2018版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用章末復(fù)習(xí)課學(xué)案 蘇教版選修1-1
《2018版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用章末復(fù)習(xí)課學(xué)案 蘇教版選修1-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用章末復(fù)習(xí)課學(xué)案 蘇教版選修1-1(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第三章 導(dǎo)數(shù)及其應(yīng)用 學(xué)習(xí)目標(biāo) 1.理解導(dǎo)數(shù)的幾何意義并能解決有關(guān)斜率、切線方程等的問(wèn)題.2.掌握初等函數(shù)的求導(dǎo)公式,并能夠綜合運(yùn)用求導(dǎo)法則求函數(shù)的導(dǎo)數(shù).3.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法,會(huì)用導(dǎo)數(shù)求函數(shù)的極值和最值.4.會(huì)用導(dǎo)數(shù)解決一些簡(jiǎn)單的實(shí)際應(yīng)用問(wèn)題. 知識(shí)點(diǎn)一 在x=x0處的導(dǎo)數(shù) 1.定義:函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率,若Δx無(wú)限趨于0時(shí),比值=_______________無(wú)限趨近于一個(gè)常數(shù)A,稱函數(shù)y=f(x)在x=x0處可導(dǎo).________為f(x)在x=x0處的導(dǎo)數(shù). 2.幾何意義:函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)是函數(shù)圖象在點(diǎn)(x0,f(x0
2、))處的切線________. 3.物理意義:瞬時(shí)速度、瞬時(shí)加速度. 知識(shí)點(diǎn)二 基本初等函數(shù)的求導(dǎo)公式 函數(shù) 導(dǎo)數(shù) y=C y′=________ y=xα(α為常數(shù)) y′=________ y=sin x y′=________ y=cos x y′=________ y=ax(a>0且a≠1) y′=________ y=ex y′=________ y=logax(a>0且a≠1) y′=________ y=ln x y′=________ 知識(shí)點(diǎn)三 導(dǎo)數(shù)的運(yùn)算法則 和差的導(dǎo)數(shù) [f(x)±g(x)]′=_________
3、___ 積的導(dǎo)數(shù) [f(x)·g(x)]′=____________ 商的導(dǎo)數(shù) ′=________________(g(x)≠0) 知識(shí)點(diǎn)四 函數(shù)的單調(diào)性、極值與導(dǎo)數(shù) 1.函數(shù)的單調(diào)性與導(dǎo)數(shù) 在某個(gè)區(qū)間(a,b)內(nèi),如果________,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果________,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞減. 2.函數(shù)的極值與導(dǎo)數(shù) (1)極大值:在x=a附近,滿足f(a)≥f(x),當(dāng)xa時(shí),________,則點(diǎn)a叫做函數(shù)的極大值點(diǎn),f(a)叫做函數(shù)的極大值; (2)極小值:在x=a附近,滿足f(a)
5、間(a,b)上為增函數(shù)時(shí),f(x)≥0; ②f′(x0)=0是函數(shù)y=f(x)在x0處取極值的必要條件. 類型一 導(dǎo)數(shù)幾何意義的應(yīng)用 例1 設(shè)函數(shù)f(x)=x3+ax2-9x-1(a>0),直線l是曲線y=f(x)的一條切線,當(dāng)l的斜率最小時(shí),直線l與直線10x+y=6平行. (1)求a的值; (2)求f(x)在x=3處的切線方程. 反思與感悟 利用導(dǎo)數(shù)求切線方程時(shí)關(guān)鍵是找到切點(diǎn),若切點(diǎn)未知需設(shè)出.常見的類型有兩種,一類是求“在某點(diǎn)處的切線方程”,則此點(diǎn)一定為切點(diǎn),易求斜率進(jìn)而寫出直線方程即可得;另一類是求“過(guò)某點(diǎn)的切線方程”,這種類型中的點(diǎn)不一定
