《高中數(shù)學(xué) 第三章 統(tǒng)計(jì)概率綜合檢測(cè) 新人教B版選修2-3》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 統(tǒng)計(jì)概率綜合檢測(cè) 新人教B版選修2-3(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高中數(shù)學(xué) 第三章 統(tǒng)計(jì)概率綜合檢測(cè) 新人教B版選修2-3
一、選擇題(本大題共10小題,每小題5分,共50分.在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1.若有回歸方程=1.5x-15,則( )
A.=1.5-15 B.15是回歸系數(shù)
C.1.5是回歸系數(shù) D.x=10時(shí),=0
【解析】?。?5是回歸系數(shù)a,1.5是回歸系數(shù)b,當(dāng)x=10時(shí),y的估計(jì)值為0.
【答案】 D
2.在下列各量與量之間的關(guān)系中是相關(guān)關(guān)系的是( )
①正方體的表面積與棱長(zhǎng)之間的關(guān)系;②一塊農(nóng)田的小麥的產(chǎn)量與施肥量之間的關(guān)系;③人的身高與年齡之間的關(guān)系;④家庭的收入與支出之間
2、的關(guān)系;⑤某家庭用水量與水費(fèi)之間的關(guān)系.
A.②③ B.③④
C.④⑤ D.②③④
【解析】 ①⑤屬于函數(shù)關(guān)系.
【答案】 D
3.設(shè)有一個(gè)線性回歸方程為=-2+10x,則變量x增加一個(gè)單位時(shí)( )
A.y平均減少2個(gè)單位 B.y平均增加10個(gè)單位
C.y平均增加8個(gè)單位 D.y平均減少10個(gè)單位
【解析】 10是斜率的估計(jì)值,說(shuō)明x每增加一個(gè)單位時(shí),y平均增加10個(gè)單位.
【答案】 B
4.(xx·福州高二檢測(cè))在一次試驗(yàn)中,當(dāng)變量x取值分別是1,,,時(shí),變量Y的值依次是2,3,4,5,則Y與之間的回歸曲線方程是( )
A.=+1 B.=+3
C.=2x
3、+1 D.=x-1
【解析】 把x=1,,,代入四個(gè)選項(xiàng),逐一驗(yàn)證可得=+1.
【答案】 A
5.下表給出5組數(shù)據(jù)(x,y),為了選出4組數(shù)據(jù)使線性相關(guān)程度最大,且保留第1組數(shù)據(jù)(-5,-3),則應(yīng)去掉( )
i
1
2
3
4
5
xi
-5
-4
-3
-2
4
yi
-3
-2
4
-1
6
A.第2組 B.第3組
C.第4組 D.第5組
【解析】 畫出散點(diǎn)圖可知,應(yīng)去掉第3組.
【答案】 B
6.經(jīng)過(guò)對(duì)χ2的統(tǒng)計(jì)量的研究,得到了若干個(gè)臨界值,當(dāng)χ2≤2.706時(shí),我們認(rèn)為事件A與B( )
A.有95%的把握認(rèn)為A與B有關(guān)系
4、
B.有99%的把握認(rèn)為A與B有關(guān)系
C.沒(méi)有充分理由認(rèn)為A與B有關(guān)系
D.不能確定
【解析】 由于χ2的觀測(cè)值太小,沒(méi)有充分理由認(rèn)為A與B有關(guān)系.
【答案】 C
7.某人對(duì)一地區(qū)人均工資x(千元)與該地區(qū)人均消費(fèi)Y(千元)進(jìn)行統(tǒng)計(jì)調(diào)查,Y與x有相關(guān)關(guān)系,得到回歸直線方程=0.66x+1.562.若該地區(qū)的人均消費(fèi)水平為7.675千元,估計(jì)該地區(qū)的人均消費(fèi)額占人均工資收入的百分比約為( )
A.66% B.72%
C.67% D.83%
【解析】 該題考查線性回歸的實(shí)際應(yīng)用,由條件知,消費(fèi)水平為7.675千元時(shí),人均工資為≈9.262(千元).故≈83%.
