四孔方墊片、名爵汽車底盤連接片正裝落料沖孔復(fù)合模具設(shè)計-沖壓模含15張CAD圖
四孔方墊片、名爵汽車底盤連接片正裝落料沖孔復(fù)合模具設(shè)計-沖壓模含15張CAD圖,四孔,墊片,汽車底盤,連接,片正裝落料,沖孔,復(fù)合,模具設(shè)計,沖壓,15,cad
外文出處: A.Ghiotti,E.Simonetto,S.Bruschi.Wear,2019,4:348-356
1.外文資料翻譯譯文(約3000漢字):
工藝參數(shù)對AA7075熱沖壓摩擦性能的影響
A. Ghiotti?, E. Simonetto, S. Bruschi
=
摘要:為評估材料熱處理的影響及主要工藝參數(shù),本文介紹了最近AA7075熱沖壓成形中起膠機(jī)理的實驗和數(shù)值研究結(jié)果。通過在200-450℃進(jìn)行拉絲實驗,研究固態(tài)石墨在固溶和T6條件下的潤滑特性,改變后的正常接觸壓力可達(dá)10Mpa,滑動速度可達(dá)50mm/s。結(jié)果表明,隨著溫度的升高,摩擦系數(shù)呈先減小后增大的趨勢,在材料向模具轉(zhuǎn)移的最高溫度下出現(xiàn)粘附現(xiàn)象。用微型有限元模型解釋這一現(xiàn)象,表明粗糙度峰值附近的局部溫度可能對材料強(qiáng)度產(chǎn)生局部影響,從而導(dǎo)致粘著磨損。
關(guān)鍵詞: 熱沖壓鋁合金;AA7075;石墨;粘著磨損
1.介紹
在航空航天和汽車等運輸行業(yè)的很多領(lǐng)域,對亮度和性能的不斷需求,正促使設(shè)計師和制造商將注意力轉(zhuǎn)向鋁合金的使用,不僅限于鑄造或鍛造的散裝部件,而且鋁合金用于通過鈑金成型工藝獲得復(fù)雜形狀的零件[1]。幾個鋁系列,即AA5xxx,AA6xxx和AA7xxx[2],對于上述應(yīng)用而言,目前具有很高的機(jī)械(高強(qiáng)度質(zhì)量比)和化學(xué)性能(良好的耐腐蝕性和可焊接性),但同時由于傳統(tǒng)技術(shù)的原因,它們通常很難成型,承受高成型載荷,回彈并減少成型[3-5]。隨著高強(qiáng)度鋼沖壓技術(shù)領(lǐng)域的發(fā)展[6],在鋁板沖壓中引入高溫工藝路線已被證明在多種先進(jìn)應(yīng)用中很有希望,基本上可消除回彈現(xiàn)象并顯著提高可成形性[7]。這些應(yīng)用還表明,由于鋁必須附著在模具上,因此摩擦和磨損可能成為關(guān)鍵。該過程的早期步驟,隨之而來的是劇烈的磨損[5]。此外,除了傳統(tǒng)的物理因素(如工具的幾何形狀和表面條件)外,高溫過程中的摩擦和磨損還受到化學(xué)及過程有關(guān)方面的影響,如滑動速度,溫度和接觸壓力[7]。
對科學(xué)文獻(xiàn)的調(diào)查表明,鋁熱沖壓的摩擦學(xué)研究主要集中在工藝參數(shù)的影響上,如溫度[8],壓力和滑動速度[9],并分析不同潤滑劑和潤滑參數(shù)的組合以減少摩擦現(xiàn)象[10-12]。在AA2017上進(jìn)行的球測試中,最高溫度為450℃[13]。材料轉(zhuǎn)移歸因于存在表面特征上的疏松鋁屑的機(jī)械相互作用和壓實,但沒考慮到屑的形成。由于氧化物與鋁顆粒的混合,高溫下的其他氧化現(xiàn)象會使情況變糟,并增強(qiáng)鋁合金的粘塑性流動[14]。相反,很少有人關(guān)注現(xiàn)象的現(xiàn)象學(xué)評估,該現(xiàn)象決定粘附的開始。在分析材料條件即熱處理、微觀結(jié)構(gòu)等,可能對鋁合金摩擦和磨損行為的影響的分析中,還可以找到其他不足,如Das等[15]。研究靜態(tài)和動態(tài)時效對AA6082合金磨損和摩擦行為的影響,發(fā)現(xiàn)要形成的材料的冶金條件會影響磨損率,但是這項研究僅限于相對寒冷的條件,測試溫度低于140℃,對熱沖壓條件來說仍然相去甚遠(yuǎn)。對于AA7xxx系列,研究僅限于與材料流動應(yīng)力有關(guān)的方面[16]、沖壓件的力學(xué)性能[17],但目前還沒找到摩擦學(xué)方面的研究。
本研究旨在探討AA7075熱沖壓條件下,材料熱處理對摩擦磨損和粘著磨損行為的影響。重點比較在不同工藝參數(shù)即正壓、滑動速度和溫度下,常見T6熱處理條件與高溫變形時的溶解態(tài)。本文分為三個部分:在簡要介紹行業(yè)參考案例的基礎(chǔ)上,對調(diào)查的材料對象進(jìn)行描述。第二部分是實驗室測試和實驗的描述。最后,在數(shù)值模擬實驗的基礎(chǔ)上,對實驗結(jié)果進(jìn)行討論。
