喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================
編號
無錫太湖學(xué)院
畢業(yè)設(shè)計(論文)
相關(guān)資料
題目: 汽車發(fā)動機(jī)油路壓力測量
設(shè)備的機(jī)構(gòu)設(shè)計
信機(jī) 系 機(jī)械工程及自動化專業(yè)
學(xué) 號: 0923154
學(xué)生姓名: 孫墅陽
指導(dǎo)教師: 范圣耀 (職稱:副教授 )
(職稱: )
2013年5月25日
目 錄
一、畢業(yè)設(shè)計(論文)開題報告
二、畢業(yè)設(shè)計(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計劃、進(jìn)度、檢查及落實表”
四、實習(xí)鑒定表
無錫太湖學(xué)院
畢業(yè)設(shè)計(論文)
開題報告
題目: 汽車發(fā)動機(jī)油路壓力測量
設(shè)備的機(jī)構(gòu)設(shè)計
信機(jī) 系 機(jī)械工程及自動化 專業(yè)
學(xué) 號: 0923154
學(xué)生姓名: 孫墅陽
指導(dǎo)教師: 范圣耀(職稱:副教授 )
(職稱: )
2012年11月14日
課題來源
自擬題目
科學(xué)依據(jù)(包括課題的科學(xué)意義;國內(nèi)外研究概況、水平和發(fā)展趨勢;應(yīng)用前景等)
(1)課題科學(xué)意義
目前在評估新品開發(fā)設(shè)計的噴油泵和噴油嘴的性能時,在產(chǎn)品改進(jìn)和新品試制過程中,為了獲得良好的性能指標(biāo),往往需要對燃油噴射系統(tǒng)進(jìn)行大量的調(diào)試工作,也常以多參數(shù)的電測量作為考核項目之一。
(2)汽車發(fā)動機(jī)油路壓力測量設(shè)備的研究狀況及其發(fā)展前景
過這一油管殘留壓力測試裝置的設(shè)計,我認(rèn)識到一套測量裝置的設(shè)計方案、步驟、驗證等各個環(huán)節(jié),以及每個環(huán)節(jié)所涉及到各個知識。是對我大學(xué)所學(xué)知識一個總結(jié)和檢驗。
對內(nèi)燃機(jī)有關(guān)參數(shù)的測試方法、測試系統(tǒng)、測試儀表以及測量結(jié)果的誤差分析和數(shù)椐處理知識,已成為整個內(nèi)燃機(jī)系統(tǒng)研究的一個重要組成部分。
通過這一油管殘留壓力測試裝置的設(shè)計,使我懂得了測試技術(shù)不僅是一項理論性較強(qiáng)的技術(shù),更是一項涉及到機(jī)械、電氣、電子、傳感器及計算機(jī)等多個學(xué)科的實用技術(shù),它是由各種技術(shù)相互交叉、滲透、有機(jī)結(jié)合的一門綜合性學(xué)科,具有很強(qiáng)的系統(tǒng)性和實用性。
研究內(nèi)容
①噴油泵的參數(shù)選擇及其對柴油機(jī)性能的影響
②噴油泵的參數(shù)選擇及其對柴油機(jī)性能的影響
③機(jī)械傳動選用及設(shè)計計算
④ 掌握油路原來發(fā)動變換的原理、性質(zhì)
⑤柴油發(fā)動機(jī)油路壓力測量設(shè)備校驗壓電壓力傳感器
擬采取的研究方法、技術(shù)路線、實驗方案及可行性分析
(1)實驗方案
.本所所采用的壓電式傳感器的靈敏度的標(biāo)定值基本保持不變。
2.高壓油管中的殘留壓力測定應(yīng)是油管泵端壓力,嘴端壓力的測量的一個組成部分,泵端壓力、嘴端壓力的波形相迭加,才是更準(zhǔn)確的壓力波形。
3.高壓油管嘴端壓力、針閥體壓力室的壓力的相位,大小均不同。
(2)研究方法
① 在標(biāo)準(zhǔn)量化矩陣條件下,分析一個圖像的原始圖像和重構(gòu)圖像的差別。
② 在不同的量化矩陣條件下,對同一個圖像做不同的量化,在不同的壓縮比下,分析重構(gòu)圖像。
研究計劃及預(yù)期成果
研究計劃:
2012年11月12日-2012年12月25日:按照任務(wù)書要求查閱論文相關(guān)參考資料,填寫畢業(yè)設(shè)計開題報告書。
2013年1月11日-2013年3月5日:填寫畢業(yè)實習(xí)報告。
2013年3月8日-2013年3月14日:按照要求修改畢業(yè)設(shè)計開題報告。
2013年3月15日-2013年3月21日:學(xué)習(xí)并翻譯一篇與畢業(yè)設(shè)計相關(guān)的英文材料。
2013年3月22日-2013年4月11日:汽車發(fā)動機(jī)測量設(shè)備機(jī)構(gòu)的學(xué)習(xí)。
2013年4月12日-2013年4月25日:測量實驗。
2013年4月26日-2013年5月25日:畢業(yè)論文撰寫和修改工作。
預(yù)期成果:
達(dá)到預(yù)期的實驗結(jié)論:通過這一油管殘留壓力測試裝置的設(shè)計,我認(rèn)識到一套測量裝置的設(shè)計方案、步驟、驗證等各個環(huán)節(jié),以及每個環(huán)節(jié)所涉及到各個知識。是對我大學(xué)所學(xué)知識一個總結(jié)和檢驗。
對內(nèi)燃機(jī)有關(guān)參數(shù)的測試方法、測試系統(tǒng)、測試儀表以及測量結(jié)果的誤差分析和數(shù)椐處理知識,已成為整個內(nèi)燃機(jī)系統(tǒng)研究的一個重要組成部分。
特色或創(chuàng)新之處
① 使用MATLAB編程仿真,效果明顯,方便改變參量,能夠直觀判斷實驗結(jié)果。
② 采用固定某些參量、改變某些參量來研究問題的方法,思路清晰,簡潔明了,行之有效。
已具備的條件和尚需解決的問題
