小學數(shù)學知識點總結(jié) 小考復習資料
《小學數(shù)學知識點總結(jié) 小考復習資料》由會員分享,可在線閱讀,更多相關《小學數(shù)學知識點總結(jié) 小考復習資料(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、小學數(shù)學學問點總結(jié) 小考復習資料 第一章 數(shù)和數(shù)的運算 一 概念 〔一〕整數(shù) 1 整數(shù)的意義 自然數(shù)和 0 都是整數(shù)。 2 自然數(shù) 我們在數(shù)物體的時候,用來表示物體個數(shù)的 1,2,3??叫做自然數(shù)。 一個物體也沒有,用 0 表示。0 也是自然數(shù)。 3 計數(shù)單位 一〔個〕、十、百、千、萬、十萬、百萬、千萬、億??都是計數(shù)單位。 每相鄰兩個計數(shù)單位之間的進率都是 10。這樣的計數(shù)法叫做十進制計數(shù)法。 4 數(shù)位 計數(shù)單位依據(jù)肯定的依次排列起來,它們所占的位置叫做數(shù)位。 5 數(shù)的整除 整數(shù) a 除以整數(shù) b(b ≠ 0〕,除得的商是整數(shù)而沒有余數(shù),我們就說 a 能被 b 整除,或者說 b 能整除 a
2、 。 假如數(shù) a 能被數(shù) b〔b ≠ 0〕整除,a 就叫做 b 的倍數(shù),b 就叫做 a 的約數(shù)〔或 a 的因數(shù)〕。倍數(shù)和約數(shù)是互相依存的。 因為 35 能被 7 整除,所以 35 是 7 的倍數(shù),7 是 35 的約數(shù)。 一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是 1,最大的 約數(shù)是它本身。 例如:10 的約數(shù)有 1、2、5、10,其中最小的約數(shù)是 1,最大的約數(shù)是 10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。3 的倍數(shù)有:3、6、 9、12??其中最小的倍數(shù)是 3 ,沒有最大的倍數(shù)。 個位上是 0、2、4、6、8 的數(shù),都能被 2 整除,例如:202、480、304,都能被
3、2 整除。。 個位上是 0 或 5 的數(shù),都能被 5 整除,例如:5、30、405 都能被 5 整除。。 一個數(shù)的各位上的數(shù)的和能被 3 整除,這個數(shù)就能被 3 整除,例如:12、108、2 04 都能被 3 整除。 一個數(shù)各位數(shù)上的和能被 9 整除,這個數(shù)就能被 9 整除。 第 1 頁 共 39 頁 能被 3 整除的數(shù)不肯定能被 9 整除,但是能被 9 整除的數(shù)肯定能被 3 整除。 一個數(shù)的末兩位數(shù)能被 4〔或 25〕整除,這個數(shù)就能被 4〔或 25〕整除。例如: 16、404、1256 都能被 4 整除,50、325、500、1675 都能被 25 整除。 一個數(shù)的末三位數(shù)能被 8〔或
4、 125〕整除,這個數(shù)就能被 8〔或 125〕整除。例如: 1168、4600、5000、12344 都能被 8 整除,1125、13375、5000 都能被 125 整除。 能被 2 整除的數(shù)叫做偶數(shù)。 不能被 2 整除的數(shù)叫做奇數(shù)。 0 也是偶數(shù)。自然數(shù)按能否被 2 整除的特征可分為奇數(shù)和偶數(shù)。 一個數(shù),假如只有 1 和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)〔或素數(shù)〕,100 以 內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、5 3 、59、61、67、71、73、79、83、89、97。 一個數(shù),假如除了 1 和它本身還有別的約數(shù),這樣的數(shù)叫做
5、合數(shù),例如 4、6、8、 9、12 都是合數(shù)。 1 不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了 1 外,不是質(zhì)數(shù)就是合數(shù)。假如把自然數(shù)按 其約數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和 1。 每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù), 叫做這個合數(shù)的質(zhì)因數(shù),例如 15=3×5,3 和 5 叫做 15 的質(zhì)因數(shù)。 把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。 例如把 28 分解質(zhì)因數(shù) 幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。其中最大的一個,叫做這幾個數(shù)的 最大公約數(shù),例如 12 的約數(shù)有 1、2、3、4、6、12;18 的約數(shù)有 1、2、3、6、 9、18。其中,1、2、3
6、、6 是 12 和 1 8 的公約數(shù),6 是它們的最大公約數(shù)。 公約數(shù)只有 1 的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關系的兩個數(shù),有以下幾種狀況: 1 和任何自然數(shù)互質(zhì)。 相鄰的兩個自然數(shù)互質(zhì)。 兩個不同的質(zhì)數(shù)互質(zhì)。 當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。 第 2 頁 共 39 頁 兩個合數(shù)的公約數(shù)只有 1 時,這兩個合數(shù)互質(zhì),假如幾個數(shù)中隨意兩個都互質(zhì), 就說這幾個數(shù)兩兩互質(zhì)。 假如較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。 假如兩個數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是 1。 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的 最小公倍數(shù),如 2 的倍
7、數(shù)有 2、4、6 、8、10、12、14、16、18 ?? 3 的倍數(shù)有 3、6、9、12、15、18 ?? 其中 6、12、18??是 2、3 的公倍數(shù), 6 是它們的最小公倍數(shù)。。 假如較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。 假如兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。 幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。 〔二〕小數(shù) 1 小數(shù)的意義 把整數(shù) 1 平均分成 10 份、100 份、1000 份?? 得到的非常之幾、百分之幾、千 分之幾?? 可以用小數(shù)表示。 一位小數(shù)表示非常之幾, 兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾?? 一個
