【步步高】屆高三數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程學(xué)案 理 新人教A版

上傳人:無*** 文檔編號:138701212 上傳時間:2022-08-22 格式:DOC 頁數(shù):10 大?。?22KB
收藏 版權(quán)申訴 舉報 下載
【步步高】屆高三數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程學(xué)案 理 新人教A版_第1頁
第1頁 / 共10頁
【步步高】屆高三數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程學(xué)案 理 新人教A版_第2頁
第2頁 / 共10頁
【步步高】屆高三數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程學(xué)案 理 新人教A版_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【步步高】屆高三數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程學(xué)案 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《【步步高】屆高三數(shù)學(xué)大一輪復(fù)習(xí) 坐標(biāo)系與參數(shù)方程學(xué)案 理 新人教A版(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 學(xué)案75 坐標(biāo)系與參數(shù)方程 導(dǎo)學(xué)目標(biāo):1.了解坐標(biāo)系的有關(guān)概念,理解簡單圖形的極坐標(biāo)方程.2.會進(jìn)行極坐標(biāo)方程與直角坐標(biāo)方程的互化.3.理解直線、圓及橢圓的參數(shù)方程,會進(jìn)行參數(shù)方程與普通方程的互化,并能進(jìn)行簡單應(yīng)用. 自主梳理 1.極坐標(biāo)系的概念 在平面上取一個定點O,叫做極點;自極點O引一條射線Ox,叫做________;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個____________. 設(shè)M是平面上任一點,極點O與點M的距離OM叫做點M的________,記為ρ;以極軸Ox為始邊,射線OM為終邊的角xOM叫做點M的

2、________,記為θ.有序數(shù)對(ρ,θ)叫做點M的__________,記作(ρ,θ). 2.極坐標(biāo)和直角坐標(biāo)的互化 把直角坐標(biāo)系的原點作為極點,x軸的正半軸作為極軸,并在兩種坐標(biāo)系中取相同的長度單位,設(shè)M是平面內(nèi)任意一點,它的直角坐標(biāo)是(x,y),極坐標(biāo)為(ρ,θ),則它們之間的關(guān)系為x=__________,y=__________.另一種關(guān)系為:ρ2=__________,tan θ=______________. 3.簡單曲線的極坐標(biāo)方程 (1)一般地,如果一條曲線上任意一點都有一個極坐標(biāo)適合方程φ(ρ,θ)=0,并且坐標(biāo)適合方程φ(ρ,θ)=0的點都在曲線上,那么方程φ(

3、ρ,θ)=0叫做曲線的____________. (2)常見曲線的極坐標(biāo)方程 ①圓的極坐標(biāo)方程 ____________表示圓心在(r,0)半徑為|r|的圓; ____________表示圓心在(r,)半徑為|r|的圓; ________表示圓心在極點,半徑為|r|的圓. ②直線的極坐標(biāo)方程 ____________表示過極點且與極軸成α角的直線; ____________表示過(a,0)且垂直于極軸的直線; ____________表示過(b,)且平行于極軸的直線; ρsin(θ-α)=ρ0sin(θ0-α)表示過(ρ0,θ0)且與極軸成α角的直線方程. 4.常見曲線的

4、參數(shù)方程 (1)直線的參數(shù)方程 若直線過(x0,y0),α為直線的傾斜角,則直線的參數(shù)方程為這是直線的參數(shù)方程,其中參數(shù)l有明顯的幾何意義. (2)圓的參數(shù)方程 若圓心在點M(a,b),半徑為R,則圓的參數(shù)方程為0≤α<2π. (3)橢圓的參數(shù)方程 中心在坐標(biāo)原點的橢圓+=1的參數(shù)方程為(φ為參數(shù)). (4)拋物線的參數(shù)方程 拋物線y2=2px(p>0)的參數(shù)方程為 自我檢測 1.(2010·北京)極坐標(biāo)方程(ρ-1)(θ-π)=0(ρ≥0)表示的圖形是(  ) A.兩個圓 B.兩條直線 C.一個圓和一條射線 D.一條直線和一條射線 2.(2010·湖南