① 實驗方案思路已經(jīng)非常明確,已經(jīng)具備使用MATLAB編程仿真的能力和圖像處理方面的知識。
② 使用MATLAB編程的能力尚需加強(qiáng)。
指導(dǎo)教師意見
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領(lǐng)導(dǎo)簽名:
年 月 日
英文原文
Belt Conveying Systems Development of driving system
Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’ performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1].
1 Analysis on conveyor drive technologies
1.1 Direct drives
Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11- and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are limited to the low-power, simple-profile conveyor belt drives.
Reduced-voltage starters.As conveyor power requirements increase,controlling the applied motor torque during the acceleration period becomes increasingly important.Because motor torque 1s a function of voltage,motor voltage must be controlled.This can be achieved through reduced-voltage starters by employing a silicon controlled rectifier(SCR).A common starting method with SCR reduced-voltage starters is to apply low voltage initially to take up conveyor belt slack.a(chǎn)nd then to apply a timed linear ramp up to full voltage and belt speed.However, this starting method will not produce constant conveyor belt acceleration.When acceleration is complete.the SCRs, which control the applied voltage to the electric motor. are locked in full conduction, providing fu11-line voltage to the motor.Motors with higher torque and pull—up torque,can provide better starting torque when combined with the SCR starters, which are available in sizes up to 750 KW.
Wound rotor induction motors.Wound rotor induction motors are connected directly to the drive system reducer and are a modified configuration of a standard AC induction motor.By inserting resistance in series with the motor’s rotor windings.the modified motor control system controls motor torque.For conveyor starting,resistance is placed in series with the rotor for low initial torque.As the conveyor accelerates,the resistance is reduced slowly to maintain a constant acceleration torque.On multiple-drive systems.a(chǎn)n external slip resistor may be left in series with the rotor windings to aid in load sharing.The motor systems have a relatively simple design.However, the control systems for these can be highly complex,because they are based on computer control of the resistance switching.Today,the majority of control systems are custom designed to meet a conveyor system’s particular specifications.Wound rotor motors are appropriate for systems requiring more than 400 kW .