6、是切點(diǎn),可先設(shè)切點(diǎn)為Q(x1,y1),由=f′(x1)和y1=f(x1)求出x1,y1的值,轉(zhuǎn)化為第一種類型. 跟蹤訓(xùn)練1 求垂直于直線2x-6y+1=0并且與曲線y=x3+3x2-5相切的直線方程. 類型二 函數(shù)的單調(diào)性與導(dǎo)數(shù) 例2 已知函數(shù)f(x)=x3+ax2+x+1,x∈R. (1)討論函數(shù)f(x)的單調(diào)性; (2)設(shè)函數(shù)f(x)在區(qū)間(-,-)內(nèi)是減函數(shù),求a的取值范圍. 反思與感悟 (1)關(guān)注函數(shù)的定義域,單調(diào)區(qū)間應(yīng)為定義域的子區(qū)間. (2)已知函數(shù)在某個(gè)區(qū)間上的單調(diào)性時(shí)轉(zhuǎn)化要等價(jià). (3)分
7、類討論求函數(shù)的單調(diào)區(qū)間實(shí)質(zhì)是討論不等式的解集. (4)求參數(shù)的范圍時(shí)常用到分離參數(shù)法. 跟蹤訓(xùn)練2 設(shè)函數(shù)f(x)=x3-x2+bx+c,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1. (1)求b,c的值; (2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間; (3)設(shè)函數(shù)g(x)=f(x)+2x,且g(x)在區(qū)間(-2,-1)內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍. 類型三 函數(shù)的極值、最值與導(dǎo)數(shù) 例3 已知f(x)=x-1+, (1)若f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值; (2)求f(x)的極值; (3)當(dāng)a=1時(shí),直線l:y
8、=kx-1與曲線y=f(x)沒(méi)有公共點(diǎn),求實(shí)數(shù)k的取值范圍. 反思與感悟 (1)已知極值點(diǎn)求參數(shù)的值后,要代回驗(yàn)證參數(shù)值是否滿足極值的定義. (2)討論極值點(diǎn)的實(shí)質(zhì)是討論函數(shù)的單調(diào)性,即f′(x)的正負(fù). (3)求最大值要在極大值與端點(diǎn)值中取最大者,求最小值要在極小值與端點(diǎn)值中取最小者. 跟蹤訓(xùn)練3 已知a,b為常數(shù)且a>0,f(x)=x3+(1-a)x2-3ax+b. (1)函數(shù)f(x)的極大值為2,求a、b間的關(guān)系式; (2)函數(shù)f(x)的極大值為2,且在區(qū)間[0,3]上的最小值為-,求a、b的值. 類型四 導(dǎo)數(shù)與函數(shù)、不等式
9、的綜合應(yīng)用 例4 設(shè)函數(shù)f(x)=-x3+2ax2-3a2x+b(01時(shí),x2+
10、ln x 11、n x,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
1.利用導(dǎo)數(shù)的幾何意義可以求出曲線上任意一點(diǎn)處的切線方程y-y0=f′(x0)(x-x0).明確“過(guò)點(diǎn)P(x0,y0)的曲線y=f(x)的切線方程”與“在點(diǎn)P(x0,y0)處的曲線y=f(x)的切線方程”的異同點(diǎn).
2.借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性,經(jīng)常同三次函數(shù),一元二次不等式結(jié)合,融分類討論、數(shù)形結(jié)合于一體.
3.利用導(dǎo)數(shù)求解優(yōu)化問(wèn)題,注意自變量中的定義域,找出函數(shù)關(guān)系式,轉(zhuǎn)化為求最值問(wèn)題.
提 12、醒:完成作業(yè) 第3章 章末復(fù)習(xí)課
答案精析
知識(shí)梳理
知識(shí)點(diǎn)一
1. 常數(shù)A
2.斜率
知識(shí)點(diǎn)二
0 αxα-1 cos x?。璼in x axln a
ex
知識(shí)點(diǎn)三
f′(x)±g′(x) f′(x)g(x)+f(x)g′(x)
知識(shí)點(diǎn)四
1.f′(x)>0 f′(x)<0
2.(1)f′(x)>0 f′(x)<0
(2)f′(x)<0 f′(x)>0
知識(shí)點(diǎn)五
1.極值
2.端點(diǎn)處函數(shù)值f(a),f(b)
題型探究
例1 解 (1)∵f′(x)=x2+2ax-9
=(x+a)2-a2-9,
∴f′(x)min=-a2-9,
由題意知,- 13、a2-9=-10,
∴a=1或-1(舍去).
故a=1.
(2)由(1)得a=1.