8、小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小 數(shù)點左邊的數(shù)叫做整數(shù)部分, 小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫 做小數(shù)部分。 在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是 10。小數(shù)部分的最高分數(shù)單位 “非常之一〞和整數(shù)部分的最低單位“一〞之間的進率也是 10。 2 小數(shù)的分類 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小 數(shù)。 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶 小數(shù)。 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如: 41.7 、 2 5.3 、 0.23 都是有限
9、小數(shù)。 第 3 頁 共 39 頁 無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。 例如: 4.33 ?? 3.1415926 ?? 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù) 叫做無限不循環(huán)小數(shù)。 例如:∏ 循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復出現(xiàn),這 個數(shù)叫做循環(huán)小數(shù)。 例如: 3.555 ?? 0.0333 ?? 12.109109 ?? 一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán) 節(jié)。 例如: 3.99 ??的循環(huán)節(jié)是“ 9 〞 , 0.5454 ??的循環(huán)節(jié)是“ 54 〞 。 純循環(huán)小數(shù):循環(huán)節(jié)從
10、小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。 例如: 3.1 11 ?? 0.5656 ?? 混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。 3.1222 ?? 0.03333 ?? 寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個 循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。假如循環(huán) 節(jié)只有 一個數(shù)字,就只在它 的上面點一個點。例如: 3.777 ?? 簡寫作 〔三〕分數(shù) 1 分數(shù)的意義 把單位“1〞平均分成假設干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。 在分數(shù)里, 中間的橫線叫做分數(shù)線; 分數(shù)線下面的數(shù), 叫做分母, 表示把單位 “1〞 平均分成多少份;分數(shù)線下面的
11、數(shù)叫做分子,表示有這樣的多少份。 把單位“1〞平均分成假設干份,表示其中的一份的數(shù),叫做分數(shù)單位。 2 分數(shù)的分類 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于 1。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或 等于 1。 帶分數(shù):假分數(shù)可以寫成整數(shù)及真分數(shù)合成的數(shù),通常叫做帶分數(shù)。 3 約分和通分 把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù) ,叫做約分。 0.5302302 ?? 簡寫作 。 第 4 頁 共 39 頁 分子分母是互質(zhì)數(shù)的分數(shù),叫做最簡分數(shù)。 把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。 〔四〕百分數(shù) 1 表示一個數(shù)是另
12、一個數(shù)的百分之幾的數(shù) 叫做百分數(shù),也叫做百分率 或百分 比。百分數(shù)通常用"%"來表示。百分號是表示百分數(shù)的符號。 二 方法 〔一〕數(shù)的讀法和寫法 1. 整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先依據(jù)個級 的讀法去讀,再在后面加一個“億〞或“萬〞字。每一級末尾的 0 都不讀出來, 其它數(shù)位連續(xù)有幾個 0 都只讀一個零。 2. 整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有, 就在那個數(shù)位上寫 0。 3. 小數(shù)的讀法: 讀小數(shù)的時候, 整數(shù)部分依據(jù)整數(shù)的讀法讀, 小數(shù)點讀作 “點〞 , 小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。 4. 小數(shù)的寫法:寫小數(shù)的時
13、候,整數(shù)部分依據(jù)整數(shù)的寫法來寫,小數(shù)點寫在個 位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。 5. 分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之〞然后讀分子,分子和分母按 照整數(shù)的讀法來讀。 6. 分數(shù)的寫法:先寫分數(shù)線,再寫分母,最終寫分子,依據(jù)整數(shù)的寫法來寫。 7. 百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按 照整數(shù)的讀法來讀。 8. 百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分 號“%〞來表示。 〔二〕數(shù)的改寫 一個較大的多位數(shù),為了讀寫便利,經(jīng)常把它改寫成用“萬〞或“億〞作單位的 數(shù)。有時還可以依據(jù)須要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。
14、 第 5 頁 共 39 頁 1. 精確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬 或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的精確數(shù)。 例如把 1254300000 改寫成以 萬做單位的數(shù)是 125430 萬;改寫成 以億做單位 的數(shù) 12.543 億。 2. 近似數(shù):依據(jù)實際須要,我們還可以把一個較大的數(shù),省略某一位后面的尾 數(shù),用一個近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是 13 億。 3. 四舍五入法: 要省略的尾數(shù)的最高位上的數(shù)是 4 或者比 4 小, 就把尾數(shù)去掉; 假如尾數(shù)的最高位上的數(shù)是 5 或者比 5 大, 就把尾數(shù)舍去, 并向它的前一位