DC motor.DC motors.a(chǎn)vailable from a fraction of thousands of kW ,are designed to deliver constant torque below base speed and constant kW above base speed to the maximum allowable revolutions per minute(r/min).with the majority of conveyor drives, a DC shunt wound motor is used.Wherein the motor’s rotating armature is connected externally.The most common technology for controlling DC drives is a SCR device. which allows for continual variable-speed operation.The DC drive system is mechanically simple, but can include complex custom-designed electronics to monitor and control the complete system.This system option is expensive in comparison to other soft-start systems.but it is a reliable, cost-effective drive in applications in which torque,1oad sharing and variable speed are primary considerations.DC motors generally are used with higher-power conveyors,including complex profile conveyors with multiple-drive systems,booster tripper systems needing belt tension control and conveyors requiring a wide variable-speed range.
1.2 Hydrokinetic coupling
Hydrokinetic couplings,commonly referred to as fluid couplings.a(chǎn)re composed of three basic elements; the driven impeller, which acts as a centrifugal pump;the driving hydraulic turbine known as the runner and a casing that encloses the two power components.Hydraulic fluid is pumped from the driven impeller to the driving runner, producing torque at the driven shaft.Because circulating hydraulic fluid produces the torque and speed,no mechanical connection is required between the driving and driven shafts.The power produced by this coupling is based on the circulated fluid’s amount and density and the torque in proportion to input speed.Because the pumping action within the fluid coupling depends on centrifugal forces.the output speed is less than the input speed.Referred to as slip.this normally is between l% and 3%.Basic hydrokinetic couplings are available in configurations from fractional to several thousand kW .
Fixed-fill fluid couplings.Fixed-fill fluid couplings are the most commonly used soft-start devices for conveyors with simpler belt profiles and limited convex/concave sections.They are relatively simple,1ow-cost,reliable,maintenance free devices that provide excellent soft starting results to the majority of belt conveyors in use today.
Variable-fill drain couplings.Drainable-fluid couplings work on the same principle as fixed-fill couplings.The coupling’s impellers are mounted on the AC motor and the runners on the driven reducer high-speed shaft.Housing mounted to the drive base encloses the working circuit.The coupling’s rotating casing contains bleed-off orifices that continually allow fluid to exit the working circuit into a separate hydraulic reservoir.Oil from the reservoir is pumped through a heat exchanger to a solenoid-operated hydraulic valve that controls the filling of the fluid coupling.To control the starting torque of a single-drive conveyor system,the AC motor current must be monitored to provide feedback to the solenoid control valve.Variable fill drain couplings are used in medium to high-kW conveyor systems and are available in sizes up to thousands of kW .The drives can be mechanically complex and depending on the control parameters.the system can be electronically intricate.The drive system cost is medium to high, depending upon size specified.
Hydrokinetic scoop control drive.The scoop control fluid coupling consists of the three standard fluid coupling components:a driven impeller, a driving runner and a casing that encloses the working circuit.The casing is fitted with fixed orifices that bleed a predetermined amount of fluid into a reservoir.When the scoop tube is fully extended into the reservoir, the coupling is l00 percent filled.The scoop tube, extending outside the fluid coupling,is positioned using an electric actuator to engage the tube from the fully retracted to the fully engaged position.This control provides reasonably smooth acceleration rates.to but the computer-based control system is very complex.Scoop control couplings are applied on conveyors requiring single or multiple drives from l50 kW to 750 kW.