∴f′(x)=x2+2x-9,
則k=f′(3)=6,f(3)=-10.
∴f(x)在x=3處的切線方程為y+10=6(x-3),
即6x-y-28=0.
跟蹤訓(xùn)練1 解 設(shè)切點(diǎn)坐標(biāo)為P(x0,y0),函數(shù)y=x3+3x2-5的導(dǎo)數(shù)為y′=3x2+6x,則切線的斜率為k=y(tǒng)′|=3x2+6x|=3x+6x0.
又∵直線2x-6y+1=0的斜率為k′=,
∴k·k′=(3x+6x0)×=-1,
解得x0=-1,
∴y0=-3,即P(-1,-3).
又k=-3,
∴切線方程為y+3=-3 14、(x+1),
即3x+y+6=0.
例2 解 (1)因?yàn)閒(x)=x3+ax2+x+1,
所以f′(x)=3x2+2ax+1.
當(dāng)Δ≤0,即a2≤3時(shí),f′(x)≥0,f(x)在R上單調(diào)遞增.
當(dāng)a2>3時(shí),令f′(x)=0,求得兩根為x=.
即f(x)在(-∞,)內(nèi)是增函數(shù),
在(,)內(nèi)是減函數(shù),
在(,+∞)內(nèi)是增函數(shù).
所以函數(shù)f(x)在(-∞,)和(,+∞)內(nèi)是增函數(shù);
在(,)內(nèi)是減函數(shù).
(2)若函數(shù)在區(qū)間(-,-)內(nèi)是減函數(shù),
則f′(x)=3x2+2ax+1的兩根在區(qū)間(-,-)外,
即解得a≥2,
故a的取值范圍是[2,+∞).
跟蹤訓(xùn)練2 解 15、(1)f′(x)=x2-ax+b,
由題意得即
(2)由(1)得f′(x)=x2-ax=x(x-a)(a>0),
當(dāng)x∈(-∞,0)時(shí),f′(x)>0;
當(dāng)x∈(0,a)時(shí),f′(x)<0;
當(dāng)x∈(a,+∞)時(shí),f′(x)>0.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0),(a,+∞),
單調(diào)遞減區(qū)間為(0,a).
(3)g′(x)=x2-ax+2,依題意,存在x∈(-2,-1),
使不等式g′(x)=x2-ax+2<0成立,
即當(dāng)x∈(-2,-1)時(shí),a<(x+)max=-2,
當(dāng)且僅當(dāng)x=即x=-時(shí)等號(hào)成立.
所以滿足要求的a的取值范圍是(-∞,-2).
例3 16、 解 f′(x)=1-.
(1)∵f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,
∴由f′(1)=0,得a=e.
(2)①當(dāng)a≤0時(shí),f′(x)>0,y=f(x)為(-∞,+∞)上的增函數(shù),
所以y=f(x)無(wú)極值;
②當(dāng)a>0時(shí),令f′(x)=0,得x=ln a.
當(dāng)x∈(-∞,ln a)時(shí),f′(x)<0,y=f(x)在(-∞,ln a)上遞減;
當(dāng)x∈(ln a,+∞)時(shí),f′(x)>0,y=f(x)在(ln a,+∞)上遞增,
故f(x)在x=ln a處取得極小值f(ln a)=ln a,無(wú)極大值.
綜上,當(dāng)a≤0時(shí),y=f(x)無(wú)極值;
當(dāng)a>0時(shí),y=f(x) 17、在x=ln a處取得極小值ln a,無(wú)極大值.
(3)當(dāng)a=1時(shí),f(x)=x-1+.
直線l:y=kx-1與曲線y=f(x)沒(méi)有公共點(diǎn)等價(jià)于關(guān)于x的方程kx-1=x-1+在R上沒(méi)有實(shí)數(shù)解,
即關(guān)于x的方程(k-1)x=(*)在R上沒(méi)有實(shí)數(shù)解.
①當(dāng)k=1時(shí),方程(*)為=0,在R上沒(méi)有實(shí)數(shù)解;
②當(dāng)k≠1時(shí),方程(*)為=xex.
令g(x)=xex,則有g(shù)′(x)=(1+x)ex,
令g′(x)=0,得x=-1.
