2018年秋高中數(shù)學(xué) 第一章 解三角形 階段復(fù)習(xí)課 第1課 解三角形學(xué)案 新人教A版必修5.doc
-
資源ID:6275637
資源大?。?span id="miie62e" class="font-tahoma">137.50KB
全文頁數(shù):9頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2018年秋高中數(shù)學(xué) 第一章 解三角形 階段復(fù)習(xí)課 第1課 解三角形學(xué)案 新人教A版必修5.doc
第一課 解三角形
[核心速填]
1.正弦定理
(1)公式表達:===2R.
(2)公式變形:
①a=2Rsin A,b=2Rsin B,c=2Rsin C;
②sin A=,sin B=,sin C=;
③a∶b∶c=sin A∶sin B∶sin C;
④====2R.
2.余弦定理
(1)公式表達:
a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.
(2)推論:cos A=,cos B=,cos C=.
3.三角形中常用的面積公式
(1)S=ah(h表示邊a上的高);
(2)S=bcsin A=acsin B=absin C;
(3)S=r(a+b+c)(r為三角形的內(nèi)切圓半徑).
[體系構(gòu)建]
[題型探究]
利用正、余弦定理解三角形
在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知b+c=2acos B.
(1)證明:A=2B;
(2)若△ABC的面積S=,求角A的大小.
【導(dǎo)學(xué)號:91432090】
[解] (1)證明:由正弦定理得sin B+sin C=2sin Acos B,故2sin Acos B=sin B+sin(A+B)=sin B+sin Acos B+cos Asin B,于是sin B=sin(A-B).
又A,B∈(0,π),故0<A-B<π,所以,B=π-(A-B)或B=A-B,
因此A=π(舍去)或A=2B,所以A=2B.
(2)由S=,得absin C=,故有
sin Bsin C=sin 2B=sin Bcos B,
因為sin B≠0,所以sin C=cos B,
又B,C∈(0,π),所以C=B.
當(dāng)B+C=時,A=;
當(dāng)C-B=時,A=.
綜上,A=或A=.
[規(guī)律方法] 解三角形的一般方法:,(1)已知兩角和一邊,如已知A、B和c,由A+B+C=π求C,由正弦定理求a、b.
(2)已知兩邊和這兩邊的夾角,如已知a、b和C,應(yīng)先用余弦定理求c,再應(yīng)用正弦定理先求較短邊所對的角,然后利用A+B+C=π,求另一角.
(3)已知兩邊和其中一邊的對角,如已知a、b和A,應(yīng)先用正弦定理求B,由A+B+C=π求C,再由正弦定理或余弦定理求c,要注意解可能有多種情況.
(4)已知三邊a、b、c,可應(yīng)用余弦定理求A、B、C.
[跟蹤訓(xùn)練]
1.如圖11,在△ABC中,∠B=,AB=8,點D在BC邊上,CD=2,cos∠ADC=.
圖11
(1)求sin∠BAD;
(2)求BD,AC的長.
[解] (1)在△ADC中,
因為cos∠ADC=,
所以sin∠ADC=.
所以sin∠BAD=sin(∠ADC-∠B)
=sin∠ADC cos B-cos∠ADC sin B
=-=.
(2)在△ABD中,由正弦定理,得
BD===3.
在△ABC中,由余弦定理,得
AC2=AB2+BC2-2ABBCcos B
=82+52-285=49.
所以AC=7.
判斷三角形的形狀
在△ABC中,若B=60,2b=a+c,試判斷△ABC的形狀.
思路探究:利用正弦定理將已知條件中邊的關(guān)系,轉(zhuǎn)化為角的關(guān)系求角或利用余弦定理,由三邊之間的關(guān)系確定三角形的形狀.
[解] 法一:(正弦定理邊化角)由正弦定理,
得2sin B=sin A+sin C.
∵B=60,∴A+C=120.
∴2sin 60=sin(120-C)+sin C.
展開整理得sin C+cos C=1.
∴sin(C+30)=1.
∵0<C<120,
∴C+30=90.
∴C=60,則A=60.
∴△ABC為等邊三角形.
法二:(余弦定理法)由余弦定理,得b2=a2+c2-2accos B.
∵B=60,b=,
∴2=a2+c2-2accos 60,
化簡得(a-c)2=0.
∴a=c.
又B=60,
∴a=b=c.
∴△ABC為等邊三角形.