1.3 Variable-frequency control(VFC)
Variable frequency control is also one of the direct drive methods.The emphasizing discussion about it here is because that it has so unique characteristic and so good performance compared with other driving methods for belt conveyor. VFC devices Provide variable frequency and voltage to the induction motor, resulting in an excellent starting torque and acceleration rate for belt conveyor drives.VFC drives.a(chǎn)vailable from fractional to several thousand(kW ), are electronic controllers that rectify AC line power to DC and,through an inverter, convert DC back to AC with frequency and voltage contro1.VFC drives adopt vector control or direct torque control(DTC)technology,and can adopt different operating speeds according to different loads.VFC drives can make starting or stalling according to any given S-curves.realizing the automatic track for starting or stalling curves.VFC drives provide excellent speed and torque control for starting conveyor belts.a(chǎn)nd can also be designed to provide load sharing for multiple drives.easily VFC controllers are frequently installed on lower-powered conveyor drives,but when used at the range of medium-high voltage in the past.the structure of VFC controllers becomes very complicated due to the limitation of voltage rating of power semiconductor devices,the combination of medium-high voltage drives and variable speed is often solved with low-voltage inverters using step-up transformer at the output,or with multiple low-voltage inverters connected in series.Three-level voltage-fed PWM converter systems are recently showing increasing popularity for multi-megawatt industrial drive applications because of easy voltage sharing between the series devices and improved harmonic quality at the output compared to two-level converter systems With simple series connection of devices.This kind of VFC system with three 750 kW /2.3kV inverters has been successfully installed in ChengZhuang Mine for one 2.7-km long belt conveyor driving system in following the principle of three-level inverter will be discussed in detail.
2 Neutral point clamped(NPC)three-level inverter using IGBTs
Three-level voltage-fed inverters have recently become more and more popular for higher power drive applications because of their easy voltage sharing features.1ower dv/dt per switching for each of the devices,and superior harmonic quality at the output.The availability of HV-IGBTs has led to the design of a new range of medium-high voltage inverter using three-level NPC topology.This kind of inverter can realize a whole range with a voltage rating from 2.3 kV to 4.1 6 kV Series connection of HV-IGBT modules is used in the 3.3 kV and 4.1 6 kV devices.The 2.3 kV inverters need only one HV-IGBT per switch[2,3].
2.1 Power section
To meet the demands for medium voltage applications.a(chǎn) three-level neutral point clamped inverter realizes the power section.In comparison to a two-level inverter.the NPC inverter offers the benefit that three voltage levels can be supplied to the output terminals,so for the same output current quality,only 1/4 of the switching frequency is necessary.Moreover the voltage ratings of the switches in NPC inverter topology will be reduced to 1/2.a(chǎn)nd the additional transient voltage stress on the motor can also be reduced to 1/2 compared to that of a two-level inverter.
The switching states of a three-level inverter are summarized in Table 1.U.V and W denote each of the three phases respectively;P N and O are the dc bus points.The phase U,for example,is in state P(positive bus voltage)when the switches S1u and S2u are closed,whereas it is in state N (negative bus voltage) when the switches S3u and S4u are closed.At neutral point clamping,the phase is in O state when either S2u or S3u conducts depending on positive or negative phase current polarity,respectively.For neutral point voltage balancing,the average current injected at O should be zero.
2.2 Line side converter
For standard applications.a(chǎn) l2-pulse diode rectifier feeds the divided DC-link capacitor.This topology introduces low harmonics on the line side.For even higher requirements a 24-pulse diode rectifier can be used as an input converter.For more advanced applications where regeneration capability is necessary, an active front.end converter can replace the diode rectifier, using the same structure as the inverter.
2.3 Inverter control
Motor Contro1.Motor control of induction machines is realized by using a rotor flux.oriented vector controller.
Fig.2 shows the block diagram of indirect vector controlled drive that incorporates both constant torque and high speed field-weakening regions where the PW M modulator was used.In this figure,the command flux is generated as function of speed.The feedback speed is added with the feed forward slip command signal . the resulting frequency signal is integrated and then the unit vector signals(cos and sin )are generated.The vector rotator generates the voltage and angle commands for the PW M as shown.
PWM Modulator.The demanded voltage vector is generated using an elaborate PWM modulator.The modulator extends the concepts of space-vector modulation to the three-level inverter.The operation can be explained by starting from a regularly sampled sine-triangle comparison from two-level inverter.Instead of using one set of reference waveforms and one triangle defining the switching frequency, the three-level modulator uses two sets of reference waveforms Ur1 and Ur2 and just one triangle.Thus, each switching transition is used in an optimal way so that several objectives are reached at the same time.
