2、在上單調(diào)遞增;
③當(dāng)a=-1時(shí),f(x)在(0,+∞)上單調(diào)遞減;
④當(dāng)a<-1時(shí),f(x)在和(1,+∞)上單調(diào)遞減,在上單調(diào)遞增.
2.已知函數(shù)f(x)=-ln x,x∈[1,3].
(1)求f(x)的最大值與最小值;
(2)若f(x)<4-at對任意的x∈[1,3],t∈[0,2]恒成立,求實(shí)數(shù)a的取值范圍;
解:(1)∵函數(shù)f(x)=-ln x,∴f′(x)=-,令f′(x)=0得x=±2,
∵x∈[1,3],當(dāng)10;
∴f(x)在(1,2)上是單調(diào)減函數(shù),在(2,3)上是單調(diào)增函數(shù),
∴f(x)在x=2處取得極
3、小值f(2)=-ln 2;
又f(1)=,f(3)=-ln 3,
∵ln 3>1,∴-=ln 3-1>0,
∴f(1)>f(3),
∴x=1時(shí)f(x)的最大值為,x=2時(shí)函數(shù)取得最小值為-ln 2.
(2)由(1)知當(dāng)x∈[1,3]時(shí),f(x)≤,故對任意x∈[1,3],
f(x)<4-at恒成立,
只要4-at>對任意t∈[0,2]恒成立,即at<恒成立,記g(t)=at,t∈[0,2].
,解得a<,
即實(shí)數(shù)a的取值范圍是.
3.已知函數(shù)f(x)=a(x2+1)+ln x.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意a∈(-4,-2)及x∈[1,3],恒有ma
4、-f(x)>a2成立,求實(shí)數(shù)m的取值范圍.
解:(1)由已知,得f′(x)=2ax+=(x>0).
①當(dāng)a≥0時(shí),恒有f′(x)>0,則f(x)在(0,+∞)上是增函數(shù).
②當(dāng)a<0時(shí),若00,故f(x)在上是增函數(shù);
若x> ,則f′(x)<0,
故f(x)在上是減函數(shù).
綜上,當(dāng)a≥0時(shí),f(x)在(0,+∞)上是增函數(shù);
當(dāng)a<0時(shí),f(x)在上是增函數(shù),
在上是減函數(shù).
(2)由題意,知對任意a∈(-4,-2)及x∈[1,3],
恒有ma-f(x)>a2成立,等價(jià)于ma-a2>f(x)max.
因?yàn)閍∈(-4,-2),所以< <<1.
5、
由(1),知當(dāng)a∈(-4,-2)時(shí),f(x)在[1,3]上是減函數(shù),
所以f(x)max=f(1)=2a,
所以ma-a2>2a,即m
6、3x2≥0,所以函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增;
當(dāng)a>0時(shí),x∈∪(0,+∞)時(shí),f′(x)>0,
x∈時(shí),f′(x)<0,
所以函數(shù)f(x)在,(0,+∞)上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)a<0時(shí),x∈(-∞,0)∪時(shí),f′(x)>0,
x∈時(shí),f′(x)<0,
所以函數(shù)f(x)在(-∞,0),上單調(diào)遞增,在上單調(diào)遞減.
(2)由(1)知,函數(shù)f(x)的兩個(gè)極值為f(0)=b,
f=a3+b,則函數(shù)f(x)有三個(gè)零點(diǎn)等價(jià)于f(0)·f=b·<0,從而
或
又b=c-a,所以當(dāng)a>0時(shí),a3-a+c>0或當(dāng)a<0時(shí),a3-a+c<0.
設(shè)g(a)=a3-a+c,因?yàn)楹瘮?shù)f(x)有三個(gè)零點(diǎn)時(shí),a的取值范圍恰好是(-∞,-3)∪∪,
則在(-∞,-3)上g(a)<0,
且在∪上g(a)>0均恒成立,
從而g(-3)=c-1≤0,且g=c-1≥0,因此c=1.
此時(shí),f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a].
因?yàn)楹瘮?shù)有三個(gè)零點(diǎn),則x2+(a-1)x+1-a=0有兩個(gè)異于-1的不等實(shí)根,
所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0,
解得a∈(-∞,-3)∪∪.
綜上c=1.