[規(guī)律方法] 根據(jù)已知條件(通常是含有三角形的邊和角的等式或不等式)判斷三角形的形狀時,需要靈活地應(yīng)用正弦定理和余弦定理轉(zhuǎn)化為邊的關(guān)系或角的關(guān)系.判斷三角形的形狀是高考中考查能力的常見題型,此類題目要求準(zhǔn)確地把握三角形的分類,三角形按邊的關(guān)系分為等腰三角形和不等邊三角形;三角形按角的關(guān)系分為銳角三角形、直角三角形和鈍角三角形.
判斷三角形的形狀,一般有以下兩種途徑:將已知條件統(tǒng)一化成邊的關(guān)系,用代數(shù)方法求解;將已知條件統(tǒng)一化成角的關(guān)系,用三角知識求解.
[跟蹤訓(xùn)練]
2.在△ABC中,若=,試判斷△ABC的形狀.
【導(dǎo)學(xué)號:91432091】
[解] 由已知===,
得=.
可有以下兩種解法.
法一:(利用正弦定理,將邊化角)
由正弦定理得=,∴=,
即sin Ccos C=sin Bcos B,
即sin 2C=sin 2B.
∵B,C均為△ABC的內(nèi)角,
∴2C=2B或2C+2B=180.
即B=C或B+C=90.
∴△ABC為等腰三角形或直角三角形.
法二:(利用余弦定理,將角化邊)
∵=,
∴由余弦定理得=,
即(a2+b2-c2)c2=b2(a2+c2-b2).
∴a2c2-c4=a2b2-b4,
即a2b2-a2c2+c4-b4=0.
∴a2(b2-c2)+(c2-b2)(c2+b2)=0,
即(b2-c2)(a2-b2-c2)=0.
∴b2=c2或a2-b2-c2=0,
即b=c或a2=b2+c2.
∴△ABC為等腰三角形或直角三角形.
正、余弦定理的實際應(yīng)用
如圖12所示,某市郊外景區(qū)內(nèi)有一條筆直的公路a經(jīng)過三個景點A、B、C.景區(qū)管委會開發(fā)了風(fēng)景優(yōu)美的景點D.經(jīng)測量景點D位于景點A的北偏東30方向上8 km處,位于景點B的正北方向,還位于景點C的北偏西75方向上.已知AB=5 km.
圖12
(1)景區(qū)管委會準(zhǔn)備由景點D向景點B修建一條筆直的公路,不考慮其他因素,求出這條公路的長;
(2)求景點C與景點D之間的距離.(結(jié)果精確到0.1 km)
(參考數(shù)據(jù):=1.73,sin 75=0.97,cos 75=0.26,tan 75=3.73,sin 53=0.80,cos 53=0.60,tan 53=1.33,sin 38=0.62,cos 38=0.79,tan 38=0.78)
思路探究:(1)以BD為邊的三角形為△ABD和△BCD,在△ABD中,一角和另外兩邊易得,所以可在△ABD中利用余弦定理求解DB.
(2)以CD為邊的兩個三角形中的其他邊不易全部求得,而角的關(guān)系易得,考慮應(yīng)用正弦定理求解.
[解] (1)設(shè)BD=x km,則在△ABD中,由余弦定理得52=82+x2-28xcos 30,即x2-8x+39=0,解得x=43.因為4+3>8,應(yīng)舍去,所以x=4-3≈3.9,即這條公路的長約為3.9 km.
(2)在△ABD中,由正弦定理得=,所以sin∠ABD=sin∠CBD=sin∠ADB==0.8,所以cos∠CBD=0.6.在△CBD中,sin∠DCB=sin(∠CBD+∠BDC)=sin(∠CBD+75)=0.80.26+0.60.97=0.79,由正弦定理得CD=sin∠DBC≈3.9.故景點C與景點D之間的距離約為3.9 km.
[規(guī)律方法] 正弦定理、余弦定理在實際生活中有著非常廣泛的應(yīng)用.常用的有測量距離問題,測量高度問題,測量角度問題等.解決的基本思路是畫出正確的示意圖,把已知量和未知量標(biāo)在示意圖中(目的是發(fā)現(xiàn)已知量與未知量之間的關(guān)系),最后確定用哪個定理轉(zhuǎn)化,用哪個定理求解,并進行作答,解題時還要注意近似計算的要求.
