歡迎來到裝配圖網! | 幫助中心 裝配圖網zhuangpeitu.com!
裝配圖網
ImageVerifierCode 換一換
首頁 裝配圖網 > 資源分類 > DOC文檔下載  

2018-2019學年高中數學 課時分層作業(yè)12 圓錐曲線的統一定義 蘇教版必修4.doc

  • 資源ID:6254623       資源大?。?span id="kcaguio" class="font-tahoma">45.50KB        全文頁數:5頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

2018-2019學年高中數學 課時分層作業(yè)12 圓錐曲線的統一定義 蘇教版必修4.doc

課時分層作業(yè)(十二) 圓錐曲線的統一定義 (建議用時:40分鐘) [基礎達標練] 一、填空題 1.若直線ax-y+1=0經過拋物線y2=4x的焦點,則實數a=________. [解析] 拋物線y2=4x的焦點是(1,0),直線ax-y+1=0過焦點,∴a+1=0,∴a=-1. [答案]?。? 2.已知橢圓的準線方程為y=4,離心率為,則橢圓的標準方程為________. [解析] 由題意==4,∴a=4e=2. ∵e==, ∴c=1,b2=a2-c2=3. 由準線方程是y=4可知, 橢圓的焦點在y軸上,標準方程為+=1. [答案]?。? 3.已知拋物線y2=2px的準線與雙曲線x2-y2=2的左準線重合,則拋物線的焦點坐標為________. [解析] 雙曲線的左準線為x=-1, 拋物線的準線為x=-,所以=1,所以p=2. 故拋物線的焦點坐標為(1,0). [答案] (1,0) 4.已知橢圓E的中心在坐標原點,離心率為,E的右焦點與拋物線C:y2=8x的焦點重合,A,B是C的準線與E的兩個交點,則|AB|=________. 【導學號:71392114】 [解析] 拋物線y2=8x的焦點為(2,0),∴橢圓中c=2, 又=,∴a=4,b2=a2-c2=12, 從而橢圓方程為+=1. ∵拋物線y2=8x的準線為x=-2, ∴xA=xB=-2, 將xA=-2代入橢圓方程可得|yA|=3, 由圖象可知|AB|=2|yA|=6. [答案] 6 5.若橢圓+=1(a>b>0)的左焦點到右準線的距離等于3a,則橢圓的離心率為________. [解析] 由題意知,+c=3a,即a2+c2=3ac, ∴e2-3e+1=0,解得e=. [答案]  6.已知拋物線y2=16x的焦點恰好是雙曲線-=1的右焦點,則雙曲線的漸近線方程為________. [解析] 由拋物線方程y2=16x得焦點坐標為(4,0),從而知雙曲線-=1的右焦點為(4,0),∴c=4,∴12+b2=16,∴b=2.又a=2,∴雙曲線漸近線方程為y=x,即y=x. [答案] y=x 7.已知橢圓+=1上有一點P,它到左、右焦點距離之比為1∶3,則點P到兩準線的距離之和為________. 【導學號:71392115】 [解析] 設P(x,y),左、右焦點分別為F1,F2,由橢圓方程,可得a=10,b=6,c=8,e==,則PF1+PF2=2a=20. 又3PF1=PF2,∴PF1=5,PF2=15. 設點P到兩準線的距離分別為d1,d2,可得d1==,d2==.故點P到兩準線的距離分別為,,+=25. [答案] 25 8.已知點P在雙曲線-=1上,并且P到雙曲線的右準線的距離恰是P到雙曲線的兩個焦點的距離的等差中項,那么P的橫坐標是________. [解析] 記實半軸、虛半軸、半焦距的長分別為a,b,c,離心率為e,點P到右準線l的距離為d,則a=4,b=3,c=5,e==,右準線l的方程為x==.