2.工業(yè)案例參考
工業(yè)工藝的參考是AA7075鋁合金子航空航天和汽車上的熱沖壓。不同的熱沖壓周期的例子可以在文獻(xiàn)中找到[18],主要的區(qū)別是在高溫下(在電爐或煤氣爐中超過480℃)保持坯料以獲得合金元素的溶解(高達(dá)600s)的時間。然后,在轉(zhuǎn)移到冷模之后[7,18],沖壓步驟是使用沖壓速度,從5mm/s到50mm/s來保持毛坯溫度盡可能接近350-450℃。最后,工件保持15s以保證板材淬火。典型的應(yīng)用壓力范圍為10-15Mpa,滑動速度范圍為5-30mm/s[19]。最終,對零件進(jìn)行時效處理,在120℃下時效24h得到T6狀態(tài)[20]。在每個沖壓周期中,板材都要使用特定的潤滑劑進(jìn)行熱成形[21],以減少由于模具磨損而產(chǎn)生的滑動助理和可能出現(xiàn)的缺陷。
3.材料
3.1 金屬板
商用鋁合金AA7075在T6狀態(tài)下以2.0(±0.1)mm的厚度薄片提供。表1列出合金的標(biāo)稱化學(xué)成分和在交付條件下的力學(xué)特性。
采用三維表面輪廓儀SensofarTM Plu Nexo,測量金屬板表面粗糙度Sa=0.60(±0.10)μm。圖1為未潤滑(z1區(qū))和潤滑狀態(tài)(z2區(qū))試樣的形貌。
表1 AA7075的標(biāo)稱化學(xué)成分(wt%)和機(jī)械特性
圖1 未潤滑(區(qū)域1)和潤滑(區(qū)域2)試樣表面形貌
3.2 工具鋼
工具鋼等級為EN X38CrMoV5-1合金鋼,其標(biāo)稱化學(xué)位置見表2。對工具鋼進(jìn)行調(diào)質(zhì)處理,使其表面硬度達(dá)到51(±1)HRC的終值,這與高強(qiáng)度鋁合金熱沖壓工藝中使用工具的特性一致。
該工具的表面制造獲得最終表面粗糙度Sa=0.019(±0.005)μm,并通過3D輪廓儀進(jìn)行驗證。圖2(a)為模具形狀和滑動面的形貌,圖2(b)為沿χ、у方向的平均粗糙度。根據(jù)參考工藝條件實現(xiàn)了表面紋理的定向。
表2 EN X38CrMoV5-1鋼的標(biāo)稱化學(xué)成分(wt%)
圖2 (a)EX X38CrMoV5-1模具的表面形貌;(b)沿主軸的表面輪廓
3.3 潤滑劑
根據(jù)工業(yè)實踐選用的潤滑劑是可商用的粘結(jié)劑L-GP Aquadag,它是由分散在水基觸變凝膠中的石墨粉末組成。90%的石墨顆粒的最大粒徑小于1μm。當(dāng)在93-177℃的溫度下應(yīng)用于金屬薄板時,形成一種完美地附著在表面的潤滑劑薄膜。為達(dá)到最佳使用效果,該潤滑劑在脫礦化水中按15%的比例稀釋,通常采用噴涂技術(shù)[18]。圖1表示潤滑樣品和潤滑區(qū)域的形貌(樣品的z2區(qū)域)。潤滑劑的應(yīng)用不會改變金屬片樣品的峰高,因為噴射的液體傾向于填滿表面的溝谷。
4.實驗
4.1 實驗的程序
為了研究材料熱處理和工藝參數(shù)對AA7075熱沖壓件粘著磨損的影響,進(jìn)行了不同材料和摩擦學(xué)試驗。首先對處于T6硬化狀態(tài)(交付條件)的鋁合金試樣進(jìn)行熱硬度測試(HHT),然后對其進(jìn)行增溶熱處理,以檢測材料性能的變化,并評估及金屬板上機(jī)械性能的均勻性。然后,通過高溫拉伸試驗(HTTT)獲得了不同熱處理條件下的流動應(yīng)力曲線,并對用于研究材料與模具微觀接觸的有限元(FE)材料模型的本構(gòu)參數(shù)進(jìn)行了標(biāo)定。最后,在兩種不同的熱處理條件下進(jìn)行熱平板拉伸試驗(HFSDT),考察溫度、壓力和滑動速度等主要工藝參數(shù)的影響。具體的實驗設(shè)置和實驗方案如下。
4.2 熱硬度測試(HHT)
高溫下的洛氏表面硬度測試是使用Instron-Wolpert Rockwell 2000熱硬度計進(jìn)行的,配有電爐,可在750℃下進(jìn)行測試。分別再T6和溶解條件下對10.0×10.0×2.0(±0.1)mm樣品進(jìn)行測試。在室溫、200(±2)℃、250(±2)℃、300(±2)℃和350(±2)℃五種溫度條件下,使用總負(fù)荷為15kgf的1/8"鋼球進(jìn)行HR 15W試驗,由于材料強(qiáng)度急劇下降,無法在較高溫度下進(jìn)行試驗。加載周期為初始加載F05秒,恢復(fù)壓頭的彈性變形,再加載F110秒。每次試驗后用乙醚清洗壓頭。表3為測試數(shù)據(jù)的詳細(xì)信息。