15、進 1。 例如: 省略 345900 萬后面的尾數(shù)約是 35 萬。省略 4725097420 億后面的尾數(shù) 約是 47 億。 4. 大小比較 1. 比較整數(shù)大小:比較整數(shù)的大小,位數(shù)多的那個數(shù)就大,假如位數(shù)一樣,就 看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)一樣,就看下一位,哪 一位上的數(shù)大那個數(shù)就大。 2. 比較小數(shù)的大小:先看它們的整數(shù)部分,,整數(shù)部分大的那個數(shù)就大;整數(shù) 部分一樣的,非常位上的數(shù)大的那個數(shù)就大;非常位上的數(shù)也一樣的,百分位上 的數(shù)大的那個數(shù)就大?? 3. 比較分數(shù)的大小:分母一樣的分數(shù),分子大的分數(shù)比較大;分子一樣的數(shù),分 母小的分數(shù)大。分數(shù)的分母和分子都不一樣的
16、,先通分,再比較兩個數(shù)的大小。 〔三〕數(shù)的互化 1. 小數(shù)化成分數(shù):原來有幾位小數(shù),就在 1 的后面寫幾個零作分母,把原來的 小數(shù)去掉小數(shù)點作分子,能約分的要約分。 2. 分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡, 不能化成有限小數(shù)的,一般保存三位小數(shù)。 3. 一個最簡分數(shù),假如分母中除了 2 和 5 以外,不含有其他的質(zhì)因數(shù),這個分 數(shù)就能化成有限小數(shù);假如分母中含有 2 和 5 以外的質(zhì)因數(shù),這個分數(shù)就不能 化成有限小數(shù)。 4. 小數(shù)化成百分數(shù):只要把小數(shù)點向右挪動兩位,同時在后面添上百分號。 第 6 頁 共 39 頁 5. 百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù)
17、,只要把百分號去掉,同時把小數(shù)點向 左挪動兩位。 6. 分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)〔除不盡時,通常保存三位小數(shù)), 再把小數(shù)化成百分數(shù)。 7. 百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。 〔四〕數(shù)的整除 1. 把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除, 始終除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。 2. 求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,始終除 到所得的商只有公約數(shù) 1 為止, 然后把全部的除數(shù)連乘求積,這個積就是這幾個 數(shù)的的最大公約數(shù) 。 3. 求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)〔或其中的部分數(shù)〕
18、的公約 數(shù)去除,始終除到互質(zhì)〔或兩兩互質(zhì)〕為止,然后把全部的除數(shù)和商連乘求積, 這個積就是這幾個數(shù)的最小公倍數(shù)。 4. 成為互質(zhì)關系的兩個數(shù):1 和任何自然數(shù)互質(zhì) ; 相鄰的兩個自然數(shù)互質(zhì); 當合數(shù)不是質(zhì)數(shù)的倍數(shù)時, 這個合數(shù)和這個質(zhì)數(shù)互質(zhì); 兩個合數(shù)的公約數(shù)只有 1 時,這兩個合數(shù)互質(zhì)。 〔五〕 約分和通分 約分的方法:用分子和分母的公約數(shù)〔1 除外〕去除分子、分母;通常要除到得 出最簡分數(shù)為止。 通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這 個最小公倍數(shù)作分母的分數(shù)。 三 性質(zhì)和規(guī)律 〔一〕商不變的規(guī)律 商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小一樣
19、的倍,商不 變。 〔二〕小數(shù)的性質(zhì) 小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。 〔三〕小數(shù)點位置的挪動引起小數(shù)大小的變更 第 7 頁 共 39 頁 1. 小數(shù)點向右挪動一位,原來的數(shù)就擴大 10 倍;小數(shù)點向右挪動兩位,原來的 數(shù)就擴大 100 倍;小數(shù)點向右挪動三位,原來的數(shù)就擴大 1000 倍?? 2. 小數(shù)點向左挪動一位,原來的數(shù)就縮小 10 倍;小數(shù)點向左挪動兩位,原來的 數(shù)就縮小 100 倍;小數(shù)點向左挪動三位,原來的數(shù)就縮小 1000 倍?? 3. 小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0"補足位。 〔四〕分數(shù)的根本性質(zhì) 分數(shù)的根本性質(zhì):分數(shù)的分子和分母都乘以
20、或者除以一樣的數(shù)〔零除外〕,分 數(shù)的大小不變。 〔五〕分數(shù)及除法的關系 1. 被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù) 2. 因為零不能作除數(shù),所以分數(shù)的分母不能為零。 3. 被除數(shù) 相當于分子,除數(shù)相當于分母。 四 運算的意義 〔一〕整數(shù)四那么運算 1 整數(shù)加法: 把兩個數(shù)合并成一個數(shù)的運算叫做加法。 在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。 加數(shù)+加數(shù)=和 2 整數(shù)減法: 兩個加數(shù)的和及其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。 在減法里,的和叫做被減數(shù),的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被 減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。 加法和減法互為逆運算。 3 整數(shù)乘法:
21、求幾個一樣加數(shù)的和的簡便運算叫做乘法。 在乘法里,一樣的加數(shù)和一樣加數(shù)的個數(shù)都叫做因數(shù)。一樣加數(shù)的和叫做積。 在乘法里,0 和任何數(shù)相乘都得 0. 1 和任何數(shù)相乘都的任何數(shù)。 一個加數(shù)=和-另一個加數(shù) 第 8 頁 共 39 頁 一個因數(shù)× 一個因數(shù) =積 4 整數(shù)除法: 一個因數(shù)=積÷另一個因數(shù) 兩個因數(shù)的積及其中一個因數(shù),求另一個因數(shù)的運算叫做除法。 在除法里, 的積叫做被除數(shù), 的一個因數(shù)叫做除數(shù), 所求的因數(shù)叫做商。 乘法和除法互為逆運算。 在除法里,0 不能做除數(shù)。因為 0 和任何數(shù)相乘都得 0,所以任何一個數(shù)除以 0, 均得不到一個確定的商。 被除數(shù)÷除數(shù)=商 除數(shù)=被除
22、數(shù)÷商 被除數(shù)=商×除數(shù) 〔二〕小數(shù)四那么運算 1. 小數(shù)加法: 小數(shù)加法的意義及整數(shù)加法的意義一樣。是把兩個數(shù)合并成一個數(shù)的運算。 2. 小數(shù)減法: 小數(shù)減法的意義及整數(shù)減法的意義一樣。兩個加數(shù)的和及其中的一個加數(shù), 求另一個加數(shù)的運算. 3. 小數(shù)乘法: 小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義一樣,就是求幾個一樣加數(shù)和的簡便運算; 一個數(shù)乘純小數(shù)的意義是求這個數(shù)的非常之幾、 百分之幾、 千分之幾??是多少。 4. 小數(shù)除法: 小數(shù)除法的意義及整數(shù)除法的意義一樣,就是兩個因數(shù)的積及其中一個因 數(shù),求另一個因數(shù)的運算。 5. 乘方: 求幾個一樣因數(shù)的積的運算叫做乘方。例如 3 × 3 =32 〔