5、)極坐標(biāo)方程ρ=cos θ和參數(shù)方程(t為參數(shù))所表示的圖形分別是(  ) A.圓、直線 B.直線、圓 C.圓、圓 D.直線、直線 3.(2010·重慶)直線y=x+與圓心為D的圓(θ∈[0,2π))交于A、B兩點,則直線AD與BD的傾斜角之和為(  ) A.π B.π C.π D.π 4.(2011·廣州一模)在極坐標(biāo)系中,直線ρsin(θ+)=2被圓ρ=4截得的弦長為________. 5.(2010·陜西)已知圓C的參數(shù)方程為(α為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin θ=1,則直線l與圓

6、C的交點的直角坐標(biāo)為________________. 探究點一 求曲線的極坐標(biāo)方程 例1 在極坐標(biāo)系中,以(,)為圓心,為半徑的圓的方程為________. 變式遷移1 如圖,求經(jīng)過點A(a,0)(a>0),且與極軸垂直的直線l的極坐標(biāo)方程. 探究點二 極坐標(biāo)方程與直角坐標(biāo)方程的互化 例2 (2009·遼寧)在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.曲線C的極坐標(biāo)方程為ρcos=1,M、N分別為C與x軸,y軸的交點. (1)寫出C的直角坐標(biāo)方程,并求M、N的極坐標(biāo); (2)設(shè)MN的中點為P,求直線OP的極坐

7、標(biāo)方程. 變式遷移2 (2010·東北三校第一次聯(lián)考)在極坐標(biāo)系下,已知圓O:ρ=cos θ+sin θ和直線l:ρsin(θ-)=, (1)求圓O和直線l的直角坐標(biāo)方程; (2)當(dāng)θ∈(0,π)時,求直線l與圓O公共點的一個極坐標(biāo). 探究點三 參數(shù)方程與普通方程的互化 例3 將下列參數(shù)方程化為普通方程: (1);(2);(3). 變式遷移3 化下列參數(shù)方程為普通方程,并作出曲線的草圖. (1)(θ為參數(shù)); (2) (t為參數(shù)).

8、 探究點四 參數(shù)方程與極坐標(biāo)的綜合應(yīng)用 例4 求圓ρ=3cos θ被直線(t是參數(shù))截得的弦長. 變式遷移4 (2011·課標(biāo)全國)在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)) M是C1上的動點,P點滿足=2,P點的軌跡為曲線C2. (1)求C2的方程; (2)在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|. 本節(jié)內(nèi)容要注意以下兩點:一、簡單曲線的極坐標(biāo)方程可結(jié)合極坐標(biāo)系中ρ和θ的具體含義求出,也可利用極坐標(biāo)方程與直角坐標(biāo)方程的互化得出.同

9、直角坐標(biāo)方程一樣,由于建系的不同,曲線的極坐標(biāo)方程也會不同.在沒有充分理解極坐標(biāo)的前提下,可先化成直角坐標(biāo)解決問題.二、在普通方程中,有些F(x,y)=0不易得到,這時可借助于一個中間變量(即參數(shù))來找到變量x,y之間的關(guān)系.同時,在直角坐標(biāo)系中,很多比較復(fù)雜的計算(如圓錐曲線),若借助于參數(shù)方程來解決,將會大大簡化計算量.將曲線的參數(shù)方程化為普通方程的關(guān)鍵是消去其中的參數(shù),此時要注意其中的x,y(它們都是參數(shù)的函數(shù))的取值范圍,也即在消去參數(shù)的過程中一定要注意普通方程與參數(shù)方程的等價性.參數(shù)方程化普通方程常用的消參技巧有:代入消元、加減消元、平方后相加減消元等.同極坐標(biāo)方程一樣,在沒有充分理