表3 HHT的實驗方案
4.3 熱拉伸測試(HTT)
對狗骨樣品進(jìn)行高溫拉伸試驗[22],測量長度為50.0(±0.1)mm,寬度為12.5(±0.1)mm,厚度為2.0(±0.1)mm,激光切割于切割的薄片。使用MTS-322 50KN測功機(jī)對試件進(jìn)行測試,該測功機(jī)配有30KW高頻發(fā)電機(jī)和前端加熱爐。由于K型熱電偶點焊在試樣計中部,所以在整個試驗過程中溫度被控制在閉環(huán)狀態(tài)。形變場周期由一個加熱步驟的升溫速率30℃/s(±1)測試溫度,分別為200(±5)℃、250(±5)℃、300(±5)℃、350(±5)℃、400(±5)℃和450(±5)℃,緊隨其后的是一個保持時間為10s允許適當(dāng)?shù)臏囟染鶆蚧妥罱K應(yīng)用程序的拉伸變形到斷裂應(yīng)變率等于0.1s-1。表4為測試參數(shù)的詳細(xì)信息。
表4 HTT的實驗方案
4.4 熱平板拉伸試驗
在圖1所示的AA7075試樣上進(jìn)行高溫平板拉伸試驗,試驗條件為交付狀態(tài)和溶解狀態(tài)。每個樣品都是通過專門開發(fā)的噴涂裝置潤滑的,使所有產(chǎn)品應(yīng)用可靠且可重復(fù)[25]。沉積前用短波紅外線將每個試樣加熱至110(±3)℃,因此一旦噴上潤滑劑,水組分蒸發(fā),石墨元素附著在表面。涂層試樣在z2區(qū)域的形貌,此處沉積1.5(±0.2)g/m2的潤滑劑。
圖3 (a)HFSDT裝置;(b)試驗過程中負(fù)荷和熱循環(huán)的方案
圖3(a)為描述的熱平板拉伸試驗[23,24]。試樣夾在熱臺上,使其在通過測壓元件測得的受控法向力FN作用下滑動。工具的接觸面設(shè)計為336mmm2,外周擬合半徑為2.0(±0.1)mm(見圖2)。由于摩擦系數(shù)僅為試樣一側(cè)的接觸系數(shù),摩擦系數(shù)計算公式為:
μ=FT/FN (1)
其中FN和FT分別為模具施加的法向力和試樣滑動過程中測得的切向力。
在整個試驗過程中,通過傳導(dǎo)加熱來控制試樣的溫度,加熱速率為5(±1)℃/s,試樣在試驗溫度下的保溫時間為10s。圖3(b)為熱循環(huán)和負(fù)荷循環(huán)的應(yīng)用情況,表5為HFSDT試驗方案。
表5 HFSDT的實驗方案
5. 結(jié)果和討論
5.1 機(jī)械行為
圖4為5種不同溫度下的硬度測試結(jié)果。正如預(yù)料的那樣,T6熱處理條件下的表面硬度值高于溶解材料,兩種情況下的平均差異均為16%。在這兩種情況下,當(dāng)溫度高于250℃時,AA7075的溫度會突然下降。由于材料表現(xiàn)出的低屈服強(qiáng)度,未對350℃以上的溫度條件進(jìn)行測試。
圖4 在不同測試溫度下的硬度
圖5(a)和(b)分別顯示在T6條件下的流動應(yīng)力行為和在六種不同測試溫度、應(yīng)變速率為0.1s-1的溶解條件。在這兩種情況下,測試溫度越高,流動應(yīng)力行為越低,溶解材料的應(yīng)力值越低。在溫度為300℃和350℃以上時,T6和可溶性材料的流動應(yīng)力值相似。
圖5 (a)T6中AA7075的流動應(yīng)力;(b)溶解條件
最終抗拉強(qiáng)度(UTS)的變化趨勢相同,其值如圖6所示。溫度越高,析出物的溶解強(qiáng)度越高,使力學(xué)差異與350℃以上的溫度無關(guān)。
圖6 UTS在不同測試溫度下工作
5.2 摩擦系數(shù)(COF)
圖7顯示在兩種不同測試條件且沒有(a)和有(b)摩擦的情況下,摩擦系數(shù)(COF)與測定行程間的關(guān)系。在(a)的情況下,經(jīng)過從靜態(tài)摩擦過渡到動態(tài)摩擦的初始峰值后,COF 在整個測試行程中是穩(wěn)定的,沒有任何粘附現(xiàn)象,如圖7(a)所示。相反,在(b)情況下,隨著相關(guān)磨損和材料從金屬板轉(zhuǎn)移到模具表面,COF急劇增加。
圖7 在沒有(a)和有(b)摩擦的情況下,COF與測定行程間的關(guān)系