23、三〕分數(shù)四那么運算 1. 分數(shù)加法: 分數(shù)加法的意義及整數(shù)加法的意義一樣。 是把兩個數(shù)合并成一個數(shù)的運算。 2. 分數(shù)減法: 第 9 頁 共 39 頁 分數(shù)減法的意義及整數(shù)減法的意義一樣。兩個加數(shù)的和及其中的一個加數(shù), 求另一個加數(shù)的運算。 3. 分數(shù)乘法: 分數(shù)乘法的意義及整數(shù)乘法的意義一樣,就是求幾個一樣加數(shù)和的簡便運算。 4. 乘積是 1 的兩個數(shù)叫做互為倒數(shù)。 5. 分數(shù)除法: 分數(shù)除法的意義及整數(shù)除法的意義一樣。就是兩個因數(shù)的積及其中一個因 數(shù),求另一個因數(shù)的運算。 〔四〕運算定律 1. 加法交換律: 兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即 a+b=b+a 。 2. 加法結(jié)
24、合律: 三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再 和第一個數(shù)相加它們的和不變,即〔a+b)+c=a+(b+c) 。 3. 乘法交換律: 兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即 a×b=b×a。 4. 乘法結(jié)合律: 三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再 和第一個數(shù)相乘,它們的積不變,即(a×b)×c=a×(b×c) 。 5. 乘法安排律: 兩個數(shù)的和及一個數(shù)相乘,可以把兩個加數(shù)分別及這個數(shù)相乘再把兩個積相加, 即(a+b)×c=a×c+b×c 。 6. 減法的性質(zhì): 從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去全部減數(shù)的和,差不
25、變,即 a -b-c=a-(b+c) 。 〔五〕運算法那么 1. 整數(shù)加法計算法那么: 一樣數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。 2. 整數(shù)減法計算法那么: 第 10 頁 共 39 頁 一樣數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十, 和本位上的數(shù)合并在一起,再減。 3. 整數(shù)乘法計算法那么: 先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù), 用因數(shù)哪一位 上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。 4. 整數(shù)除法計算法那么: 先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位; 假如不夠除, 就多看一位,
26、除到被除數(shù)的哪一位,商就寫在哪一位的上面。假如哪一位上不夠 商 1,要補“0〞占位。每次除得的余數(shù)要小于除數(shù)。 5. 小數(shù)乘法法那么: 先依據(jù)整數(shù)乘法的計算法那么算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起 數(shù)出幾位,點上小數(shù)點;假如位數(shù)不夠,就用“0〞補足。 6. 除數(shù)是整數(shù)的小數(shù)除法計算法那么: 先依據(jù)整數(shù)除法的法那么去除, 商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;假如除到被 除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0〞,再接著除。 7. 除數(shù)是小數(shù)的除法計算法那么: 先挪動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右挪動幾位〔位數(shù)不夠 的補“0〞〕,然后依據(jù)除數(shù)是整數(shù)的除法法那么進展計算。 8
27、. 同分母分數(shù)加減法計算方法: 同分母分數(shù)相加減,只把分子相加減,分母不變。 9. 異分母分數(shù)加減法計算方法: 先通分,然后依據(jù)同分母分數(shù)加減法的的法那么進展計算。 10. 帶分數(shù)加減法的計算方法: 整數(shù)部分和分數(shù)局部分別相加減,再把所得的數(shù)合并起來。 11. 分數(shù)乘法的計算法那么: 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用 分子相乘的積作分子,分母相乘的積作分母。 12. 分數(shù)除法的計算法那么: 甲數(shù)除以乙數(shù)〔0 除外〕,等于甲數(shù)乘乙數(shù)的倒數(shù)。 第 11 頁 共 39 頁 〔六〕 運算依次 1. 小數(shù)四那么運算的運算依次和整數(shù)四那么運算依次一樣。 2. 分數(shù)
28、四那么運算的運算依次和整數(shù)四那么運算依次一樣。 3. 沒有括號的混合運算: 同級運算從左往右依次運算;兩級運算 先算乘、除法,后算加減法。 4. 有括號的混合運算: 先算小括號里面的,再算中括號里面的,最終算括號外面的。 5. 第一級運算: 加法和減法叫做第一級運算。 6. 第二級運算: 乘法和除法叫做第二級運算。 第二章 度量衡 一 長度 (一) 什么是長度 長度是一維空間的度量。 (二) 長度常用單位 * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um) (三) 單位之間的換算 * 1 毫米 =1000 微米 =1000 毫米 二 面積 〔
29、一〕什么是面積 面積, 就是物體所占平面的大小。 對立體物體的外表的多少的測量一般稱外表積。 * * 1 厘米 =10 毫米 = 1000 米 * 1 分米 =10 厘米 * 1米 1 千米 〔二〕常用的面積單位 * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米 〔三〕面積單位的換算 * 1 平方厘米 =100 平方毫米 0 平方分米 * 1 平方分米=100 平方厘米 * 1 平方米 =10 第 12 頁 共 39 頁 * 1 公傾 =10000 平方米 三 體積和容積 〔一〕什么是體積、容積 * 1 平方公里 =100 公頃 體積,就是物體所占空間的大小。
30、容積,箱子、油桶、倉庫等所能包容物體的體積,通常叫做它們的容積。 〔二〕常用單位 1 體積單位 * 立方米 2 容積單位 * 立方分米 * 升 * 立方厘米 * 毫升 〔三〕單位換算 1 體積單位 * 1 立方米=1000 立方分米 * 1 立方分米=1000 立方厘米 2 容積單位 * 1 升 =1000 毫升 * 1 升 =1 立方米 * 1 毫升=1 立方厘米 四 質(zhì)量 〔一〕什么是質(zhì)量 質(zhì)量,就是表示表示物體有多重。 〔二〕常用單位 * 噸 t * 千克 kg * 克 g 〔三〕常用換算 * 一噸=1000 千克 * 1 千克 = 1000 克 五 時間 〔一〕什么是時間 是
