《2013年中考數(shù)學(xué)模擬試題匯編 圖形的折疊》由會員分享,可在線閱讀,更多相關(guān)《2013年中考數(shù)學(xué)模擬試題匯編 圖形的折疊(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2013年中考數(shù)學(xué)模擬試題匯編 圖形的折疊
例1 如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點,若CF=1,F(xiàn)D=2,則BC的長為( ?。?
A. 3 B. 2 C. 2 D. 2
考點: 翻折變換(折疊問題)。810360
分析: 首先過點E作EM⊥BC于M,交BF于N,易證得△ENG≌△BNM(AAS),MN是△BCF的中位線,根據(jù)全等三角形的性質(zhì),即可求得GN=MN,由折疊的性質(zhì),可得BG=3,繼而求得BF的值,又由勾股定理,即可求得BC的長.
解答: 解:過點E作EM⊥BC于M,交BF于N,
∵四邊形ABCD是矩
2、形,
∴∠A=∠ABC=90°,AD=BC,
∵∠EMB=90°,
∴四邊形ABME是矩形,
∴AE=BM,
由折疊的性質(zhì)得:AE=GE,∠EGN=∠A=90°,
∴EG=BM,
∵∠ENG=∠BNM,
∴△ENG≌△BNM(AAS),
∴NG=NM,
∴CM=DE,
∵E是AD的中點,
∴AE=ED=BM=CM,
∵EM∥CD,
∴BN:NF=BM:CM,
∴BN=NF,
∴NM=CF=,
∴NG=,
∵BG=AB=CD=CF+DF=3,
∴BN=BG﹣NG=3﹣=,
∴BF=2BN=5,
∴BC===2.
故選B.
點評: 此題考查了矩形的
3、判定與性質(zhì)、折疊的性質(zhì)、三角形中位線的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
例2 (2012?天津)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)洗中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.
(Ⅰ)如圖①,當(dāng)∠BOP=30°時,求點P的坐標(biāo);
(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點C′恰好落在邊OA上時,求點P的坐標(biāo)(直接
4、寫出結(jié)果即可).
考點:翻折變換(折疊問題);坐標(biāo)與圖形性質(zhì);全等三角形的判定與性質(zhì);勾股定理;相似三角形的判定與性質(zhì).
專題:幾何綜合題.
分析:(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;
(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應(yīng)邊成比例,即可求得答案;
(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長
5、,然后利用相似三角形的對應(yīng)邊成比例與m= t2- t+6,即可求得t的值.
解答:解:(Ⅰ)根據(jù)題意,∠OBP=90°,OB=6,
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2,
即(2t)2=62+t2,
解得:t1=2,t2=-2(舍去).
∴點P的坐標(biāo)為(2,6).
(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP,
∴∠OPB′=∠OPB,∠QPC′=∠QPC,
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,
∴∠OPB+∠QPC=90°,
6、
∵∠BOP+∠OPB=90°,
∴∠BOP=∠CPQ.
又∵∠OBP=∠C=90°,
∴△OBP∽△PCQ,
∴,
由題意設(shè)BP=t,AQ=m,BC=11,AC=6,則PC=11-t,CQ=6-m.
∴.
∴m= t2- t+6(0<t<11).
(Ⅲ)過點P作PE⊥OA于E,
∴∠PEA=∠QAC′=90°,
∴∠PC′E+∠EPC′=90°,
∵∠PC′E+∠QC′A=90°,
∴∠EPC′=∠QC′A,
∴△PC′E∽△C′QA,
∴,
∵PC′=PC=11-t,PE=OB=6,AQ=m,C′Q=CQ=6-m,
∴AC′=,
∴,
∵m= t2-
7、 t+6,
解得:t1=,t2=,
點P的坐標(biāo)為(,6)或(,6).
點評:此題考查了折疊的性質(zhì)、矩形的性質(zhì)以及相似三角形的判定與性質(zhì)等知識.此題難度較大,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
例3 如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是( ?。?
A. B. C. D.
考點: 翻折變換(折疊問題)。810360
分析: 首先連接CD,交MN于E,由將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,即
8、可得MN⊥CD,且CE=DE,又由MN∥AB,易得△CMN∽△CAB,根據(jù)相似三角形的面積比等于相似比的平方,相似三角形對應(yīng)高的比等于相似比,即可得,又由MC=6,NC=,即可求得四邊形MABN的面積.
解答: 解:連接CD,交MN于E,
∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,
∴MN⊥CD,且CE=DE,
∴CD=2CE,
∵MN∥AB,
∴CD⊥AB,
∴△CMN∽△CAB,
∴,
∵在△CMN中,∠C=90°,MC=6,NC=,
∴S△CMN=CM?CN=×6×2=6,
∴S△CAB=4S△CMN=4×6=24,
∴S四邊形MABN=S△C
9、AB﹣S△CMN=24﹣6=18.
故選C.
點評: 此題考查了折疊的性質(zhì)、相似三角形的判定與性質(zhì)以及直角三角形的性質(zhì).此題難度適中,解此題的關(guān)鍵是注意折疊中的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
例4 如圖,將矩形ABCD沿直線EF折疊,使點C與點A重合,折痕交AD于點E,交BC于點F,連接AF、CE,
(1)求證:四邊形AFCE為菱形;
(2)設(shè)AE=a,ED=b,DC=c.請寫出一個a、b、c三者之間的數(shù)量關(guān)系式.
考點:翻折變換(折疊問題);全等三角形的判定與性質(zhì);菱形的判定.
分析:(1)由矩形ABCD與折疊的性質(zhì),易證得△CEF是等腰三角形,即CE=CF
10、,即可證得AF=CF=CE=AE,即可得四邊形AFCE為菱形;
(2)由折疊的性質(zhì),可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2.
解答:(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠AEF=∠EFC,
由折疊的性質(zhì),可得:∠AEF=∠CEF,AE=CE,AF=CF,
∴∠EFC=∠CEF,
∴CF=CE,
∴AF=CF=CE=AE,
∴四邊形AFCE為菱形;
(2)a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2.
理由:由折疊的性質(zhì),得:CE=AE,
∵四邊形ABCD是矩形,
∴∠D=90°,
∵AE=a,ED=b,DC=c,
∴CE=AE=a,
在Rt△DCE中,CE2=CD2+DE2,
∴a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2.
點評:此題考查了矩形的性質(zhì)、折疊的性質(zhì)、菱形的判定以及勾股定理等知識.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對應(yīng)關(guān)系.