圖8總結(jié)了4.4節(jié)提出的實驗方案進(jìn)行的HFSDT的結(jié)果,顯示出COF在不同正壓和滑動速率下隨溫度的變化。雖然溶解后的試樣的COF值較低,粘著現(xiàn)象較少,但是兩種熱處理條件下的COF變化趨勢相似,都是在300℃下開始減小,在較高溫度下,相關(guān)粘著現(xiàn)象減少。在工藝參數(shù)中,滑動速率對材料附著力的影響大于正壓,使材料磨損開始向較高工藝溫度發(fā)展。
圖8 不同滑動速度和正常壓力下的COF與溫度的關(guān)系
(a) 10mm /s - 5Mpa,(b) 10mm /s - 10Mpa,(c) 50mm /s - 5Mpa,(d) 50mm /s - 10Mpa
從T6的情況看,350℃以上對材料附著力影響更大,因為COF增加到大于1時,意味著在界面處發(fā)生嚴(yán)重的塑性變形。在可溶性條件顯示COF減少到400℃,材料的起始附著為450℃以上,測試的滑動速度為50mm/s,正壓為5Mpa時,未出現(xiàn)任何磨損(見圖8(c))。在所有測試條件下,350-400℃時,COF最小值為0.2。
在固溶熱處理條件下發(fā)現(xiàn),較低的附著力可用T6條件下析出物的存在及其與模具材料的化學(xué)親和力解釋。圖9與T6 (a)和溶解(b)條件下光學(xué)顯微鏡得到的AA7075的微觀結(jié)構(gòu)進(jìn)行對比:前者顯示出大量的沉淀物,因溶解處理而完全溶解,見圖9(b)。
圖9 在T6 (a)和溶解(b)條件下AA7075的微觀結(jié)構(gòu)
用分散掃描電子顯微鏡(SEM-BSE)和能量彌散x射線分析(EDX)對T6條件進(jìn)一步分析,如圖10所示。對材料在表面的不同位置進(jìn)行局部分析,如圖10(a)中P1、P2、P3所示,分析化學(xué)成分:P1為基體鋁合金的代表(圖10(b));P2中白點代表鐵基沉淀物(圖10(c))[25,26],而位于深灰色區(qū)域的P3則代表由化學(xué)光譜中的峰高亮顯示的硅基沉淀物(圖10(d))[25,26]。由于這種沉淀物類似于模具鋼等級的元素,在高溫、高壓下,化學(xué)親和力被認(rèn)為是決定局部粘著磨損的原因之一。在可溶性合金中,析出物完全溶解在鋁基體中,即使在高溫下,附著力的影響也較小。
圖10
(a)用SEM-BSE和EDX在T6條件下對AA7075進(jìn)行化學(xué)分析;
(b)基體材料;(c)鐵基沉淀物;(d)硅基沉淀物
5.3 摩擦學(xué)的行為
用三維表面輪廓儀對模具表面進(jìn)行分析,研究磨損表面的形貌。圖11為在350℃、滑動速度為10mm/s、正壓為10Mpa的實驗中,T6鋁與模具表面的粘附情況。模具的接觸表面因兩種不同類型的附著力而令人感興趣:前部(圖中z11區(qū)域)提出以長材料條紋與滑動方向一致的形式進(jìn)行更大的物質(zhì)轉(zhuǎn)移,達(dá)到最大高度為20(±5)μm。相反,在后部(圖中z12區(qū)域)顯示局部焊接材料沿沖程方向排列的一些小且不連續(xù)的區(qū)域。在這種情況下,粘附材料的最大高度小于10(±5)μm。附著力的兩個區(qū)域的磁強(qiáng)化如圖11(c)所示,其中峰的形狀和長度明顯不同。
圖11
(a)在350℃、正壓為10Mpa、滑動速率為10mm/s的情況下,測試后的模具表面;
(b)模具表面形貌
圖12(a)為T6工況下350℃、滑動速率為10mm/s、正壓降至5Mpa時的模具表面形貌。在這種情況下發(fā)現(xiàn)粘著磨損,但模具定位在一個小區(qū)域的轉(zhuǎn)移焊接材料的最大高度等于25(±5)μm。圖12(b)為沿x軸方向的表面輪廓,其中包含滑動過程中產(chǎn)生的粘附材料的峰值。結(jié)果表明,接觸壓力的影響與磨損表面的擴(kuò)展有關(guān):壓力越大,粘著區(qū)域越大,而在低正壓下,材料在模具表面的轉(zhuǎn)移集中在很小的區(qū)域。
圖12
(a)正壓為5 MPa,滑動速度為10 mm/s, 350℃試驗后模具表面形貌;
(b)粘附材料的輪廓
粘接劑磨損機(jī)理示意圖如圖13所示:施加切向載荷和法向載荷(圖中分別為FT和FN)后,各峰值局部接觸,破壞潤滑層(I)。隨著滑動的進(jìn)行,在接觸峰處的應(yīng)力決定了局部塑性應(yīng)變和溫度的升高,導(dǎo)致材料軟化和增強(qiáng)化學(xué)親和力(II)。該潤滑劑最初沉積在表面的溝谷中,但由于是固體沉積,所以不能保證接觸區(qū)域的溫度冷卻。因此,鋁在接觸峰處開始塑性變形直至斷裂,其數(shù)量由施加的正壓(III)決定。然后,鋁的小顆粒從帶材中分離,粘附在模具上。轉(zhuǎn)移的鋁,由于塑性變形而硬化,增加了模具的表面粗糙度,為材料的進(jìn)一步積累創(chuàng)造了抓地力(IV)。沖程越長,正壓越高,滑動方向上的粘結(jié)越長,其形貌與圖11中z11區(qū)域相似。