Very low harmonics are generated.The switching frequency is low and thus switching losses are minimized.As in a two-level inverter, a zero-sequence component can be added to each set of reference waveform s in order to maximize the fundamental voltage component.As an additional degree of freedom,the position of the reference waveform s within the triangle can be changed.This can be used for current balance in the two halves of the DC-1ink.
3 Testing results
After Successful installation of three 750 kW /2.3 kV three-level inverters for one 2.7 km long belt conveyor driving system in Chengzhuang Mine.The performance of the whole VFC system was tested.Fig.3 is taken from the test,which shows the excellent characteristic of the belt conveyor driving system with VFC controller.
Fig.3 includes four curves.The curve 1 shows the belt tension.From the curve it can be find that the fluctuation range of the belt tension is very smal1.Curve 2 and curve 3 indicate current and torque separately.Curve 4 shows the velocity of the controlled belt.The belt velocity have the“s”shape characteristic.A1l the results of the test show a very satisfied characteristic for belt driving system.
4 Conclusions
Advances in conveyor drive control technology in recent years have resulted in many more reliable.Cost-effective and performance-driven conveyor drive system choices for users.Among these choices,the Variable frequency control (VFC) method shows promising use in the future for long distance belt conveyor drives due to its excellent performances.The NPC three-level inverter using high voltage IGBTs make the Variable frequency control in medium voltage applications become much more simple because the inverter itself can provide the medium voltage needed at the motor terminals,thus eliminating the step-up transformer in most applications in the past.
The testing results taken from the VFC control system with NPC three.1evel inverters used in a 2.7 km long belt conveyor drives in Chengzhuang Mine indicates that the performance of NPC three-level inverter using HV-IGBTs together with the control strategy of rotor field-oriented vector control for induction motor drive is excellent for belt conveyor driving system.
中文譯文
帶式輸送機(jī)及其牽引系統(tǒng)
