(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第4講 函數(shù)及其表示導(dǎo)學(xué)案 新人教A版

上傳人:彩*** 文檔編號:106990853 上傳時間:2022-06-14 格式:DOCX 頁數(shù):11 大?。?.32MB
收藏 版權(quán)申訴 舉報 下載
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第4講 函數(shù)及其表示導(dǎo)學(xué)案 新人教A版_第1頁
第1頁 / 共11頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第4講 函數(shù)及其表示導(dǎo)學(xué)案 新人教A版_第2頁
第2頁 / 共11頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第4講 函數(shù)及其表示導(dǎo)學(xué)案 新人教A版_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第4講 函數(shù)及其表示導(dǎo)學(xué)案 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第4講 函數(shù)及其表示導(dǎo)學(xué)案 新人教A版(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第二章 函數(shù) [知識體系p9] 第4講 函數(shù)及其表示 【課程要求】 1.了解映射的概念,了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域、值域及函數(shù)解析式. 2.在實際情境中,會根據(jù)不同的需要選擇適當(dāng)?shù)姆椒?圖象法、列表法、解析法)表示函數(shù). 3.了解簡單的分段函數(shù),并能簡單應(yīng)用. 4.掌握求函數(shù)定義域及解析式的基本方法. 對應(yīng)學(xué)生用書p9 【基礎(chǔ)檢測】                     1.判斷下列結(jié)論是否正確(請在括號中打“√”或“×”) (1)對于函數(shù)f:A→B,其值域就是集合B.(  ) (2)若兩個函數(shù)的定義域與值域相同,則這兩個函數(shù)相等.

2、(  ) (3)函數(shù)f(x)的圖象與直線x=1最多有一個交點.(  ) (4)若A=R,B={x|x>0},f:x→y=|x|,其對應(yīng)是從A到B的映射.(  ) (5)分段函數(shù)是由兩個或幾個函數(shù)組成的.(  ) [答案] (1)× (2)× (3)√ (4)× (5)× 2.[必修1p74T7(2)]函數(shù)f(x)=+log2(6-x)的定義域是____________. [答案] [-3,6) 3.[必修1p25B組T1]函數(shù)y=f(x)的圖象如圖所示,那么,f(x)的定義域是____________;值域是____________;其中只有唯一的x值與之對應(yīng)的y值的范圍是_

3、___________. [答案] [-3,0]∪[2,3];[1,5];[1,2)∪(4,5] 4.已知函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為(  ) A.{x|0<x≤4}B.{x|0≤x≤4} C.{x|0≤x<1}D.{x|0≤x≤1} [解析]因為函數(shù)f(x)的定義域為[0,2], 所以0≤2x≤2,解得0≤x≤1, 所以函數(shù)f(2x)的定義域為{x|0≤x≤1}. [答案]D 5.已知f=x2+x,則f=________. [解析]設(shè)t=2x+1,則x=, ∴f=+=,即f=. [答案] 6.已知f(x)=若f(a)=2,則a

4、的值為____________. [解析]當(dāng)a≥0時,2a-2=2,解得a=2;當(dāng)a<0時,-a2+3=2,解得a=-1.綜上,a的值為-1或2. [答案]-1或2 【知識要點】 1.函數(shù)與映射 函數(shù) 映射 兩個集合 A,B 設(shè)A,B是兩個__非空數(shù)集__ 設(shè)A,B是兩個非空__集合__ 對應(yīng)關(guān)系 f:A→B 如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的__任意__一個數(shù)x,在集合B中都有__唯一確定__的數(shù)f(x)和它對應(yīng) 如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的__任意__一個元素x,在集合B中都有__唯一確定__的元素y與之對應(yīng) 名稱 稱__f

5、:A→B__為從集合A到集合B的一個函數(shù) 稱f:A→B為從集合A到集合B的一個映射 函數(shù)記法 函數(shù)y=f(x),x∈A 映射:f:A→B   2.函數(shù)的有關(guān)概念 (1)函數(shù)的定義域、值域 在函數(shù)y=f(x),x∈A中,x叫做自變量,x的取值范圍A叫做函數(shù)的__定義域__;與x的值相對應(yīng)的y值叫做__函數(shù)值__,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的__值域__. (2)函數(shù)的三要素:__定義域__、__對應(yīng)關(guān)系__和__值域__. (3)函數(shù)的表示法 表示函數(shù)的常用方法有__解析法__、__圖象法__和__列表法__. (4)求函數(shù)解析式 題型 方法 步驟