圖13 粘結(jié)機(jī)理
圖14為不同滑動沖程下粘著的鋁顆粒。圖14(a)和(b)表示在測試行程開始時在模具表面能找到的材料小顆粒,與圖13中描述的步驟Ⅲ對應(yīng)。在滑動方向為20μm、平均長度和寬度低于10μm時,形狀是細(xì)長的。由于其機(jī)械強(qiáng)度高,這些新的峰改變了模具的表面粗糙度,代表鋁附著力增長的臨界點。圖14(c)顯示粘結(jié)的累積,圖14(d)顯示磨損的連續(xù)形態(tài),這在較大的筆畫中是很明顯的。
圖14 不同放大倍數(shù)下刀具表面的AA粘結(jié)表現(xiàn)出不同的區(qū)域,即:
(a)(b)未累積的AA小粘結(jié);(c) AA累積粘結(jié);(d)形態(tài)連續(xù)的AA累積粘結(jié)
圖15(a)和(b)分別顯示被轉(zhuǎn)移材料在粘著力早期的形貌和橫向X方向的對應(yīng)剖面。這些峰有一個高度約1μm和一個典型的寬度小于10μm。
圖15 (a)刀具表面顯示初始粘結(jié)的形貌;(b)相對于刀具
的粗糙度沿不同截面的粘結(jié)輪廓
6.有限元分析
采用有限元分析,研究在相同的試驗條件下,金屬薄板的熱、力學(xué)效應(yīng)及其在微觀尺度上對材料性能的影響。該數(shù)值模型是用Forge NXT 2.0TM軟件開發(fā)的。金屬條和模具標(biāo)本的部分接觸表面是20×20μm的實體模型:金屬板作為彈塑性變形體,而模具則近似剛體。幾何形狀是通過光學(xué)測角儀進(jìn)行測量獲得的,見第5.3節(jié),以便在微觀尺度上準(zhǔn)確描述接觸的峰和谷。根據(jù)公式(2)描述的Hansel-Spittel模型,對材料行為進(jìn)行建模:
σ是等價的流動應(yīng)力,應(yīng)變ε;應(yīng)變速率、溫度、A、m1、m2、m3、m4、m5、m7、m8、m9是本構(gòu)參數(shù),根據(jù)4.3節(jié)對拉伸試驗結(jié)果進(jìn)行校準(zhǔn)。表6顯示計算參數(shù)的值。
表6 數(shù)值模型中采用Hansel-Spittel本構(gòu)參數(shù)
A
m1
m2
m3
m4
m5
m6
m7
m8
T6
8235
-0.0053
0.0042
0
-0.0051
-0.0373
6.6679
0
-0.3396
可溶性
8467
-0.0044
0.0078
0
-0.0037
-0.0178
3.9857
0
-0.4627
根據(jù)庫侖定律建立了管材與模具之間的邊界摩擦條件,即:
其中,τ為切向應(yīng)力,σn為正常壓力,ΔV為相對速度,σ0為材料屈服應(yīng)力。在熱參數(shù)中,用傳熱系數(shù)(HTC)為2000 W/m2 K的模具模擬熱通量[27]。
圖16為在350℃、10mm /s和10Mpa條件下的溫度和局部應(yīng)力數(shù)值結(jié)果。結(jié)果表明,應(yīng)力主要集中在兩體接觸的峰值處,局部應(yīng)力集中區(qū)域與沖程開始時轉(zhuǎn)移材料尺寸一致。當(dāng)?shù)貧鉁厣仙绊懢植克苄宰冃?這就等于在40℃時沖程達(dá)到80μm,見圖16(c)和(d)。數(shù)值足夠高,減少材料流動應(yīng)力從100MPa降到50MPa(見圖5),使得鋁粒子更容易從帶狀物向模具表面轉(zhuǎn)移,影響在T6狀態(tài)下的相關(guān)的化學(xué)親和力,已在5.2節(jié)討論過。
圖16
(a)接觸峰;(b)正壓;(c)在20μm沖程后的溫度;(d)在80μm沖程后
7.結(jié)論
本文對AA7075鋁合金薄板熱沖壓件的粘著磨損進(jìn)行了實驗和數(shù)值研究。通過在滑動速度為50mm/s、200-450℃范圍內(nèi)進(jìn)行拉伸試驗,研究固相石墨對溶解和T6材料條件下的潤滑作用。結(jié)果表明:
(1) 在所有試驗條件下,溶解試樣的摩擦系數(shù)值較低,粘著現(xiàn)象較少;
(2) 兩種熱處理條件的摩擦系數(shù)隨溫度的變化趨勢相似,其特征是溫度在300-350℃之間的變化最?。?