31、指有起點和終點的一段時間 〔二〕常用單位 第 13 頁 共 39 頁 世紀、 年 、 月 、 日 、 時 、 分、 秒 〔三〕單位換算 * 1 世紀=100 年 * 1 年=365 天 * 一年=366 天 平年 閏年 大月有 31 天 * 一、三、五、七、八、十、十二是大月 * 四、六、九、十一是小月小月 * 平年 2 月有 28 天 * 1 天= 24 小時 * 1 小時=60 分 * 一分=60 秒 六 貨幣 〔一〕什么是貨幣 小月有 30 天 閏年 2 月有 29 天 貨幣是充當一切商品的等價物的特別商品。貨幣是價值的一般代表,可以購置任 何別的商品。 〔二〕常用單位 *
32、元 * 角 * 分 〔三〕單位換算 * 1 元=10 角 * 1 角=10 分 第三章 代數(shù)初步學問 一、用字母表示數(shù) 1 用字母表示數(shù)的意義和作用 * 用字母表示數(shù), 可以把數(shù)量關系簡明的表達出來, 同時也可以表示運算的結(jié)果。 2 用字母表示常見的數(shù)量關系、運算定律和性質(zhì)、幾何形體的計算公式 〔1〕常見的數(shù)量關系 路程用 s 表示,速度 v 用表示,時間用 t 表示,三者之間的關系: 第 14 頁 共 39 頁 s=vt v=s/t t=s/v 總價用 a 表示,單價用 b 表示,數(shù)量用 c 表示,三者之間的關系: a=bc b=a/c c=a/b 〔2〕運算定律和性質(zhì) 加法交換律:
33、a+b=b+a 加法結(jié)合律:〔a+b)+c=a+(b+c) 乘法交換律:ab=ba 乘法結(jié)合律:〔ab)c=a(bc) 乘法安排律:〔a+b)c=ac+bc 減法的性質(zhì):a-(b+c) =a-b-c 〔3〕用字母表示幾何形體的公式 長方形的長用 a 表示,寬用 b 表示,周長用 c 表示,面積用 s 表示。 c=2(a+b) s=ab 正方形的邊長 a 用表示,周長用 c 表示,面積用 s 表示。 c= 4a s=a2 平行四邊形的底 a 用表示,高用 h 表示,面積用 s 表示。 s=ah 三角形的底用 a 表示,高用 h 表示,面積用 s 表示。 s=ah/2 梯形的上底用 a 表示,下底
34、 b 用表示,高用 h 表示,中位線用 m 表示,面積用 s 表示。 s=(a+b)h/2 s=mh 第 15 頁 共 39 頁 圓的半徑用 r 表示,直徑用 d 表示,周長用 c 表示,面積用 s 表示。 c=∏d=2∏r s=∏ r2 扇形的半徑用 r 表示,n 表示圓心角的度數(shù),面積用 s 表示。 s=∏ nr2/360 長方體的長用 a 表示,寬用 b 表示,高用 h 表示,外表積用 s 表示,體積用 v 表示。 v=sh s=2(ab+ah+bh) v=abh 正方體的棱長用 a 表示,底面周長 c 用表示,底面積用 s 表示, 體積用 v 表示. s= 6a 2 v=a3 圓
35、柱的高用 h 表示,底面周長用 c 表示,底面積用 s 表示, 體積用 v 表示. s 側(cè)=ch s 表=s 側(cè)+2s 底 v=sh 圓錐的高用 h 表示,底面積用 s 表示, 體積用 v 表示. v=sh/3 3 用字母表示數(shù)的寫法 數(shù)字和字母、字母和字母相乘時,乘號可以記作“.〞,或者省略不寫,數(shù)字要 寫在字母的前面。 當“1〞及任何字母相乘時,“1〞省略不寫。 在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。 用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,假如式子中有加號或 者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。 4 將數(shù)值代入式子求值
36、 第 16 頁 共 39 頁 * 把詳細的數(shù)代入式子求值時,要留意書寫格式:先寫出字母等于幾,然后寫出 原式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。 * 同一個式子, 式子中所含字母取不同的數(shù)值, 那么所求出的式子的值也不一樣。 二、簡易方程 〔一〕方程和方程的解 1 方程:含有未知數(shù)的等式叫做方程。 留意方程是等式,又含有未知數(shù),兩者缺一不行。 方程和算術(shù)式不同。算術(shù)式是一個式子,它由運算符號和數(shù)組成,它表示未 知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參與運算,并且只有當未知數(shù)為 特定的數(shù)值時 ,方程才成立 。 2 方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的
37、解。 三、解方程解方程,求方程的解的過程叫做解方程。 四、列方程解應用題 1 列方程解應用題的意義 * 用方程式去解容許用題求得應用題的未知量的方法。 2 列方程解容許用題的步驟 * 弄清題意,確定未知數(shù)并用 x 表示; * 找出題中的數(shù)量之間的相等關系; * 列方程,解方程; * 檢查或驗算,寫出答案。 3 列方程解應用題的方法 * 綜合法:先把應用題中數(shù)〔量〕和所設未知數(shù)〔量〕列成有關的代數(shù)式, 再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種 思維過 程,其思索方向是從到未知。 * 分析法:先找出等量關系,再依據(jù)詳細建立等量關系的須要,把應用題中 數(shù)〔量〕和所設的未知數(shù)〔量
38、〕列成有關的代數(shù)式進而列出方程。這是從整體到 部分的一種思維過程,其思索方向是從未知到。 第 17 頁 共 39 頁 4 列方程解應用題的范圍 小學范圍內(nèi)常用方程解的應用題: a 一般應用題; b 和倍、差倍問題; c 幾何形體的周長、面積、體積計算; d 分數(shù)、百分數(shù)應用題; e 比和比例應用題。 五 比和比例 1 比的意義和性質(zhì) 〔1〕 比的意義 兩個數(shù)相除又叫做兩個數(shù)的比。 “:〞是比號,讀作“比〞。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比 的后項。比的前項除以后項所得的商,叫做比值。 同除法比較,比的前項相當于被除數(shù),后項相當于除數(shù),比值相當于商。 比值通常用分數(shù)表示,也可以用
39、小數(shù)表示,有時也可能是整數(shù)。 比的后項不能是零。 依據(jù)分數(shù)及除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當 于分數(shù)值。 〔2〕比的性質(zhì) 比的前項和后項同時乘上或者除以一樣的數(shù)〔0 除外〕,比值不變,這叫做比的 根本性質(zhì)。 〔3〕 求比值和化簡比 求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以 是小數(shù)或分數(shù)。 依據(jù)比的根本性質(zhì)可以把比化成最簡潔的整數(shù)比。它的結(jié)果必需是一個最簡比, 即前、后項是互質(zhì)的數(shù)。 〔4〕比例尺 圖上間隔 :實際間隔 =比例尺 第 18 頁 共 39 頁 要求會求比例尺; 圖上間隔 和比例尺務實際間隔 ;實際間隔 和比例尺求 圖上
40、間隔 。 線段比例尺: 在圖上附有一條注有數(shù)目的線段,用來表示和地面上相對應的實際 間隔 。 〔5〕按比例安排 在農(nóng)業(yè)消費和日常生活中, 經(jīng)常須要把一個數(shù)量依據(jù)肯定的比來進展安排。這種 安排的方法通常叫做按比例安排。 方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。 2 比例的意義和性質(zhì) 〔1〕 比例的意義 表示兩個比相等的式子叫做比例。 組成比例的四個數(shù),叫做比例的項。 兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。 〔2〕比例的性質(zhì) 在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的根本性質(zhì)。 〔3〕解比例 依據(jù)比例的根本性質(zhì), 假如比例中的任何三項,就可以求出這個數(shù)比