10、解參數(shù)方程的前提下,可先化成直角坐標(biāo)方程再去解決相關(guān)問題. (滿分:75分) 一、選擇題(每小題5分,共25分) 1.在極坐標(biāo)系中,與點(3,-)關(guān)于極軸所在直線對稱的點的極坐標(biāo)是(  ) A.(3,π) B.(3,) C.(3,π) D.(3,π) 2.曲線的極坐標(biāo)方程為ρ=2cos2-1的直角坐標(biāo)方程為(  ) A.x2+(y-)2= B.(x-)2+y2= C.x2+y2= D.x2+y2=1 3.(2010·湛江模擬)在極坐標(biāo)方程中,曲線C的方程是ρ=4sin θ,過點(4,)作曲線C的切線,則切線長為(  ) A.4 B

11、. C.2 D.2 4.(2010·佛山模擬)已知動圓方程x2+y2-xsin 2θ+2·ysin(θ+)=0(θ為參數(shù)),那么圓心的軌跡是(  ) A.橢圓 B.橢圓的一部分 C.拋物線 D.拋物線的一部分 5.(2010·安徽)設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為(  ) A.1 B.2 C.3 D.4 二、填空題(每小題4分,共12分) 6.(2010·天津)已知圓C的圓心是直線(t為參數(shù))與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為_

12、_______. 7.(2011·廣東)已知兩曲線參數(shù)方程分別為(0≤θ<π)和(t∈R),它們的交點坐標(biāo)為________. 8.(2010·廣東深圳高級中學(xué)一模)在直角坐標(biāo)系中圓C的參數(shù)方程為(α為參數(shù)),若以原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的極坐標(biāo)方程為________. 三、解答題(共38分) 9.(12分)(2011·江蘇)在平面直角坐標(biāo)系xOy中,求過橢圓(φ為參數(shù))的右焦點,且與直線(t為參數(shù))平行的直線的普通方程. 10.(12分)(2010·福建)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)

13、系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ. (1)求圓C的直角坐標(biāo)方程; (2)設(shè)圓C與直線l交于點A,B.若點P的坐標(biāo)為(3,),求|PA|+|PB|. 11.(14分)(2010·課標(biāo)全國)已知直線C1:(t為參數(shù)),圓C2:(θ為參數(shù)). (1)當(dāng)α=時,求C1與C2的交點坐標(biāo); (2)過坐標(biāo)原點O作C1的垂線,垂足為A,P為OA的中點,當(dāng)α變化時,求P點軌跡的參數(shù)方程,并指出它是什么曲線. 學(xué)案75 坐標(biāo)系與參數(shù)方程 自主

14、梳理 1.極軸 極坐標(biāo)系 極徑 極角 極坐標(biāo) 2.ρcos θ ρsin θ x2+y2 (x≠0) 3.(1)極坐標(biāo)方程 (2)①ρ=2rcos θ ρ=2rsin θ ρ=r?、讦龋溅?ρ∈R) ρcos θ=a ρsin θ=b 自我檢測 1.C 2.A 3.C 4.4 5.(-1,1),(1,1) 解析 ∵y=ρsin θ, ∴直線l的直角坐標(biāo)方程為y=1. 由得x2+(y-1)2=1. 由得或 ∴直線l與圓C的交點的直角坐標(biāo)為(-1,1)和(1,1). 課堂活動區(qū) 例1 解題導(dǎo)引 求曲線的極坐標(biāo)方程的步驟:①建立適當(dāng)?shù)臉O坐標(biāo)系,設(shè)P(ρ,θ)是曲線上任意一點;