(3) 在工藝參數(shù)中,滑動速度對材料附著力的影響大于正壓,使磨痕開始向較高的工藝溫度移動;
(4) 與模具鋼等級相似的化學(xué)成分,能增強(qiáng)AA7075在T6中析出物的親和力,有助于粘著磨損;
(5) 材料的附著力與法向壓力的關(guān)系較弱,其主要作用是磨損表面的延伸;
(6) 由于在峰值接觸處應(yīng)力水平顯著,塑性變形可能導(dǎo)致局部溫度升高。隨著材料流動應(yīng)力值的降低,使材料更容易從AA帶轉(zhuǎn)移到模具表面。
參考文獻(xiàn)
[1]A.E. Tekkaya,N.B. Khalifa,G. Grzancic,R. H?lker.輕金屬零件的成形:對新技術(shù)的需求.Procedia Eng,81 (2014) 28–37.
[2]S. Polak,P. Skwarskia,M. Zwierzchowskia,W. Chorz?,J. Krawczyka,M. Skwarskia,
M. Zwierzchowskia,W. Chorz?pa.7075鋁合金熱成形.Procedia Eng,207 (2017) 2399–2404.
[3]N.R. Harrison,S.G. Luckey.從高強(qiáng)度鋁板AA7075熱沖壓b柱外部.SAE Int. J. Mater. Manuf,7 (3) (2014) 567–573.
[4]H. Wang,Y. Luo,P. Friedman,M. Chen,L. Gao.高強(qiáng)度鋁合金AA7075的熱成形性能,譯. Nonferrous Met. Soc. China,22 (2012) 1–7.
[5]M. Rajamuthamilselvan,S. Ramanathan.7075合金的熱變形行為.J. Alloy. Compd, 509 (2011) 948–952.
[6]K. Mori,P.F. Bariani,B.A. Behrens,A. Brosius,S. Bruschi,T. Maeno,M. Merklein,J. Yanagimoto.超高強(qiáng)度鋼件的熱沖壓.CIRP Ann. Manuf.Technol,66 (2017) 755–777.
[7]J. Zhou,B. Wang,J. Lin,L. Fu,W. Ma.側(cè)門沖擊梁鋁合金熱沖壓成形缺陷, 譯.Nonferrous Met. Soc. China,24 (11) (2014) 3611–3620.
[8]M.D. Hanna.Tribological.鋁和鎂薄板高溫成形的評價.Wear,267 (2009) 1046–1050.
[9]G. Li, X. Long, P. Yang, Z. Liang.沖壓成形摩擦的研究進(jìn)展.Int. J. Adv. Manuf. Technol,96 (2018) 21–38.
[10]A. Ghiotti, S. Bruschi, F. Medea.鋁合金薄板熱沖壓件的起始磨損.Wear,376 (2017) 484–495.
[11]Y. Liu, Z. Zhu, Z. Wang, B. Zhu, Y. Wang, Y. Zhang.6061鋁合金高溫下的流動與摩擦性能及b柱的熱沖壓試驗研究.Int. J. Adv. Manuf. Technol,96 (2018) 4063–4083.
[12]F. Medea,A. Ghiotti,S. Bruschi.AA1050合金冷鍛過程中溫度對有機(jī)潤滑劑的影響.Procedia Manuf,5 (2016) 308–318.
[13]J. Pujiante,L. Perlcastre,M. Vilaseca,D. Casellas,B. Prakash.鋁合金-工具鋼摩擦片在不同溫度下的磨損磨損機(jī)理研究.Wear,308 (2013) 193–198.
[14]E. Huttunen-Saarivirta,L. Kipli,T.J. Hakala,J. Metsajoki,H. Ronkainen.刀具鋼-鋁合金摩擦材料在不同溫度下的性能研究.Tribol. Int,119 (2018) 567–584.