41、例中的 另外一個未知項。求比例中的未知項,叫做解比例。 3 正比例和反比例 〔1〕 成正比例的量 兩種相關聯(lián)的量,一種量變更,另一種量也隨著變更,假如這兩種量中相對應的 兩個數(shù)的比值〔也就是商〕肯定,這兩種量就叫做成正比例的量,他們的關系叫 做正比例關系。 用字母表示 y/x=k(肯定〕 〔2〕成反比例的量 兩種相關聯(lián)的量,一種量變更,另一種量也隨著變更,假如這兩種量中相對應的 兩個數(shù)的積肯定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。 用字母表示 x×y=k(肯定) 第 19 頁 共 39 頁 第四章 幾何的初步學問 一 線和角 〔1〕線 * 直線 直線沒有端點;長度無限;
42、過一點可以畫多數(shù)條,過兩點只能畫一條直線。 * 射線 射線只有一個端點;長度無限。 * 線段 線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。 * 平行線 在同一平面內(nèi),不相交的兩條直線叫做平行線。 兩條平行線之間的垂線長度都相等。 * 垂線 兩條直線相交成直角時, 這兩條直線叫做互相垂直,其中一條直線叫做另一條直 線的垂線,相交的點叫做垂足。 從直線外一點到這條直線所畫的垂線的長叫做這點到直線的間隔 。 〔2〕角 〔1〕從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩 條射線叫做角的邊。 〔2〕角的分類 銳角:小于 90°的角叫做銳角。 直角:等于 9
43、0°的角叫做直角。 鈍角:大于 90°而小于 180°的角叫做鈍角。 平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角 180°。 周角:角的一邊旋轉(zhuǎn)一周,及另一邊重合。周角是 360°。 二 平面圖形 1 長方形 第 20 頁 共 39 頁 〔1〕特征 對邊相等,4 個角都是直角的四邊形。有兩條對稱軸。 〔2〕計算公式 c=2(a+b) s=ab 2 正方形 〔1〕特征: 四條邊都相等,四個角都是直角的四邊形。有 4 條對稱軸。 〔2〕計算公式 c= 4a s=a2 3 三角形 〔1〕特征 由三條線段圍成的圖形。 內(nèi)角和是 180 度。 三角形具有穩(wěn)定性。 三角形有三條高。 〔2
44、〕計算公式 s=ah/2 〔3〕 分類 按角分 銳角三角形 :三個角都是銳角。 直角三角形 :有一個角是直角。等腰三角形的兩個銳角各為 45 度,它有一條對 稱軸。 鈍角三角形:有一個角是鈍角。 按邊分 不等邊三角形:三條邊長度不相等。 等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。 等邊三角形:三條邊長度都相等;三個內(nèi)角都是 60 度;有三條對稱軸。 4 平行四邊形 〔1〕 特征 第 21 頁 共 39 頁 兩組對邊分別平行的四邊形。 相對的邊平行且相等。對角相等,相鄰的兩個角的度數(shù)之和為 180 度。平行四邊 形簡潔變形。 〔2〕 計算公式 s=ah 5 梯形 〔1〕特征
45、只有一組對邊平行的四邊形。 中位線等于上下底和的一半。 等腰梯形有一條對稱軸。 〔2〕 公式 s=(a+b)h/2=mh 6 圓 〔1〕 圓的相識 平面上的一種曲線圖形。 圓中心的一點叫做圓心。一般用字母 o 表示。 半徑:連接圓心和圓上隨意一點的線段叫做半徑。一般用 r 表示。 在同一個圓里,有多數(shù)條半徑,每條半徑的長度都相等。 通過圓心并且兩端都在圓上的線段叫做直徑。一般用 d 表示。 同一個圓里有多數(shù)條直徑,全部的直徑都相等。 同一個圓里,直徑等于兩個半徑的長度,即 d=2r。 圓的大小由半徑確定。 圓有多數(shù)條對稱軸。 〔2〕圓的畫法 把圓規(guī)的兩腳分開,定好兩腳間的間隔 〔即半徑〕; 把
46、有針尖的一只腳固定在一點〔即圓心〕上; 把裝有鉛筆尖的一只腳旋轉(zhuǎn)一周,就畫出一個圓。 〔3〕 圓的周長 圍成圓的曲線的長叫做圓的周長。 把圓的周長和直徑的比值叫做圓周率。用字母∏表示。 第 22 頁 共 39 頁 〔4〕 圓的面積 圓所占平面的大小叫做圓的面積。 〔5〕計算公式 d=2r r=d/2 c=∏d c=2∏r s=∏r2 7 扇形 〔1〕 扇形的相識 一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。 圓上 AB 兩點之間的部分叫做弧,讀作“弧 AB〞。 頂點在圓心的角叫做圓心角。 在同一個圓中,扇形的大小及這個扇形的圓心角的大小有關。 扇形有一條對稱軸。 (2) 計算公
47、式 s=n∏r2/360 8 環(huán)形 (1) 特征 由兩個半徑不相等的同心圓相減而成,有多數(shù)條對稱軸。 (2) 計算公式 s=∏(R2-r2〕 9 軸對稱圖形 (1) 特征 假如一個圖形沿著一條直線對折,兩側(cè)的圖形可以完全重合,這個圖形就是軸對 稱圖形。折痕所在的這條直線叫做對稱軸。 正方形有 4 條對稱軸, 長方形有 2 條對稱軸。 等腰三角形有 2 條對稱軸,等邊三角形有 3 條對稱軸。 等腰梯形有一條對稱軸,圓有多數(shù)條對稱軸。 第 23 頁 共 39 頁 菱形有 4 條對稱軸,扇形有一條對稱軸。 三 立體圖形 〔一〕長方體 1 特征 六個面都是長方形〔有時有兩個相對的面是正方形〕。
48、相對的面面積相等,12 條棱相對的 4 條棱長度相等。 有 8 個頂點。 相交于一個頂點的三條棱的長度分別叫做長、寬、高。 兩個面相交的邊叫做棱。 三條棱相交的點叫做頂點。 把長方體放在桌面上,最多只能看到三個面。 長方體或者正方體 6 個面的總面積,叫做它的外表積。 2 計算公式 s=2(ab+ah+bh) V=sh V=abh 〔二〕正方體 1 特征 六個面都是正方形 六個面的面積相等 12 條棱,棱長都相等 有 8 個頂點 正方體可以看作特別的長方體 2 計算公式 S 表= 6a 2 v=a3 〔三〕圓柱 1 圓柱的相識 第 24 頁 共 39 頁 圓柱的上下兩個面叫做底面。 圓柱
49、有一個曲面叫做側(cè)面。 圓柱兩個底面之間的間隔 叫做高 。 進一法:實際中,運用的材料都要比計算的結(jié)果多一些 ,因此,要保存數(shù)的時 候,省略的位上的是 4 或者比 4 小,都要向前一位進 1。這種取近似值的方法叫 做進一法。 2 計算公式 s 側(cè)=ch s 表=s 側(cè)+s 底×2 v=sh/3 〔四〕圓錐 1 圓錐的相識 圓錐的底面是個圓,圓錐的側(cè)面是個曲面。 從圓錐的頂點究竟面圓心的間隔 是圓錐的高。 測量圓錐的高:先把圓錐的底面放平,用一塊平板程度地放在圓錐的頂點上面, 豎直地量出平板和底面之間的間隔 。 把圓錐的側(cè)面綻開得到一個扇形。 2 計算公式 v= sh/3 〔五〕球 1 相識 球
50、的外表是一個曲面,這個曲面叫做球面。 球和圓類似,也有一個球心,用 O 表示。 從球心到球面上隨意一點的線段叫做球的半徑,用 r 表示,每條半徑都相等。 通過球心并且兩端都在球面上的線段,叫做球的直徑,用 d 表示,每條直徑都相 等,直徑的長度等于半徑的 2 倍,即 d=2r。 2 計算公式 d=2r 第五章 簡潔的統(tǒng)計 第 25 頁 共 39 頁 一 統(tǒng)計表 〔一〕意義 * 把統(tǒng)計數(shù)據(jù)填寫在肯定格式的表格內(nèi),用來反映狀況、說明問題,這樣的表 格就叫做統(tǒng)計表。 〔二〕組成部分 * 一般分為表特別和表格內(nèi)兩部分。表特別部分包括標的名稱,單位說明和制 表日期;表格內(nèi)部包括表頭、橫標目、縱標目