【答案】
5、D
8.為考察數(shù)學(xué)成績(jī)與物理成績(jī)的關(guān)系,在高二隨機(jī)抽取了300名學(xué)生,得到下面列聯(lián)表:
數(shù)學(xué)
物理
85~100分
85分以下
合計(jì)
85~100分
37
85
122
85分以下
35
143
178
合計(jì)
72
228
300
現(xiàn)判斷數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)系,則判斷的出錯(cuò)率為( )
A.0.5% B.1%
C.2% D.5%
【解析】 代入公式得
χ2=
≈4.514>3.841
查表可得判斷出錯(cuò)率為5%.
【答案】 D
9.某化工廠為了預(yù)測(cè)某產(chǎn)品的回收率Y,需要研究它和原料有效成分含量x之間的相關(guān)關(guān)系,現(xiàn)取
6、了8對(duì)觀測(cè)數(shù)據(jù),計(jì)算得i=52,i=228,=478,iyi=1 849,則Y對(duì)x的回歸方程為( )
A.=11.47+2.62x B.=-11.47+2.62x
C.=2.62+11.47x D.=11.47-2.62x
【解析】 據(jù)已知==≈2.62.
=y(tǒng)- =11.47.故選A.
【答案】 A
10.(xx·東營(yíng)高二檢測(cè))
圖1
以下關(guān)于線性回歸的判斷,正確的個(gè)數(shù)是( )
①若散點(diǎn)圖中所有點(diǎn)都在一條直線附近,則這條直線為回歸直線;
②散點(diǎn)圖中的絕大多數(shù)點(diǎn)都線性相關(guān),個(gè)別特殊點(diǎn)不影響線性回歸,如圖中的A,B,C點(diǎn);
③已知回歸直線方程為=0.50x-0.
7、81,則x=25時(shí),y的估計(jì)值為11.69;
④回歸直線方程的意義是它反映了樣本整體的變化趨勢(shì).
A.0 B.1 C.2 D.3
【解析】 能使所有數(shù)據(jù)點(diǎn)都在它附近的直線不止一條,而據(jù)回歸直線的定義知,只有按最小二乘法求得回歸系數(shù),得到的直線=x+才是回歸直線,
∴①不對(duì);②正確;將x=25代入=0.50x-0.81,解得=11.69,∴③正確;④正確.
【答案】 D
二、填空題(本大題共4小題,每小題5分,共20分.把答案填在題中橫線上)
11.對(duì)于回歸直線方程=4.75x+257,當(dāng)x=28時(shí),y的估計(jì)值是________.
【解析】 當(dāng)x=28時(shí),y=4.75
8、×28+257=390.
【答案】 390
12.在一次獨(dú)立性檢驗(yàn)中,有315人按性別和是否色弱分類如下表(單位:人):
男
女
正常
142
155
色弱
13
5
由上表可得χ2=________.
【解析】 n1+=297,n2+=18,n+1=155,n+2=160代入公式得
∴χ2=4.063.
【答案】 4.063
13.某市居民xx~xx年家庭年平均收入x(單位:萬(wàn)元)與年平均支出Y(單位:萬(wàn)元)的統(tǒng)計(jì)資料如下表所示:
年份
xx
xx
xx
xx
xx
收入x
11.5
12.1
13
13.3
15
支出Y
6.8
9、
8.8
9.8
10
12
根據(jù)統(tǒng)計(jì)資料,居民家庭年平均收入的中位數(shù)是________,家庭年平均收入與年平均支出有________線性相關(guān)關(guān)系.
【解析】 居民家庭的年平均收入按從小到大排依次為:11.5、12.1、13、13.3、15,由中位數(shù)定義知年平均收入的中位數(shù)是13.畫出散點(diǎn)圖,由圖可知家庭年平均收入與年平均支出有正的線性相關(guān)關(guān)系.
【答案】 13 正
14.為了判斷高中三年級(jí)學(xué)生是否選修文科與性別的關(guān)系,現(xiàn)隨機(jī)抽取50名學(xué)生,得到如下2×2列聯(lián)表:
理科
文科
男
13
10
女
7
20
已知P(χ2≥3.841)≈0.05,P(χ2≥5
10、.024)≈0.025.
根據(jù)表中數(shù)據(jù),得到χ2=≈4.844.則認(rèn)為選修文科與性別有關(guān)系出錯(cuò)的可能性為________.