[15]S. Das,L. Pelcastre,J. Hardell,B. Prakash.靜態(tài)和動態(tài)時效對6082鋁合金磨損和摩擦性能的影響.Tribol. Int, 60 (2013) 1–9.
[16]W. Xiao,B. Wang,Y. Wu,X. Yang.AA7075在熱拉伸變形過程中的流動行為和組織演變的本構(gòu)模型.Mater. Sci. Eng,712 (2018) 704–713.
[17]K. Omer,A. Abolhasani,S. Kim,T. Nikdejad,C. Butcher,M. Wells,S. Esmaeili,
M. Worswick.用AA7075和D-7xxx的熱沖壓工藝參數(shù),實現(xiàn)高性能的時效產(chǎn)品.J. Mater. Process. Technol,257 (2018) 170–179.
[18]M. Kumar, N.G. Ross.熱成形過程中回火對高強(qiáng)度鋁鋅鎂合金板材性能的影響.J. Mater. Process. Technol,231 (2016) 189–198.
[19]F. Medea,A. Ghiotti,S. Bruschi.潤滑劑在AA6016熱沖壓中的摩擦學(xué)行為.Key Eng. Mater,639 (2015) 221–226.
[20]M. Esmailian,M. Shakouri,A. Mottahedi,S.G. Shabestari.T6和時效熱處理對7055鋁合金力學(xué)性能的影響.Int. J. Chem. Mol. Nucl. Mater. Metall. Eng,9 (11) (2015) 1234–1236.
[21]Y. Liu,Z. Zhu,Z. Wang,B. Zhu,Y. Wang,Y. Zhang.6061和7075鋁合金薄板熱沖壓中b柱的成形性和潤滑.Procedia Eng,207 (2017) 723–728.
[22]ISO 6892-2,International Organization for Standardization.金屬材料-拉伸試驗.Part 2: Method of test at elevated temperature, 2018.
[23]F. Medea,A. Ghiotti,S. Bruschi,M. Bellin.介紹一種新型噴涂裝置,用于研究高溫下金屬表面的潤滑沉積.AIP Conference Proceedings, 2016.
[24]A. Ghiotti,S. Bruschi,F. Sgarabotto,P.F. Bariani.鋅基涂層在直接熱沖壓中的摩擦學(xué)性能.Tribology Int,78 (2014) 142–151.
[25]S.S. Singh,E. Guo,H. Xie,N. Chawla.7075鋁合金金屬間夾雜物的微柱壓縮力學(xué)性能.Intermetallics, 62 (2015) 69–75.
[26]S.S. Singh,C. Schwartzstein,J.J. Williams,X. Xiao,F. De Carlo,N. Chawla.利用x射線同步加速器斷層掃描和納米壓痕技術(shù),對7075鋁合金中的組成粒子進(jìn)行三維微觀結(jié)構(gòu)表征和力學(xué)性能研究.J. Alloy. Compd,602 (2014) 163–174.
[27]W. Xiao,B. Wang,K. Zheng,J. Zhou,J. Lin.對AA7075熱沖壓件的界面?zhèn)鳠峒捌鋵Υ慊鹩绊懙难芯?Arch. Civil. Mech. Eng,18 (2018) 723–730.
2.外文資料原文(與課題相關(guān),至少1萬印刷符號以上):
Influence of process parameters on tribological behaviour of AA7075 in hot stamping
A.Ghiotti?, E. Simonetto, S. Brusch
Abstract
The paper presents the results of recent experimental and numerical investigations on the adhesive onset in AA7075 hot stamping, in order to evaluate the influence of the material thermal treatment and the main process parameters. Solid graphite lubrication was investigated for both the solubilized and the T6 material conditions by means of strip drawing tests in the temperature range 200–450℃ varying the normal contact pressure up to 10MPa and the sliding velocity up to 50 mm/s. The results show that the friction coefficient presents an initial decrease as the temperature increases, followed by adhesion phenomena at the highest temperatures with material transfer to the dies. Such behaviour was explained by using a micro-scale FE model showing that the local temperature in proximity of the roughness peaks may locally influence the material strength causing the adhesive wear onset.
Keywords: Hot stamping ; Aluminium alloys; AA7075; Graphite; Adhesive wear
1. Introduction
The continuous demand of lightness and performances in many sectors of the transport industry, such as aerospace and automotive, is driving the attention of designers and manufacturers towards the use of aluminium alloys, not only limited to bulk components manufactured by casting or forging, but also for structural complex-shaped parts obtained with sheet metalforming processes [1]. Several aluminium series, i.e. the AA5xxx, the AA6xxx and the AA7xxx [2], present me- chanical (high strength-to-mass ratio) and chemical properties (good corrosion resistance and weldability) potentially of great interest for the above-mentioned applications, but at the same time they are often difficult to be shaped with the traditional technologies due to high forming loads, springback and reduced formability [3–5]. Following the evolution in the technological domain of high strength steels stamping [6], the introduction of high temperature process routes in aluminium sheet stamping have demonstrated to be promising in several advanced applications, with a substantial elimination of springback phenomena and noticeable increase of formability [7]. These applications have also demonstrated that friction and wear can become critical aspects due to the tendency that the aluminium has to adhere to the dies since the early steps of the process with consequent dramatic galling [5]. Furthermore, apart for the traditional physical factors, such as the tool geometry and surface conditions, friction and wear at high temperature processes are known to be deeply influenced also by chemical as well as process-dependent aspects, such as the sliding velocity, temperature and contact pressure [7].