51、和數(shù)據(jù)四個方面。 〔三〕種類 * 單式統(tǒng)計表:只含有一個工程的統(tǒng)計表。 * 復式統(tǒng)計表:含有兩個或兩個以上統(tǒng)計工程的統(tǒng)計表。 * 百分數(shù)統(tǒng)計表: 不僅說明各統(tǒng)計工程的詳細數(shù)量,而且說明比較量相當于標準 量的百分比的統(tǒng)計表。 〔四〕制作步驟 1 搜集數(shù)據(jù) 2 整理數(shù)據(jù): 要依據(jù)制表的目的和統(tǒng)計的內(nèi)容,對數(shù)據(jù)進展分類。 3 設計草表: 要依據(jù)統(tǒng)計的目的和內(nèi)容設計分欄格內(nèi)容、分欄格畫法,規(guī)定橫欄、豎欄各需幾 格,每格長度。 4 正式制表: 把核對過的數(shù)據(jù)填入表中,并依據(jù)制表要求,用簡潔、明確的語言寫上統(tǒng)計表的 名稱和制表日期。 二 統(tǒng)計圖 〔一〕意義 * 用點線面積等來表示相關的量之間的數(shù)量關系的圖
52、形叫做統(tǒng)計圖。 〔二〕分類 1 條形統(tǒng)計圖 用一個單位長度表示肯定的數(shù)量,依據(jù)數(shù)量的多少畫成長短不同的直條,然后把 這些直線按肯定的依次排列起來。 第 26 頁 共 39 頁 優(yōu)點:很簡潔看出各種數(shù)量的多少。 留意:畫條形統(tǒng)計圖時,直條的寬窄必需一樣。 取一個單位長度表示數(shù)量的多少要依據(jù)詳細狀況而確定; 復式條形統(tǒng)計圖中表示不同工程的直條,要用不同的線條或顏色區(qū)分開,并在制 圖日期下面注明圖例。 制作條形統(tǒng)計圖的一般步驟: 〔1〕依據(jù)圖紙的大小,畫出兩條互相垂直的射線。 〔2〕在程度射線上,適當安排條形的位置,確定直線的寬度和間隔。 〔3〕在及程度射線垂直的深線上依據(jù)數(shù)據(jù)大小的詳細狀況,確
53、定單位長度表示 多少。 〔4〕依據(jù)數(shù)據(jù)的大小畫出長短不同的直條,并注明數(shù)量。 2 折線統(tǒng)計圖 用一個單位長度表示肯定的數(shù)量,依據(jù)數(shù)量的多少描出各點,然后把各點用線段 順次連接起來。 優(yōu)點:不但可以表示數(shù)量的多少,而且可以清晰地表示出數(shù)量增減變更的狀況。 留意:折線統(tǒng)計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的間隔 要依據(jù)年份或月份的間隔來確定。 制作折線統(tǒng)計圖的一般步驟: 〔1〕依據(jù)圖紙的大小,畫出兩條互相垂直的射線。 〔2〕在程度射線上,適當安排折線的位置,確定直線的寬度和間隔。 〔3〕在及程度射線垂直的深線上依據(jù)數(shù)據(jù)大小的詳細狀況,確定單位長度表示 多少。 〔4〕依據(jù)數(shù)據(jù)的大
54、小描出各點,再用線段順次連接起 來,并注明數(shù)量。 3 扇形統(tǒng)計圖 用整個圓的面積表示總數(shù),用扇形面積表示各部分所占總數(shù)的百分數(shù)。 優(yōu)點: 很清晰地表示出各部分同總數(shù)之間的關系。 制扇形統(tǒng)計圖的一般步驟: 〔1〕 先算出各部分數(shù)量占總量的百分之幾。 第 27 頁 共 39 頁 〔2〕再算出表示各部分數(shù)量的扇形的圓心角度數(shù)。 〔3〕取適當?shù)陌霃疆嬕粋€圓,并依據(jù) 上面算出的圓心角的度數(shù),在圓里畫出各個扇形。 〔4〕在每個扇形中標明所表示的各部分 數(shù)量名稱和所占的百分數(shù),并用不同顏色或條紋把各個扇形區(qū)分開。 五 應用 〔一〕整數(shù)和小數(shù)的應用 1 簡潔應用題 〔1〕 簡潔應用題:只含有一種根
55、本數(shù)量關系,或用一步運算解答的應用題,通 常叫做簡潔應用題。 〔2〕 解題步驟: a 審題理解題意:理解應用題的內(nèi)容,知道應用題的條件和問題。讀題時,不丟 字不添字邊讀邊思索,弄明白題中每句話的意思。也可以復述條件和問題,扶植 理解題意。 b 選擇算法和列式計算:這是解容許用題的中心工作。從題目中告知什么,要求 什么著手,逐步依據(jù)所給的條件和問題,聯(lián)絡四那么運算的含義,分析數(shù)量關系, 確定算法,進展解答并標明正確的單位名稱。 C 檢驗:就是依據(jù)應用題的條件和問題進展檢查看所列算式和計算過程是否正 確,是否符合題意。假如發(fā)覺錯誤,立刻改正。 2 復合應用題 〔1〕有兩個或兩個以上的根本數(shù)量關系組
56、成的,用兩步或兩步以上運算解答的 應用題,通常叫做復合應用題。 〔2〕含有三個條件的兩步計算的應用題。 求比兩個數(shù)的和多〔少〕幾個數(shù)的應用題。 比較兩數(shù)差及倍數(shù)關系的應用題。 〔3〕含有兩個條件的兩步計算的應用題。 兩數(shù)相差多少〔或倍數(shù)關系〕及其中一個數(shù),求兩個數(shù)的和〔或差〕。 兩數(shù)之和及其中一個數(shù),求兩個數(shù)相差多少〔或倍數(shù)關系〕。 〔4〕解答連乘連除應用題。 〔5〕解答三步計算的應用題。 第 28 頁 共 39 頁 〔6〕解答小數(shù)計算的應用題:小數(shù)計算的加法、減法、乘法和除法的應用題, 他們的數(shù)量關系、構(gòu)造、和解題方式都及正式應用題根本一樣,只是在數(shù)或 未知數(shù)中間含有小數(shù)。 d 答案:依
57、據(jù)計算的結(jié)果,先口答,逐步過渡到筆答。 ( 3 ) 解答加法應用題: a 求總數(shù)的應用題:甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。 b 求比一個數(shù)多幾的數(shù)應用題:甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是 多少。 (4 ) 解答減法應用題: a 求剩余的應用題:從數(shù)中去掉一部分,求剩下的部分。 -b 求兩個數(shù)相差的多少的應用題:甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多 多少,或乙數(shù)比甲數(shù)少多少。 c 求比一個數(shù)少幾的數(shù)的應用題:甲數(shù)是多少,,乙數(shù)比甲數(shù)少多少,求乙 數(shù)是多少。 (5 ) 解答乘法應用題: a 求一樣加數(shù)和的應用題:一樣的加數(shù)和一樣加數(shù)的個數(shù),求總數(shù)。 b 求一個數(shù)的幾倍是多少的應用題
58、:一個數(shù)是多少,另一個數(shù)是它的幾倍, 求另一個數(shù)是多少。 ( 6) 解答除法應用題: a 把一個數(shù)平均分成幾份,求每一份是多少的應用題:一個數(shù)和把這個數(shù)平 均分成幾份的,求每一份是多少。 b 求一個數(shù)里包含幾個另一個數(shù)的應用題:一個數(shù)和每份是多少,求可以分 成幾份。 C 求一個數(shù)是另一個數(shù)的的幾倍的應用題:甲數(shù)乙數(shù)各是多少,求較大數(shù)是 較小數(shù)的幾倍。 d 一個數(shù)的幾倍是多少,求這個數(shù)的應用題。 〔7〕常見的數(shù)量關系: 總價= 單價×數(shù)量 路程= 速度×時間 第 29 頁 共 39 頁 工作總量=工作時間×工效 總產(chǎn)量=單產(chǎn)量×數(shù)量 3 典型應用題 具有獨特的構(gòu)造特征的和特定的解題規(guī)律的復合