6、 已知函數(shù)f(g(x))=F(x)求解析式 配湊法 將右邊的F(x)整理或配湊成關(guān)于g(x)的表達(dá)式,然后用x將g(x)代換,便得f(x)的解析式.(如例3(1)法一) 已知復(fù)合函數(shù)f(g(x))=F(x)求解析式 換元法 令g(x)=t,從中解出x(用t表示),代入F(x)進行換元后,得到f(t),再將t換成x,便得f(x)的解析式.(如例3(1)法二) 已知函數(shù)類型(如一次函數(shù),二次函數(shù))求解析式 待定系數(shù)法 先設(shè)出含有待定系數(shù)的解析式,再利用恒等式的性質(zhì),或?qū)⒁阎獥l件代入,建立方程(組),通過解方程(組)求出相應(yīng)的系數(shù).(如例3(2)) 求抽象函數(shù)解析式(已知函數(shù)的抽象

7、關(guān)系式求解函數(shù)解析式的問題) 解方程組法 已知關(guān)于f(x)與f或f(-x)的表達(dá)式,可根據(jù)已知條件再構(gòu)造出另外一個等式組成方程組,通過解方程組求出f(x)的解析式.(如訓(xùn)練鞏固T6) 3.分段函數(shù) 若函數(shù)在其定義域的不同子集上,因__對應(yīng)關(guān)系__不同而分別用幾個不同的式子來表示,這種函數(shù)稱為分段函數(shù). 分段函數(shù)的定義域等于各段函數(shù)的定義域的__并集__,其值域等于各段函數(shù)的值域的__并集__,分段函數(shù)雖由幾個部分組成,但它表示的是一個函數(shù). 對應(yīng)學(xué)生用書p10 函數(shù)與映射的概念 例1 (1)下列圖形中可以表示以M={x|0≤x≤1}為定義域,N={y|0≤y≤1}為值域的函

8、數(shù)圖象是(  ) [解析]對于選項A,函數(shù)定義域為M,值域不是N; 對于選項B,函數(shù)定義域不是M,值域為N; 對于選項C,函數(shù)定義域是M,值域為N,符合題意; 對于選項D,集合M中存在x與集合N中的兩個y對應(yīng), 不構(gòu)成映射關(guān)系,故也不構(gòu)成函數(shù)關(guān)系. [答案]C (2)(多選)下列各組函數(shù)中,f與g相等的是(  ) A.f=x-1,g=-1 B.f=log22x,g=x C.f=,g= D.f=lnx2,g=2lnx [解析]A.f=x-1定義域為R, g=-1定義域為∪, 故f≠g,A錯誤; B.f=log22x=x,g=x, 故f=g,B正確; C.f=

9、,g=, ∵=,且f與g定義域相同, ∴f=g,C正確; D.f=lnx2定義域為∪, g=2lnx定義域為, 故f≠g,D錯誤. [答案]BC [小結(jié)](1)兩個函數(shù)是否為同一個函數(shù),取決于它們的定義域和對應(yīng)關(guān)系是否相同,只有當(dāng)兩個函數(shù)的定義域和對應(yīng)關(guān)系完全相同時,才表示同一個函數(shù).判斷兩個函數(shù)的對應(yīng)關(guān)系是否相同,只要看對于函數(shù)定義域中的任意一個相同的自變量的值,按照這兩個對應(yīng)關(guān)系算出的函數(shù)值是否相同. (2)函數(shù)的值域可由定義域和對應(yīng)關(guān)系唯一確定. 1.下列集合A到集合B的對應(yīng)f不是函數(shù)的有(  ) ①A={-1,0,1},B={-1,0,1},f:A中的數(shù)的平方;

10、 ②A={0,1},B={-1,0,1},f:A中的數(shù)的平方根; ③A=Z,B=Q,f:A中的數(shù)取倒數(shù); ④A=R,B={正實數(shù)},f:A中的數(shù)取絕對值.                    A.①②③④B.①③④ C.①②D.②③④ [解析]判斷一個對應(yīng)是否為函數(shù),主要看對于集合A中的任意一個數(shù),在集合B中能否找到唯一確定的數(shù)與之對應(yīng).根據(jù)函數(shù)的概念,可知①是函數(shù);②中,對于A中的元素1,按照對應(yīng)f,在集合B中有兩個數(shù)1,-1與之對應(yīng),不唯一,故不是函數(shù);③中,對于集合A中的元素0,在集合B中沒有與之對應(yīng)的元素,故③不是函數(shù);④中,對于集合A中的元素0,在集合B中沒有與之