A survey of the scientific literature reveals that the tribological investigations on aluminium hot stamping are broadly focused on the effects of the process parameters such as the temperature [8], pressure and sliding velocity [9], as well as the analysis of the combination of different lubricants and lubrication parameters to reduce the frictional phenomena [10–12]. In ball tests carried out on AA2017 up to 450℃ [13], the material transfer was ascribed to the mechanical interaction and compaction of loose aluminium debris on existing surface features, but no concerning about the debris formation was given. Additional oxidation phenomena at high temperature can make the situation even worse, due to the mix of the oxides with aluminium particles, and enhance the visco-plastic flow of the aluminium alloys [14]. Conversely, little attention has been paid to provide a phenomenological evaluation of the phenomena that rule the starting of the adhesion. Further lacks can be found in the analysis of the influence that the material conditions (i.e. the heat treatment, microstructure, etc.) may have on the frictional and wear behaviour of aluminium alloys,Das et al [15] .Investigated the effects of static and dynamic ageing on wear and friction behaviour of AA6082 alloy finding that the metallurgical conditions of the material to-be-formed can have an influence on the wear rate, but the study was limited to relatively cold conditions, with testing temperatures lower than 140℃ that is still far for the condition of hot stamping. With regards to the AA7xxx series, the studies are limited to the aspects related to the material flow stress [16] and mechanical properties of the hot stamped part [17], but no investigations on the tribological aspects can be found yet.
The present research work aims at investigating the influence that the material heat treatment may have on the frictional and adhesive wear behaviour in the case of AA7075 hot stamping. In particular, the focus is on the comparison between the common T6 heat treatment condition and the solubilized condition when deformed at high temperature with different process parameters, namely the normal pressure, the sliding velocity and the temperature. The paper is organized into three parts: after a brief introduction of the industrial reference industrial case, the materials object of the investigation are described. The second part deals with the description of the laboratory tests and experimental plans. Finally, the results of the experiments are discussed with the support of the numerical simulation of the tests to estimate the thermal and mechanical phenomena at the micro-scale.
2. Reference industrial case
The reference industrial process is the hot stamping of the AA7075 aluminium alloy for aerospace and automotive applications. Different examples of hot stamping cycles can be found in literature [18], where the main difference is the time the blank is kept at high temperature (over 480℃ in an electric or gas furnace) to obtain the solubilization of the alloying elements (up to 600s). Then, after transferring to the cold dies [7,18], the stamping step is performed using a ram speed that can range from 5 mm/s up to 50 mm/s, in order to keep the blank temperature as closed as possible to the temperature of 350–450℃. Finally, the part is held for 15s to ensure the sheet quenching. Typical applied pressures are in the range of 10–15MPa with sliding velocities in the range of 5–30 mm/s [19]. Finally, the part is age hardened to obtain the T6 state at 120℃for 24h [20]. In each stamping cycle, the sheet is lubricated with specific lubricants for hot forming processes [21], with the aim at reducing the sliding resistance and possible defects on the part due to the dies wear.
3. Materials
3.1 Sheet metal
The commercial aluminium alloy AA7075 was provided in sheets with a thickness of 2.0( ± 0.1) mm in the T6 state. Table 1 shows the nominal chemical composition of the alloy and the mechanical characteristics in the as-delivered conditions.
The surface roughness Sa of metal sheets in the as-delivered condition was measured by means of a 3D surface profilometer Sensofar? Plu Neox equal to 0.60( ± 0.10) μm. Fig. 1 shows the topography of the test specimen measured in the unlubricated (area z1) and lubricated conditions (area z2).
Table 1 Nominal chemical composition (wt%) and mechanical characteristic of the AA7075.
Fig. 1. Specimen surface topography when unlubricated (area z1) and lubricated (area z2)
3.2 Tool steel
The tool steel grade is the EN X38CrMoV5-1 alloyed steel whose nominal chemical position is reported in Table 2. The tool steel was quenched and tempered in order to increase its surface hardness to a final value of 51( ± 1) HRC, consistent with the characteristic of the tools used in the hot stamping processes of high strength aluminium alloys.
The surface of the tool was manufactured to obtain a final surface roughness Sa equal to 0.019( ± 0.005) μm, verified with the 3D profilometer. Fig. 2(a) shows the die shape and the topography of the sliding surface, while Fig. 2(b) shows the mean roughness along the x and y directions. The direction of the surface texture was rea
收藏