歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)

空間中的垂直夾角及幾何體的體積

5 3 2空間中的垂直 夾角及幾何體的體積 垂直關(guān)系的證明例1 2018全國 文19 如圖 在三棱錐P ABC中 AB BC 2 PA PB PC AC 4 O為AC的中點 1 證明 PO 平面ABC 2 若點M在棱BC上 且MC 2MB 求點C到平面POM的距離 解題心得從解。

空間中的垂直夾角及幾何體的體積Tag內(nèi)容描述:

1、5 3 2空間中的垂直 夾角及幾何體的體積 垂直關(guān)系的證明例1 2018全國 文19 如圖 在三棱錐P ABC中 AB BC 2 PA PB PC AC 4 O為AC的中點 1 證明 PO 平面ABC 2 若點M在棱BC上 且MC 2MB 求點C到平面POM的距離 解題心得從解。

2、專題對點練17 空間中的垂直 夾角及幾何體的體積 1 2018江蘇 15 在平行六面體ABCD A1B1C1D1中 AA1 AB AB1 B1C1 求證 1 AB 平面A1B1C 2 平面ABB1A1 平面A1BC 2 如圖 在三棱臺ABC DEF中 平面BCFE 平面ABC ACB 90 BE EF 。

3、專題對點練17 空間中的垂直 夾角及幾何體的體積 1 2018江蘇 15 在平行六面體ABCD A1B1C1D1中 AA1 AB AB1 B1C1 求證 1 AB 平面A1B1C 2 平面ABB1A1 平面A1BC 2 如圖 在三棱臺ABC DEF中 平面BCFE 平面ABC ACB 90 BE EF 。

4、專題對點練17 空間中的垂直 夾角及幾何體的體積 1 2018江蘇 15 在平行六面體ABCD A1B1C1D1中 AA1 AB AB1 B1C1 求證 1 AB 平面A1B1C 2 平面ABB1A1 平面A1BC 2 如圖 在三棱臺ABC DEF中 平面BCFE 平面ABC ACB 90 BE EF 。

5、(2011廣東高考)正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點的連線稱為它的對角線,那么一個正五棱柱對角線的條數(shù)共有()A20B15C12D10,如圖,在正五棱柱ABCDEA1B1C1D1E1中,從頂點A出發(fā)的對角線有。

6、 h 正 棱 柱 的 側(cè) 面 展 開 圖 正 方 體 表 面 積 : 長 方 體 的 表 面 積 :a 26aS a bc 2 bcacabS 空 間 幾 何 體 的 表 面 積 和 體 積長 方 體 的 長 寬 高 分 別 為 a,b,c。

7、5 3 2空間中的垂直 夾角及幾何體的體積 垂直關(guān)系的證明例1 2018全國 文19 如圖 在三棱錐P ABC中 AB BC 2 PA PB PC AC 4 O為AC的中點 1 證明 PO 平面ABC 2 若點M在棱BC上 且MC 2MB 求點C到平面POM的距離 解題心得從解。

8、5 3 2空間中的垂直與幾何體的體積 2 考向一 考向二 考向三 考向四 垂直關(guān)系的證明例1 2018北京卷 文18 如圖 在四棱錐P ABCD中 底面ABCD為矩形 平面PAD 平面ABCD PA PD PA PD E F分別為AD PB的中點 1 求證 PE BC 2 求。

9、5.3.2空間中的垂直、夾角 及幾何體的體積,垂直關(guān)系的證明 例1 (2018全國,文19)如圖,在三棱錐P-ABC中,AB=BC=2 , PA=PB=PC=AC=4,O為AC的中點. (1)證明:PO平面ABC; (2)若點M在棱BC上,且MC=2MB,求點C到平面POM的距離.,解題心得從解題方法上講,由于線線垂直、線面垂直、面面垂直之間可以相互轉(zhuǎn)化,因此整個解題過程始終沿著線線垂直、線面垂直。

10、5.3.2空間中的垂直、夾角 及幾何體的體積,垂直關(guān)系的證明 例1 (2018全國,文19)如圖,在三棱錐P-ABC中,AB=BC=2 , PA=PB=PC=AC=4,O為AC的中點. (1)證明:PO平面ABC; (2)若點M在棱BC上,且MC=2MB,求點C到平面POM的距離.,解題心得從解題方法上講,由于線線垂直、線面垂直、面面垂直之間可以相互轉(zhuǎn)化,因此整個解題過程始終沿著線線垂直、線面垂直。

11、專題突破練16 空間中的垂直與幾何體的體積 1 2018江蘇卷 15 在平行六面體ABCD A1B1C1D1中 AA1 AB AB1 B1C1 求證 1 AB 平面A1B1C 2 平面ABB1A1 平面A1BC 2 如圖 四面體ABCD中 ABC是正三角形 AD CD 1 證明 AC BD 2 已。

12、空間幾何體的表面積與體積專題一、選擇題1棱長為2的正四面體的表面積是(C)A. B4 C4 D16解析每個面的面積為:22.正四面體的表面積為:4.2把球的表面積擴大到原來的2倍,那么體積擴大到原來的 (B)A2倍 B2倍 C.倍 。

13、空間幾何體的表面積和體積一課標(biāo)要求:了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。二命題走向近些年來在高考中不僅有直接求多面體、旋轉(zhuǎn)體的面積和體積問題,也有已知面積或體積求某些元素的量或元素間的位置關(guān)系問題。即使考查空間線面的位置關(guān)系問題,也常以幾何體為依托.因而要熟練掌握多面體與旋轉(zhuǎn)體的概念、性質(zhì)以及它們的求積公式.同時也要學(xué)會運用等價轉(zhuǎn)化思想,會把組合體。

14、5 3立體幾何大題 2 3 4 5 6 7 1 證明線線平行和線線垂直的常用方法 1 證明線線平行常用的方法 利用平行公理 即證兩直線同時和第三條直線平行 利用平行四邊形進(jìn)行平行轉(zhuǎn)換 利用三角形的中位線定理證線線平行 利用線面。

15、專題對點練16 空間中的平行與幾何體的體積 1 如圖 已知斜三棱柱ABC A1B1C1的所有棱長均為2 B1BA 3 M N分別為A1C1與B1C的中點 且側(cè)面ABB1A1 底面ABC 1 證明 MN 平面ABB1A1 2 求三棱柱B1 ABC的高及體積 2 2018全國 文1。

16、空間幾何體的表面積和體積習(xí)題講解一課標(biāo)要求:了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。二命題走向近些年來在高考中不僅有直接求多面體、旋轉(zhuǎn)體的面積和體積問題,也有已知面積或體積求某些元素的量或元素間的位置關(guān)系問題。即使考查空間線面的位置關(guān)系問題,也常以幾何體為依托.因而要熟練掌握多面體與旋轉(zhuǎn)體的概念、性質(zhì)以及它們的求積公式.同時也要學(xué)會運用等價轉(zhuǎn)化思想,會。

【空間中的垂直夾角及幾何體的體積】相關(guān)PPT文檔
空間幾何體的表面積及體積.pptx
空間幾何體的三視圖表面積及體積
空間幾何體的表面積及體積公式 2
【空間中的垂直夾角及幾何體的體積】相關(guān)DOC文檔
空間幾何體的表面積與體積練習(xí)題.及答案
空間幾何體的表面積和體積講解及經(jīng)典例題.doc
空間幾何體的表面積和體積考點講解及經(jīng)典例題解析.docx
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