【解析】 χ2≈4.844,這表明小概率事件發(fā)生,根據(jù)假設(shè)檢驗(yàn)的基本原理,應(yīng)該斷定“是否選修文科與性別之間有關(guān)系”成立,并且這種判斷出錯(cuò)的可能性約為5%.
【答案】 5%
三、解答題(本大題共4小題,共50分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)
15.(本小題滿分12分)某小賣部為了了解熱茶銷售量與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)并制作了某6天賣出熱茶的杯數(shù)與當(dāng)天氣溫的對(duì)比表如下表:
氣溫x(℃)
26
18
13
10
4
-1
杯數(shù)Y
20
11、
24
34
38
50
64
畫出散點(diǎn)圖并計(jì)算相關(guān)系數(shù)r,判斷熱茶銷售量與氣溫之間是否具有線性相關(guān)關(guān)系.
【解】 由表中數(shù)據(jù)畫出散點(diǎn)圖,如圖所示.
由表中數(shù)據(jù)得=(26+18+13+10+4-1)≈11.67,=(20+24+34+38+50+64)≈38.33,
iyi=26×20+18×24+13×34+10×38+4×50-1×64=1910,=262+182+132+102+42+(-1)2=1286,=202+242+342+382+502+642=10 172,所以r≈-0.97,
所以熱茶銷售量與氣溫之間具有較強(qiáng)的線性相關(guān)關(guān)系.
16.(本小題滿分12分
12、)為研究學(xué)生的數(shù)學(xué)成績(jī)與對(duì)學(xué)習(xí)數(shù)學(xué)的興趣是否有關(guān),對(duì)某年級(jí)學(xué)生作調(diào)查,得到如下數(shù)據(jù):
成績(jī)優(yōu)秀
成績(jī)較差
合計(jì)
興趣濃厚的
64
30
94
興趣不濃厚的
22
73
95
合計(jì)
86
103
189
學(xué)生的數(shù)學(xué)成績(jī)好壞與對(duì)學(xué)習(xí)數(shù)學(xué)的興趣是否有關(guān)?
【解】 由公式得:χ2=≈38.459.
∵38.459>6.635,∴有99%的把握說(shuō),學(xué)生的學(xué)習(xí)數(shù)學(xué)興趣與數(shù)學(xué)成績(jī)是有關(guān)的.
17.(本小題滿分12分)某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份
xx
xx
xx
xx
xx
需求量(萬(wàn)噸)
236
246
257
13、276
286
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方程=bx+a;
(2)利用(1)中所求出的直線方程預(yù)測(cè)該地xx年的糧食需求量.
【解】 (1)由所給數(shù)據(jù)看出,年需求量與年份之間是近似直線上升的,下面求回歸直線方程.為此對(duì)數(shù)據(jù)預(yù)處理如下:
年份-xx
-4
-2
0
2
4
需求量-257
-21
-11
0
19
29
對(duì)預(yù)處理后的數(shù)據(jù),容易算得
=0,=3.2.
b=
==6.5,
a=-b=3.2.
由上述計(jì)算結(jié)果,知所求回歸直線方程為
-257=b(x-2 006)+a=6.5(x-2 006)+3.2,
即=6.5(
14、x-2 006)+260.2.①
(2)利用直線方程①,可預(yù)測(cè)xx年的糧食需求量為
6.5×(2 012-2 006)+260.2=6.5×6+260.2=299.2(萬(wàn)噸).
18.(本小題滿分14分)(xx·遼寧高考)電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
圖2
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷
體育迷
合計(jì)
男
15、
女
10
55
合計(jì)
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).
附:χ2=,
P(χ2≥k)
0.05
0.01
k
3.841
6.635
【解】 (1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而2×2列聯(lián)表如下:
非體育迷
體育迷
合計(jì)
男
30
15
45
女
45
10
55
合計(jì)
75
25
100
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得
χ2===≈3.030.因?yàn)?.030<3.841,所以沒(méi)有理由認(rèn)為“體育迷”與性別有關(guān).
(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率為.
由題意知X~B(3,),從而X的分布列為
X
0
1
2
3
P
E(X)=np=3×=,
D(X)=np(1-p)=3××=.