15、②由曲線上的點所適合的條件,列出曲線上任意一點的極徑ρ和極角θ之間的關(guān)系式;③將列出的關(guān)系式進(jìn)行整理、化簡,得出曲線上的極坐標(biāo)方程;④證明所得方程就是曲線的極坐標(biāo)方程,若方程的推導(dǎo)過程正確,化簡過程都是同解變形,這一證明可以省略. 答案 ρ=asin θ,0≤θ<π 解析 圓的直徑為a,設(shè)圓心為C,在圓上任取一點A(ρ,θ), 則∠AOC=-θ或θ-, 即∠AOC=|θ-|. 又ρ=acos∠AOC=acos|θ-|=asin θ. ∴圓的方程是ρ=asin θ,0≤θ<π. 變式遷移1 解 設(shè)P(ρ,θ)是直線l上任意一點,OPcos θ=OA, 即ρcos θ=a,

16、故所求直線的極坐標(biāo)方程為ρcos θ=a. 例2 解題導(dǎo)引 直角坐標(biāo)方程化為極坐標(biāo)方程比較容易,只要運(yùn)用公式x=ρcos θ及y=ρsin θ直接代入并化簡即可;而極坐標(biāo)方程化為直角坐標(biāo)方程則相對困難一些,解此類問題常通過變形,構(gòu)造形如ρcos θ,ρsin θ,ρ2的形式,進(jìn)行整體代換.其中方程的兩邊同乘以(或同除以)ρ及方程兩邊平方是常用的變形方法.但對方程進(jìn)行變形時,方程必須同解,因此應(yīng)注意對變形過程的檢驗. 解 (1)由ρcos=1得 ρ=1. 從而C的直角坐標(biāo)方程為x+y=1, 即x+y=2,當(dāng)θ=0時,ρ=2,所以M(2,0). 當(dāng)θ=時,ρ=,所以N. (2)M點的

17、直角坐標(biāo)為(2,0). N點的直角坐標(biāo)為(0,). 所以P點的直角坐標(biāo)為, 則P點的極坐標(biāo)為, 所以直線OP的極坐標(biāo)方程為θ=,ρ∈(-∞,+∞). 變式遷移2 解 (1)圓O:ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圓O的直角坐標(biāo)方程為x2+y2=x+y, 即x2+y2-x-y=0. 直線l:ρsin(θ-)=,即ρsin θ-ρcos θ=1, 則直線l的直角坐標(biāo)方程為y-x=1, 即x-y+1=0. (2)由得 故直線l與圓O公共點的一個極坐標(biāo)為(1,). 例3 解題導(dǎo)引 參數(shù)方程通過消去參數(shù)化為普通方程.對于(1)直接消去參數(shù)k有困難

18、,可通過兩式相除,先降低k的次數(shù),再運(yùn)用代入法消去k;對于(2)可運(yùn)用恒等式(sin θ+cos θ)2=1+sin 2θ消去θ;對于(3)可運(yùn)用恒等式()2+()2=1消去t. 另外,參數(shù)方程化為普通方程時,不僅要消去參數(shù),還應(yīng)注意普通方程與原參數(shù)方程的取值范圍保持一致. 解 (1)兩式相除,得k=.將k=代入,得x=. 化簡,得所求的普通方程是4x2+y2-6y=0(y≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y2=2-x. 又x=1-sin 2θ∈[0,2], 得所求的普通方程是y2=2-x,x∈[0,2]. (3)由

19、()2+()2=1, 得x2+4y2=1. 又x=≠-1, 得所求的普通方程是x2+4y2=1(x≠-1). 變式遷移3 解 (1)由y2=(sin θ+cos θ)2=1+sin 2θ=1+2x, 得y2=2x+1. ∵-≤sin 2θ≤,∴-≤x≤. ∵-≤sin θ+cos θ≤,∴-≤y≤. 故所求普通方程為 y2=2 (-≤x≤,-≤y≤),圖形為拋物線的一部分. 圖形如圖甲所示. (2)由x2+y2=2+2=1及x=≠0,xy=≥0知,所求軌跡為兩段圓弧x2+y2=1 (0