59、應用題,通常叫做典型應用題。 〔1〕平均數(shù)問題:平均數(shù)是等分除法的開展。 解題關鍵:在于確定總數(shù)量和及之相對應的總份數(shù)。 算術(shù)平均數(shù): 幾個不相等的同類量和及之相對應的份數(shù), 求平均每份是多少。 數(shù)量關系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。 加權(quán)平均數(shù):兩個以上假設干份的平均數(shù),求總平均數(shù)是多少。 數(shù)量關系式 〔部分平均數(shù)×權(quán)數(shù)〕的總和÷〔權(quán)數(shù)的和〕=加權(quán)平均數(shù)。 差額平均數(shù): 是把各個大于或小于標準數(shù)的部分之和被總份數(shù)均分,求的是標 準數(shù)及各數(shù)相差之和的平均數(shù)。 數(shù)量關系式: 〔大數(shù)-小數(shù)〕÷2=小數(shù)應得數(shù) 數(shù)=最大數(shù)應給數(shù) 例: 一輛汽車以每小時 0 千米 最大數(shù)及各數(shù)之差的和÷總份
60、 最大數(shù)及個數(shù)之差的和÷總份數(shù)=最小數(shù)應得數(shù)。 100 千米 的速度從甲地開往乙地,又以每小時 6 的速度從乙地開往甲地。求這輛車的平均速度。 分析: 求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為 “ 1 〞,那么汽車行駛的總路程為“ 2 〞,從甲地到乙地的速度為 100 ,所用 的時間為 ,汽車從乙地到甲地速度為 共行的時間為 + = 60 千米 ,所用的時間是 =75 〔千米〕 ,汽車 , 汽車的平均速度為 2 ÷ 〔2〕 歸一問題:互相關聯(lián)的兩個量,其中一種量變更,另一種量也隨之而 變更,其變更的規(guī)律是一樣的,這種問題稱之為歸一問題。 依據(jù)求“單一量〞的步驟的
61、多少,歸一問題可以分為一次歸一問題,兩次歸一問 題。 依據(jù)球癡單一量之后,解題采納乘法還是除法,歸一問題可以分為正歸一問題, 反歸一問題。 第 30 頁 共 39 頁 一次歸一問題,用一步運算就能求出“單一量〞的歸一問題。又稱“單歸一。〞 兩次歸一問題,用兩步運算就能求出“單一量〞的歸一問題。又稱“雙歸一。〞 正歸一問題:用等分除法求出“單一量〞之后,再用乘法計算結(jié)果的歸一問題。 反歸一問題:用等分除法求出“單一量〞之后,再用除法計算結(jié)果的歸一問題。 解題關鍵:從的一組對應量中用等分除法求出一份的數(shù)量〔單一量〕,然后 以它為標準,依據(jù)題目的要求算出結(jié)果。 數(shù)量關系式:單一量×份數(shù)=
62、總數(shù)量〔正歸一〕 總數(shù)量÷單一量=份數(shù)〔反歸一〕 例 一個織布工人,在七月份織布 米 ,須要多少天? 4774 米 , 照這樣計算,織布 6930 分析:必需先求出平均每天織布多少米,就是單一量。 693 0 ÷〔 477 4 ÷ 31 〕 =45 〔天〕 〔3〕歸總問題:是單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量 〔或單位數(shù)量的個數(shù)〕,通過求總數(shù)量求得單位數(shù)量的個數(shù)〔或單位數(shù)量〕。 特點:兩種相關聯(lián)的量,其中一種量變更,另一種量也跟著變更,不過變更的規(guī) 律相反,和反比例算法彼此相通。 數(shù)量關系式: 單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量 = 另一個單位數(shù)量 單位數(shù)量×單位個數(shù)÷另一個
63、單位數(shù)量= 另一個單位數(shù)量。 例 修一條水渠,原方案每天修 天修了多少米? 分析:因為要求出每天修的長度,就必需先求出水渠的長度。所以也把這類應用 題叫做“歸總問題〞。不同之處是“歸一〞先求出單一量,再求總量,歸總問題 是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 〔米〕 800 米 , 6 天修完。實際 4 天修完,每 第 31 頁 共 39 頁 〔4〕 和差問題:大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的 應用題叫做和差問題。 解題關鍵:是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和〔或兩個小數(shù)的和〕,然后 再求另一個數(shù)。 解題規(guī)律:〔和+差〕÷2 = 大數(shù) 〔和-差〕
64、÷2=小數(shù) 大數(shù)-差=小數(shù) 和-小數(shù)= 大數(shù) 例 某加工廠甲班和乙班共有工人 94 人,因工作須要臨時從乙班調(diào) 46 人到甲 班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人? 分析:從乙班調(diào) 46 人到甲班,對于總數(shù)沒有變更,如今把乙數(shù)轉(zhuǎn)化成 2 個乙 班,即 9 4 - 12 ,由此得到如今的乙班是〔 9 4 - 12 〕÷ 2=41 〔人〕, 乙班在調(diào)出 46 人之前應當為 41+46=87 〔人〕,甲班為 9 4 - 87=7 〔人〕 〔5〕和倍問題:兩個數(shù)的和及它們之間的倍數(shù) 關系,求兩個數(shù)各是多少的 應用題,叫做和倍問題。 解題關鍵:找準標準數(shù)〔即 1 倍數(shù)
65、〕一般說來,題中說是“誰〞的幾倍,把誰就 確定為標準數(shù)。求出倍數(shù)和之后,再求出標準的數(shù)量是多少。依據(jù)另一個數(shù)〔也 可能是幾個數(shù)〕及標準數(shù)的倍數(shù)關系,再去求另一個數(shù)〔或幾個數(shù)〕的數(shù)量。 解題規(guī)律:和÷倍數(shù)和=標準數(shù) 標準數(shù)×倍數(shù)=另一個數(shù) 例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有 大貨車和小汽車各有多少輛? 分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使 總數(shù)及〔 5+1 〕倍對應,總車輛數(shù)應〔 115-7 〕輛 。 列式為〔 115-7 〕÷〔 5+1 〕 =18 〔輛〕, 18 × 5+7=97 〔輛〕 〔6
66、〕差倍問題:兩個數(shù)的差,及兩個數(shù)的倍數(shù)關系,求兩個數(shù)各是多少的 應用題。 解題規(guī)律:兩個數(shù)的差÷〔倍數(shù)-1 〕= 標準數(shù) 標準數(shù)×倍數(shù)=另一個數(shù)。 第 32 頁 共 39 頁 例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣 的長度,結(jié)果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米? 分析:兩根繩子剪去一樣的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍, 實比乙繩多〔 3-1 〕倍,以乙繩的長度為標準數(shù)。列式〔 63-29 〕÷〔 3-1 〕 =17 〔米〕?乙繩剩下的長度, 17 × 3=51 〔米〕?甲繩剩下的長度, 2917=12 〔米〕?剪去的長度。 〔7〕行程問題:關于走路、行車等問題,一般都是計算路程、時間、速度,叫 做行程問題。解答這類問題首先要搞清晰速度、時間、路程、方向、杜速度和、 速度差等概念,理解他們之間的關系,再依據(jù)這類問題的規(guī)律解答。 解題關鍵及規(guī)律: 同時同地相背而行:路程=速度和×時間。 同時相向而行:相遇時間=速度和×時間 同時同向而行〔速度慢的在前,快的在后〕:追剛好間=路程速度
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復習題含答案
- 1 各種煤礦安全考試試題含答案