[跟蹤訓(xùn)練]
3.如圖13,a是海面上一條南北方向的海防警戒線,在a上點A處有一個水聲監(jiān)測點,另兩個監(jiān)測點B,C分別在A的正東方20 km和54 km處.某時刻,監(jiān)測點B收到發(fā)自靜止目標(biāo)P的一個聲波信號,8 s后監(jiān)測點A,20 s后監(jiān)測點C相繼收到這一信號,在當(dāng)時氣象條件下,聲波在水中的傳播速度是1.5 km/s.
圖13
(1)設(shè)A到P的距離為x km,用x表示B,C到P的距離,并求x的值;
(2)求靜止目標(biāo)P到海防警戒線a的距離(精確到0.01 km).
【導(dǎo)學(xué)號:91432092】
[解] (1)由題意得PA-PB=1.58=12(km),
PC-PB=1.520=30(km).
∴PB=x-12,PC=18+x.
在△PAB中,AB=20 km,
cos∠PAB===.
同理cos∠PAC=.
∵cos∠PAB=cos∠PAC,
∴=,解得x=.
(2)作PD⊥a于D,在Rt△PDA中,PD=PAcos∠APD=PAcos∠PAB=x=≈17.71(km).
所以靜止目標(biāo)P到海防警戒線a的距離為17.71 km.
與三角形有關(guān)的綜合問題
[探究問題]
1.如圖14所示,向量與的夾角是∠B嗎?在△ABC中,兩向量的數(shù)量積與余弦定理有怎樣的聯(lián)系?
圖14
提示:向量與的夾角是∠B的補角,大小為180-∠B,
由于=||||cos A=bccos A.
所以=bccos A=(b2+c2-a2),有時直接利用此結(jié)論解決與向量數(shù)量積有關(guān)的解三角形問題.
2.在解三角形的過程中,求某一個角有時既可以用余弦定理,也可以用正弦定理,兩種方法有什么利弊呢?
提示:用余弦定理可以根據(jù)角的余弦值的符號直接判斷是銳角還是鈍角,但計算比較復(fù)雜.用正弦定理計算相對比較簡單,但仍要結(jié)合已知條件中邊的大小來確定角的大小,所以一般選擇用正弦定理去計算比較小的邊所對的角,避免討論.
在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>c,已知=2,cos B=,b=3.求:
(1)a和c的值;
(2)cos(B-C)的值.
【導(dǎo)學(xué)號:91432093】
思路探究:(1)由平面向量的數(shù)量積定義及余弦定理,列出關(guān)于a,c的方程組即可求解.
(2)由(1)結(jié)合正弦定理分別求出B,C的正、余弦值,利用差角余弦公式求解.
[解] (1)由=2得cacos B=2.
又cos B=,所以ac=6.
由余弦定理,得a2+c2=b2+2accos B.
又b=3,所以a2+c2=9+26=13.
解得或
因為a>c,所以a=3,c=2.
(2)在△ABC中,
sin B===,
由正弦定理,得sin C=sin B==.
因為a=b>c,所以C為銳角,
因此cos C===.
于是cos(B-C)=cos Bcos C+sin Bsin C
=+=.
母題探究:1.(變條件,變結(jié)論)將本例中的條件“a>c,=2,cos B=,b=3”變?yōu)椤耙阎猄△ABC=30且cos A=”求的值.
[解] 在△ABC中,cos A=,
∴A為銳角且sin A=,
∴S△ABC=bcsin A=bc=30.
∴bc=156.
∴=||||cos A
=bccos A=156=144.
2.(變條件,變結(jié)論)在“母題探究1”中再加上條件“c-b=1”能否求a的值?
[解] 由余弦定理得a2=b2+c2-2bccos A=(b-c)2+2bc(1-cos A)=1+2156=25,∴a==5.
[規(guī)律方法] 正、余弦定理將三角形中的邊和角關(guān)系進行了量化,為我們解三角形或求三角形的面積提供了依據(jù),而三角形中的問題常與向量、函數(shù)、方程及平面幾何相結(jié)合,通??梢岳谜?、余弦定理完成證明、求值等問題.
(1)解三角形與向量的交匯問題,可以結(jié)合向量的平行、垂直、夾角、模等知識轉(zhuǎn)化求解.
(2)解三角形與其他知識的交匯問題,可以運用三角形的基礎(chǔ)知識、正余弦定理、三角形面積公式與三角恒等變換,通過等價轉(zhuǎn)化或構(gòu)造方程及函數(shù)求解.