11、對應(yīng)的元素,故④不是函數(shù). [答案]D 2.下列函數(shù)中,與函數(shù)y=x+1是相等函數(shù)的是(  ) A.y=()2B.y=+1 C.y=+1D.y=+1 [解析]對于A,函數(shù)y=()2的定義域為{x|x≥-1},與函數(shù)y=x+1的定義域不同,不是相等函數(shù);對于B,定義域和對應(yīng)關(guān)系都相同,是相等函數(shù);對于C,函數(shù)y=+1的定義域為{x|x≠0},與函數(shù)y=x+1的定義域不同,不是相等函數(shù);對于D,定義域相同,但對應(yīng)關(guān)系不同,不是相等函數(shù),故選B. [答案]B 函數(shù)的定義域 例2 (1)已知函數(shù)f(x)的定義域為(0,+∞),則函數(shù)y=的定義域是(  ) A.(-1,1) B.[-

12、1,1] C.[-1,1) D.(-1,1] [解析]由題意可得解得-1<x<1, 所以函數(shù)y=的定義域為(-1,1). [答案]A (2)若函數(shù)f(x)=log2(mx2-mx+1)的定義域為R,則實數(shù)m的取值范圍是(  ) A.(0,4) B.[0,4) C.(0,4] D.[0,4] [解析]∵函數(shù)f(x)=log2(mx2-mx+1)的定義域為R, ∴mx2-mx+1>0在R上恒成立, ①當(dāng)m=0時,有1>0在R上恒成立,故符合條件; ②當(dāng)m≠0時,由解得0

13、f(x),其定義域可能有如下幾種情況:①若f(x)是分式,則其定義域是使分母不為零的全體實數(shù)組成的集合;②若f(x)是偶次根式,則其定義域是使被開方數(shù)非負(fù)(即不小于零)的實數(shù)的取值集合;③如果f(x)是由一些函數(shù)通過四則運算組合而成的,那么它的定義域是各函數(shù)定義域的交集. (2)函數(shù)的定義域是使函數(shù)有意義的自變量取值的集合,它是函數(shù)不可缺少的組成部分,研究函數(shù)問題必須樹立“定義域優(yōu)先”的觀念. (3)抽象函數(shù)的定義域:①無論是已知定義域還是求定義域,均是指其中的自變量x的取值集合;②對應(yīng)法則f下的范圍一致. (4)已知定義域求參數(shù)范圍,可將問題轉(zhuǎn)化,列出含參數(shù)的不等式(組),進而求范

14、圍. 3.函數(shù)y=ln(2-x)的定義域為(  ) A.(0,2) B.[0,2) C.(0,1] D.[0,2] [解析]由題意知,x≥0且2-x>0,解得0≤x<2,故其定義域是[0,2). [答案]B 4.已知函數(shù)y=f(x2-1)的定義域為[-,],則函數(shù)y=f(x)的定義域為________. [解析]因為函數(shù)y=f(x2-1)的定義域為[-,], 所以-≤x≤, 所以-1≤x2-1≤2, 所以函數(shù)y=f(x)的定義域為[-1,2]. [答案] [-1,2] 函數(shù)的解析式 例3 (1)已知f=4x2+6x+5,則f=________. [解析]法一

15、:f=++3, ∴f=x2+x+3, 即函數(shù)的解析式為f=x2+x+3. 法二:令t=2x+1,則x=. ∴f=4+6×+5=t2+t+3, ∴f=x2+x+3,即為所求的解析式. [答案]x2+x+3 (2)如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(  ) A.y=x3-x2-xB.y=x3+x2-3x C.y=x3-xD.y=x3+x2-2x [解析]設(shè)所求函數(shù)解析式為f(x)=ax3+bx2+cx+d(a≠0),則f′(x)=3ax2+2bx+c(a≠0), 由題意知解得 ∴

16、f(x)=x3-x2-x. [答案]A [小結(jié)]求函數(shù)解析式的幾種常用方法: (1)待定系數(shù)法:若已知函數(shù)的類型(如一次函數(shù)、二次函數(shù)),根據(jù)函數(shù)類型設(shè)出函數(shù)解析式,根據(jù)題設(shè)條件,列出方程組,解出待定系數(shù)即可. (2)配湊法:由已知條件f(g(x))=F(x),可將F(x)改寫成關(guān)于g(x)的表達(dá)式,然后以x替代g(x),便可得f(x)的解析式; (3)換元法:已知f(h(x))=g(x)求f(x)時,往往可設(shè)h(x)=t,從中解出x,代入g(x)進行換元,求出f(t)的解析式,再將t替換為x即可. (4)解方程組法:已知關(guān)于f(x)與f(或f(-x))的表達(dá)式,可根據(jù)已知條件再構(gòu)