如果P在雙曲線右支上,則PF1=PF2+2a=ed+2a.從而,PF1+PF2=(ed+2a)+ed=2ed+2a>2d,這不可能;故P在雙曲線的左支上,則PF2-PF1=2a,PF1+PF2=2d.兩式相加得2PF2=2a+2d. 又PF2=ed,從而ed=a+d.故d===16.因此,P的橫坐標為-16=-. [答案]?。? 二、解答題 9.已知橢圓的一個焦點是F(3,1),相應于F的準線為y軸,l是過F且傾斜角為60的直線,l被橢圓截得的弦AB的長是,求橢圓的方程. [解] 設橢圓離心率為e,M(x,y)為橢圓上任一點, 由統一定義=e,得=e, 整理得(x-3)2+(y-1)2=e2x2. ① ∵直線l的傾斜角為60,∴直線l的方程為y-1=(x-3), ② ①②聯立得(4-e2)x2-24x+36=0. 設A(x1,y1),B(x2,y2),由韋達定理得x1+x2=, ∴AB=e(x1+x2)=e=,∴e=, ∴橢圓的方程為(x-3)2+(y-1)2=x2, 即+=1. 10.已知定點A(-2,),點F為橢圓+=1的右焦點,點M在橢圓上運動,求AM+2MF的最小值,并求此時點M的坐標. 【導學號:71392116】 [解] ∵a=4,b=2,∴c==2, ∴離心率e=. A點在橢圓內,設M到右準線的距離為d, 則=e,即MF=ed=d,右準線l:x=8, ∴AM+2MF=AM+d. ∵A點在橢圓內, ∴過A作AK⊥l(l為右準線)于K,交橢圓于點M0. 則A,M,K三點共線,即M與M0重合時,AM+d最小為AK,其值為8-(-2)=10. 故AM+2MF的最小值為10,此時M點坐標為(2,). [能力提升練] 1.已知點F1,F2分別是橢圓x2+2y2=2的左,右焦點,點P是該橢圓上的一個動點,那么|1+2|的最小值是________. [解析] 橢圓x2+2y2=2的標準方程是+y2=1, ∴a=,b=1. ∵1+2=2, ∴|+|=2||. ∵b≤||≤a, ∴1≤||≤, ∴|1+2|的最小值是2. [答案] 2 2.過圓錐曲線C的一個焦點F的直線l交曲線C于A,B兩點,且以AB為直徑的圓與F相應的準線相交,則曲線C為________. [解析] 設圓錐曲線的離心率為e,M為AB的中點,A,B和M到準線的距離分別為d1,d2和d,圓的半徑為R,d=,R===.由題意知R>d,則e>1,圓錐曲線為雙曲線. [答案] 雙曲線 3.設橢圓C:+=1(a>b>0)恒過定點A(1,2),則橢圓的中心到準線的距離的最小值為________. [解析] ∵A(1,2)在橢圓上,∴+=1, ∴b2=,則橢圓中心到準線距離的平方為====. 令a2-5=t>0, f(t)==t++9≥9+4. 當且僅當t=時取“=”, ∴≥ =+2, ∴min=+2. [答案]?。? 4.已知雙曲線-=1(a>0,b>0)的右準線l2與一條漸近線l交于點P,F是雙曲線的右焦點. (1)求證:PF⊥l; (2)若|PF|=3,且雙曲線的離心率e=,求該雙曲線的方程. 【導學號:71392117】 [解] (1)證明:右準線為l2:x=,由對稱性不妨設漸近線l為y=x,則P,又F(c,0), ∴kPF==-. 又∵kl=,∴kPFkl=-=-1. ∴PF⊥l. (2)∵|PF|的長即F(c,0)到l:bx-ay=0的距離, ∴=3,即b=3,又e==, ∴=,∴a=4.故雙曲線方程為-=1.

注意事項

本文(2018-2019學年高中數學 課時分層作業(yè)12 圓錐曲線的統一定義 蘇教版必修4.doc)為本站會員(tia****nde)主動上傳,裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