20、題導(dǎo)引 一般將參數(shù)方程化為普通方程,極坐標(biāo)方程化成直角坐標(biāo)方程解決. 解 將極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程: ρ=3cos θ即:x2+y2=3x, 即(x-)2+y2=.即:2x-y-3=0. 所以圓心到直線的距離d==0, 即直線經(jīng)過圓心, 所以圓被直線截得的弦長為3. 變式遷移4 解 (1)設(shè)P(x,y),則由條件知M(,). 由于M點在C1上, 所以即 從而C2的參數(shù)方程為(α為參數(shù)) (2)曲線C1的極坐標(biāo)方程為ρ=4sin θ,曲線C2的極坐標(biāo)方程為ρ=8sin θ. 射線θ=與C1的交點A的極徑為ρ1=4sin, 射線θ=與C2的交點B的極徑為ρ2=8si

21、n. 所以|AB|=|ρ2-ρ1|=2. 課后練習(xí)區(qū) 1.B [由于極徑不變,極角關(guān)于極軸對稱, ∴其對稱點為(3,).故選B.] 2.B [∵ρ=2cos2-1,∴ρ2=ρcos θ即x2+y2=x, ∴(x-)2+y2=.] 3.C [ρ=4sin θ化為普通方程為x2+(y-2)2=4,點(4,)化為直角坐標(biāo)為(2,2),切線長、圓心到定點的距離及半徑構(gòu)成直角三角形,由勾股定理:切線長為=2,故選C.] 4.D [圓心軌跡的參數(shù)方程為 即 消去參數(shù)得y2=1+2x(-≤x≤),故選D.] 5.B [∵曲線C的方程為(θ為參數(shù)), ∴(x-2)2+(y+1)2=

22、9,而l為x-3y+2=0, ∴圓心(2,-1)到l的距離d===.又∵<3,>3,∴有2個點.] 6.(x+1)2+y2=2 解析 直線(t為參數(shù))與x軸的交點為(-1,0),故圓C的圓心為(-1,0).又圓C與直線x+y+3=0相切,∴圓C的半徑為r==,∴圓C的方程為(x+1)2+y2=2. 7.(1,) 解析 將兩曲線的參數(shù)方程化為一般方程分別為+y2=1(0≤y≤1,-

23、 θ-2)2=4,整理得ρ=4sin θ. 9.解 由題設(shè)知,橢圓的長半軸長a=5,短半軸長b=3,從而c==4,所以右焦點為(4,0).將已知直線的參數(shù)方程化為普通方程:x-2y+2=0.(6分) 故所求直線的斜率為,因此其方程為y=(x-4),(8分) 即x-2y-4=0.(12分) 10.解 方法一 (1)ρ=2sin θ,得x2+y2-2y=0, 即x2+(y-)2=5.(4分) (2)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得 (3-t)2+(t)2=5,即t2-3t+4=0.(6分) 由于Δ=(3)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實根,所以 又直線

24、l過點P(3,), 故由上式及t的幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2=3.(12分) 方法二 (1)同方法一. (2)因為圓C的圓心為點(0,),半徑r=,直線l的普通方程為y=-x+3+.(8分) 由得x2-3x+2=0. 解得或(10分) 不妨設(shè)A(1,2+),B(2,1+),又點P的坐標(biāo)為(3,), 故|PA|+|PB|=+=3.(12分) 11.解 (1)當(dāng)α=時,C1的普通方程為y=(x-1),C2的普通方程為x2+y2=1,聯(lián)立方程組解得C1與C2的交點坐標(biāo)為(1,0),(,-).(7分) (2)C1的普通方程為xsin α-ycos α-sin α=0. A點坐標(biāo)為(sin2α,-cos αsin α), 故當(dāng)α變化時,P點軌跡的參數(shù)方程為 (α為參數(shù)).(9分) P點軌跡的普通方程為(x-)2+y2=.(12分) 故P點軌跡是圓心為(,0),半徑為的圓. (14分) 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