在運送大量的物料時,帶式輸送機(jī)在長距離的運輸中起到了非常重要的競爭作用。輸送系統(tǒng)將會變得更大、更復(fù)雜,而驅(qū)動系統(tǒng)也已經(jīng)歷了一個演變過程,并將繼續(xù)這樣下去。如今,較大的輸送帶和多驅(qū)動系統(tǒng)需要更大的功率,比如3驅(qū)動系統(tǒng)需要給輸送帶750KW (成莊煤礦輸送機(jī)驅(qū)動系統(tǒng)的要求)??刂乞?qū)動力和加速度扭矩是輸送機(jī)的關(guān)鍵。一個高效的驅(qū)動系統(tǒng)應(yīng)該能順利的運行,同時保持輸送帶張緊力在指定的安全極限負(fù)荷內(nèi)。為了負(fù)載分配在多個驅(qū)動上,扭矩和速度控制在驅(qū)動系統(tǒng)的設(shè)計中也是很重要的因素。由于輸送機(jī)驅(qū)動系統(tǒng)控制技術(shù)的進(jìn)步,目前更多可靠的低成本和高效驅(qū)動的驅(qū)動系統(tǒng)可供顧客選擇[1]。
1 帶式輸送機(jī)驅(qū)動
1.1 帶式輸送機(jī)驅(qū)動方式
全電壓啟動 在全電壓啟動設(shè)計中,帶式輸送機(jī)驅(qū)動軸通過齒輪傳動直接連接到電機(jī)。直接全壓驅(qū)動沒有為變化的傳送負(fù)載提供任何控制,根據(jù)滿載和空載功率需求的比率,空載啟動時比滿載可能快3~4倍。此種方式的優(yōu)點是:免維護(hù),啟動系統(tǒng)簡單,低成本,可靠性高。但是,不能控制啟動扭矩和最大停止扭矩。因此,這種方式只用于低功率,結(jié)構(gòu)簡單的傳送驅(qū)動中。
降壓啟動 隨著傳送驅(qū)動功率的增加,在加速期間控制使用的電機(jī)扭矩變得越來越重要。由于電機(jī)扭矩是電壓的函數(shù),電機(jī)電壓必須得到控制,一般用可控硅整流器(SCR) 構(gòu)成的降壓啟動裝置,先施加低電壓拉緊輸送帶,然后線性的增加供電電壓直到全電壓和最大帶速。但是,這種啟動方式不會產(chǎn)生穩(wěn)定的加速度,當(dāng)加速完成時,控制電機(jī)電壓的SCR 鎖定在全導(dǎo)通,為電機(jī)提供全壓。此種控制方式功率可達(dá)到750kW。
繞線轉(zhuǎn)子感應(yīng)電機(jī) 繞線轉(zhuǎn)子感應(yīng)電機(jī)直接連接到驅(qū)動系統(tǒng)減速機(jī)上,通過在電機(jī)轉(zhuǎn)子繞組中串聯(lián)電阻控制電機(jī)轉(zhuǎn)矩。在傳送裝置啟動時,把電阻串聯(lián)進(jìn)轉(zhuǎn)子產(chǎn)生較低的轉(zhuǎn)矩,當(dāng)傳送帶加速時,電阻逐漸減少保持穩(wěn)定增加轉(zhuǎn)矩。在多驅(qū)動系統(tǒng)中,一個外加的滑差電阻可能將總是串聯(lián)在轉(zhuǎn)子繞組回路中以幫助均分負(fù)載。該方式的電機(jī)系統(tǒng)設(shè)計相對簡單,但控制系統(tǒng)可能很復(fù)雜,因為它們是基于計算機(jī)控制的電阻切換。當(dāng)今,控制系統(tǒng)的大多數(shù)是定制設(shè)計來滿足傳送系統(tǒng)的特殊規(guī)格。繞線轉(zhuǎn)子電機(jī)適合于需要400kW以上的系統(tǒng)。
直流(DC)電機(jī) 大多數(shù)傳送驅(qū)動使用DC 并勵電機(jī),電機(jī)的電樞在外部連接。控制DC 驅(qū)動技術(shù)一般應(yīng)用SCR裝置,它允許連續(xù)的變速操作。DC 驅(qū)動系統(tǒng)在機(jī)械上是簡單的,但設(shè)計的電子電路,監(jiān)測和控制整個系統(tǒng),相比于其他軟啟動系統(tǒng)的選擇是昂貴的,但在轉(zhuǎn)矩、負(fù)載均分和變速為主要考慮的場合,它又是一個可靠的,節(jié)約成本的方式。DC 電機(jī)一般使用在功率較大的輸送裝置上,包括需要輸送帶張力控制的多驅(qū)動系統(tǒng)和需要寬變速范圍的輸送裝置上。
1.2 液力偶合器
流體動力偶合器通常被稱為液力偶合器,由三個基本單元組成:充當(dāng)離心泵的葉輪,推進(jìn)水壓的渦輪和裝進(jìn)兩個動力部件的外殼。流體從葉輪到渦輪,在從動軸產(chǎn)生扭矩。由于循環(huán)流體產(chǎn)生扭矩和速度,在驅(qū)動軸和從動軸之間不需要任何機(jī)械連接。這種連接產(chǎn)生的動力決定于液力偶合器的充液量,扭矩正比于輸入速度。因在流體偶合中輸出速度小于輸入速度,其間的差值稱為滑差,一般為1 %~3 %。傳遞功率可達(dá)幾千千瓦。
固定充液液力偶合器 固定充液液力偶合器是在結(jié)構(gòu)較簡單和僅具有有限的彎曲部分的輸送裝置中最常用的軟啟動裝置,其結(jié)構(gòu)相對比較簡單,成本又低,對現(xiàn)在使用的大多數(shù)輸送機(jī)能提供優(yōu)良的軟啟動效果。
可變充液液力偶合器 也稱為限矩型液力偶合器。偶合器的葉輪裝在AC 電機(jī)上,渦輪裝在從動減速器高速軸上,包含操作部件的軸箱安裝在驅(qū)動基座。偶合器的旋轉(zhuǎn)外殼有溢出口,允許液體不斷地從工作腔中流出進(jìn)入一個分離的輔助