當(dāng)x變化時(shí),g′(x),g(x)的變化情況如下表:
x
(-∞,-1)
-1
(-1,+∞)
g′(x)
-
0
+
g(x)
減↘
-
18、增↗
當(dāng)x=-1時(shí),g(x)min=-,
從而g(x)∈[-,+∞).
所以當(dāng)∈(-∞,-)時(shí),方程(*)沒(méi)有實(shí)數(shù)解,
解得k∈(1-e,1).
綜上,k的取值范圍為(1-e,1].
跟蹤訓(xùn)練3 解 (1)f′(x)=3x2+3(1-a)x-3a=3(x-a)(x+1),
令f′(x)=0,解得x1=-1,x2=a,
因?yàn)閍>0,所以x1 19、所以當(dāng)x=-1時(shí),f(x)有極大值2,
即3a+2b=3.
(2)當(dāng)03時(shí),由(1)知,f(x)在[0,3]上為減函數(shù),即f(3)為最小值,f(3)=-,從而求得a=,不合題意,舍去.
綜上a=2,b=-.
例4 解 (1)f′(x)=-x2+4ax-3a2
=-(x-a)(x-3a).
令f′(x)=0,得x=a或 20、x=3a.
當(dāng)x變化時(shí),f′(x)、f(x)的變化情況如下表:
x
(-∞,a)
a
(a,3a)
3a
(3a,+∞)
f′(x)
-
0
+
0
-
f(x)
↘
極小值
↗
極大值
↘
所以f(x)在(-∞,a)和(3a,+∞)上是減函數(shù);在(a,3a)上是增函數(shù).
當(dāng)x=a時(shí),f(x)取得極小值,
f(x)極小值=f(a)=b-a3;
當(dāng)x=3a時(shí),f(x)取得極大值,f(x)極大值=f(3a)=b.
(2)f′(x)=-x2+4ax-3a2,其對(duì)稱軸為x=2a.
因?yàn)?
21、a+2]上是減函數(shù).
當(dāng)x=a+1時(shí),f′(x)取得最大值,
f′(a+1)=2a-1;
當(dāng)x=a+2時(shí),f′(x)取得最小值,
f′(a+2)=4a-4.
于是有即≤a≤1.
又因?yàn)?
22、
跟蹤訓(xùn)練4 解 (1)當(dāng)a≤0時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞).
當(dāng)a>0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(,+∞),單調(diào)遞減區(qū)間為(0,).
(2)設(shè)g(x)=x3-x2-ln x(x>1),
則g′(x)=2x2-x-.
因?yàn)楫?dāng)x>1時(shí),
g′(x)=>0,
所以g(x)在(1,+∞)上是增函數(shù).
所以g(x)>g(1)=>0,
即x3-x2-ln x>0,
所以x2+ln x 23、
所以f′(x)=2a(x-5)+.
令x=1,得f(1)=16a,f′(1)=6-8a,
所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為
y-16a=(6-8a)(x-1),
由點(diǎn)(0,6)在切線上,
可得6-16a=8a-6,故a=.
(2)由(1)知,f(x)=(x-5)2+6ln x(x>0),
f′(x)=x-5+=.
令f′(x)=0,解得x=2或3.
當(dāng)0
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 運(yùn)煤設(shè)備的運(yùn)行和檢修
- 各種煤礦安全考試試題-8
- 窯主、副操作員考試試題(附答案)
- 煤礦安全基礎(chǔ)知識(shí)問(wèn)答題含解析-3
- 井巷掘進(jìn)常見事故及預(yù)防措施總結(jié)
- 某礦業(yè)公司高處作業(yè)安全管理制度
- 非煤礦山現(xiàn)場(chǎng)安全管理
- 常見礦物的簡(jiǎn)易鑒定特征表
- 井下作業(yè)英語(yǔ)100句含中文翻譯
- 瓦斯安全治理理念二十條
- 煤礦電氣設(shè)備失爆原因與預(yù)防措施分析
- 煤礦煤礦運(yùn)料工安全操作規(guī)程
- 煤礦安全培訓(xùn)考試試題之簡(jiǎn)答題含答案
- 煤礦常見疾病預(yù)防與救治
- 煤礦綜采維修電工操作規(guī)程