3=3a,
由已知有a+3a=8,得a1=a=2,公差d=4-2=2,
所以Sk=ka1+d=2k+2=k2+k.
由Sk=110,得k2+k-110=0,
解得k=10或k=-11(舍去),故a=2,k=10.
(2)證明:由(1)得Sn==n(n+1),
則bn==n+1,
故bn+1-bn=(n+
8、2)-(n+1)=1,
即數(shù)列{bn}是首項為2,公差為1的等差數(shù)列,
所以Tn==.
B組 能力提升
11.(20xx呼和浩特一調(diào))等差數(shù)列{an}中,a2=8,前6項的和S6=66,設(shè)bn=,Tn=b1+b2+…+bn,則Tn=( )
A.1- B.1-
C.- D.-
D [由題意得解得所以an=2n+4,因此bn===-,所以Tn=-+-+…+-=-,故選D.]
12.設(shè)數(shù)列{an}的前n項和為Sn,若為常數(shù),則稱數(shù)列{an}為“吉祥數(shù)列”.已知等差數(shù)列{bn}的首項為1,公差不為0,若數(shù)列{bn}為“吉祥數(shù)列”,則數(shù)列{bn}的通項公式為( )
A.bn=n-1
9、 B.bn=2n-1
C.bn=n+1 D.bn=2n+1
B [設(shè)等差數(shù)列{bn}的公差為d(d≠0),=k,因為b1=1,則n+n(n-1)d=k,
即2+(n-1)d=4k+2k(2n-1)d,
整理得(4k-1)dn+(2k-1)(2-d)=0.
因為對任意的正整數(shù)n上式均成立,
所以(4k-1)d=0,(2k-1)(2-d)=0,
解得d=2,k=,
所以數(shù)列{bn}的通項公式為bn=2n-1.]
13.設(shè)等差數(shù)列{an}的前n項和為Sn,Sm-1=-2,Sm=0,Sm+1=3,則正整數(shù)m的值為________.
5 [因為等差數(shù)列{an}的前n項和為Sn,Sm-
10、1=-2,Sm=0,Sm+1=3,
所以am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,數(shù)列的公差d=1,am+am+1=Sm+1-Sm-1=5,即2a1+2m-1=5,
所以a1=3-m.
由Sm=(3-m)m+1=0,
解得正整數(shù)m的值為5.]
14.已知數(shù)列{an}的前n項和為Sn,a1=1,an≠0,anan+1=λSn-1,其中λ為常數(shù).
【導(dǎo)學(xué)號:79140175】
(1)證明:an+2-an=λ;
(2)是否存在λ,使得{an}為等差數(shù)列?并說明理由.
[解] (1)證明:由題設(shè)知anan+1=λSn-1,an+1an+2=λSn+1-1,
兩式相減得an+1(an+2-an)=λan+1,
由于an+1≠0,所以an+2-an=λ.
(2)由題設(shè)知a1=1,a1a2=λS1-1,
可得a2=λ-1.
由(1)知,a3=λ+1.
令2a2=a1+a3,解得λ=4.
故an+2-an=4,由此可得{a2n-1}是首項為1,公差為4的等差數(shù)列,a2n-1=4n-3;
{a2n}是首項為3,公差為4的等差數(shù)列,a2n=4n-1.
所以an=2n-1,an+1-an=2,
因此存在λ=4,使得數(shù)列{an}為等差數(shù)列.