17、造出另一個方程構(gòu)成方程組求出f(x). 配湊法和換元法中要注意根據(jù)g(x)或t的范圍確定函數(shù)的定義域. 5.已知函數(shù)f(x)=x2+2x-1,函數(shù)y=g(x)為一次函數(shù),若g(f(x))=2x2+4x+3,則g(x)=________. [解析]由題意,函數(shù)y=g(x)為一次函數(shù),由待定系數(shù)法,設(shè)g(x)=kx+b (k≠0),g(f(x))=k(x2+2x-1)+b=kx2+2kx+b-k=2x2+4x+3, 由對應(yīng)系數(shù)相等,得所以k=2,b=5. 故g(x)=2x+5. [答案]2x+5 6.已知函數(shù)f(x)的定義域為(0,+∞),且f(x)=2f·-1,則f(x)=__

18、__________. [解析]在f(x)=2f·-1中,將x換成,則換成x,得f=2f(x)·-1, 由解得f(x)=+. [答案]+(x>0) 分段函數(shù) 例4 (1)已知函數(shù)f(x)=若f(a)+f(1)=0,則實數(shù)a的值等于(  ) A.3B.1C.-1D.-3 [解析]根據(jù)題意,由于函數(shù)f(x)=若f(a)+f(1)=0,而f(1)=2,f(a)=-2,則可知a+1=-2,a=-3. [答案]D (2)已知函數(shù)f(x)=當(dāng)t∈[0,1]時,f(f(t))∈[0,1],則實數(shù)t的取值范圍是________. [解析]當(dāng)t=0時,f(t)=1,f(f(t))=f(1

19、)=3?[0,1],所以t∈(0,1],所以f(t)=3t∈(1,3],所以f(f(t))=f(3t)=-·3t∈[0,1],即≤3t≤3.所以log3≤t≤1.故實數(shù)t的取值范圍是. [答案] [小結(jié)](1)分段函數(shù)問題一般分段求解,其定義域和值域是各段的并集; (2)求分段函數(shù)的函數(shù)值,首先要確定自變量的范圍,然后選定相應(yīng)關(guān)系式代入求解; (3)當(dāng)給出函數(shù)值或函數(shù)值的取值范圍求自變量的值或自變量的取值范圍時,應(yīng)根據(jù)每一段解析式分別求解,但要注意檢驗所求自變量的值或取值范圍是否符合相應(yīng)段的自變量的值或取值范圍; (4)當(dāng)自變量含參數(shù)或范圍不確定時,要根據(jù)定義域分成的不同子集進行分類

20、討論. 7.已知函數(shù)f(x)=且f(a)=-3,則f(6-a)等于(  ) A.-B.-C.-D.- [解析]函數(shù)f(x)=且f(a)=-3, 若a≤1,則2a-1-2=-3,即有2a-1=-1<0,方程無解; 若a>1,則-log2(a+1)=-3,解得a=7, 則f(6-a)=f(-1)=2-1-1-2=-. [答案]A 8.設(shè)函數(shù)f(x)=g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=x2-2x-5,若f(g(a))≤2,則實數(shù)a的取值范圍是(  ) A.(-∞,-1]∪[0,2-1] B.[-1,2-1] C.(-∞,-1]∪(0,3] D.[-1,

21、3] [解析]∵g(x)是定義在R上的奇函數(shù),∴g(0)=0, 若x>0,則-x<0,g(-x)=x2+2x-5, ∵g(-x)=-g(x),∴g(x)=-x2-2x+5,x>0, 由題意,知f(-2)=2,∴f(g(a))≤2即為f(g(a))≤f(-2). 又f(x)=∴g(a)≥-2, ∴或或a=0, ∴a≤-1或0≤a≤2-1.故選A. [答案]A 對應(yīng)學(xué)生用書p11 (2017·全國卷Ⅲ理)設(shè)函數(shù)f(x)=則滿足f(x)+f>1的x的取值范圍是__________. [解析]當(dāng)x>時,f(x)+f=2x+2x->2x>>1; 當(dāng)0<x≤時,f(x)+f=2x++1=2x+x+>2x>1; 當(dāng)x≤0時,f(x)+f=x+1++1=2x+, ∴由f(x)+f>1,得2x+>1,即x>-, 即-<x≤0. 綜上,x∈. [答案] 11

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