喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
===========================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
===========================================
攀枝花學(xué)院本科畢業(yè)設(shè)計(論文) 軸向柱塞泵設(shè)計 學(xué)生姓名: 樊 俊 學(xué)生學(xué)號: 200310621088 院(系): 機電工程學(xué)院 年級專業(yè): 03 機制 2 班 指導(dǎo)教師: 張勇 講師 二七年六月 攀枝花學(xué)院畢業(yè)設(shè)計 摘要 摘要 液壓泵是向液壓系統(tǒng)提供一定流量和壓力的油液的動力元件,它是每個液壓 系統(tǒng)中不可缺少的核心元件,合理的選擇液壓泵對于液壓系統(tǒng)的能耗提高系統(tǒng) 的效率降低噪聲改善工作性能和保證系統(tǒng)的可靠工作都十分重要 本設(shè)計對軸向柱塞泵進行了分析,主要分析了軸向柱塞泵的分類,對其中的結(jié) 構(gòu),例如,柱塞的結(jié)構(gòu)型式滑靴結(jié)構(gòu)型式配油盤結(jié)構(gòu)型式等進行了分析和設(shè)計,還 包括它們的受力分析與計算.還有對缸體的材料選用以及校核很關(guān)鍵;最后對變量 機構(gòu)分類型式也進行了詳細的分析,比較了它們的優(yōu)點和缺點.該設(shè)計最后對軸向 柱塞泵的優(yōu)缺點進行了整體的分析,對今后的發(fā)展也進行了展望. 關(guān)鍵詞: 柱塞泵,液壓系統(tǒng),結(jié)構(gòu)型式,今后發(fā)展. 攀枝花學(xué)院畢業(yè)設(shè)計 Abstract Abstract Liquids pressing a pump is the motive component of oil liquid which presses system to provide certain discharge and pressure toward the liquid, it is each core component that the liquid presses the indispensability in the system, reasonable of choice liquids pressing a pump can consume a exaltation the efficiency of the system to lower a Zao voice an improvement work function and assurance system for liquid pressing system of of dependable work all very important This design filled a pump to carry on toward the pillar to the stalk analytical, mainly analyzed stalk to fill the classification of pump toward the pillar, as to its win of structure, for example, the pillar fill of the slippery Xue structure pattern of the structure pattern went together with the oil dish structure patterns etc. to carry on analysis and design, also include their is analyze by dint with calculation.The material which still has a body to the urn chooses in order to and school pit very key;Finally measure an organization classification towards change, the pattern also carried on detailed analysis and compared their advantage and weakness.That design end filled the merit and shortcoming of pump to carry on whole analysis toward the pillar to the stalk and also carried on an outlook to aftertimes development. Keyword: The pillar fills a pump, the liquid presses system, structure pattern, will develop from now on. 攀枝花學(xué)院畢業(yè)設(shè)計 目錄 - 1 - 目 錄 摘 要 ABSTRACT 緒論4 1 直軸式軸向柱塞泵工作原理與性能參數(shù) 6 1.1 直軸式軸向柱塞泵工作原理 6 1.2 直軸式軸向柱塞泵主要性能參數(shù) 6 1.2.3 排量流量與容積效率 7 1.2.2 扭矩與機械效率 .8 1.2.3 功率與效率 9 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 10 2.1 柱塞運動學(xué)分析10 2.1.1 柱塞行程 S 11 2.1.2 柱塞運動速度分析 v 12 2.1.3 柱塞運動加速度 a 13 2.2 滑靴運動分析 14 2.3 瞬時流量及脈動品質(zhì)分析 15 2.3.1 脈動頻率 15 2.3.2 脈動率16 3 柱塞受力分析與設(shè)計17 3.1 柱塞受力分析17 3.1.1 柱塞底部的液壓力 17bP 3.1.2 柱塞慣性力18 3.1.3 離心反力 18t 3.1.4 斜盤反力 N 19 3.1.5 柱塞與柱塞腔壁之間的接觸應(yīng)力 和 201p2 3.1.6 摩擦力 和 201fP2f 3.2 柱塞設(shè)計 21 3.2.1 柱塞結(jié)構(gòu)型式22 3.2.2 柱塞結(jié)構(gòu)尺寸設(shè)計23 攀枝花學(xué)院畢業(yè)設(shè)計 目錄 - 2 - 3.2.3 柱塞摩擦副比壓 P比功 驗算23vP 4 滑靴受力分析與設(shè)計25 4.1 滑靴受力分析 25 4.1.1 分離力26 4.1.2 壓緊 力 27yp 4.1.3 力平衡方程式27 4.2 滑靴設(shè)計 28 4.2.1 剩余壓緊力法28 4.3 滑靴結(jié)構(gòu)型式與結(jié)構(gòu)尺寸設(shè)計29 4.3.1 滑靴結(jié)構(gòu)型式29 4.3.2 結(jié)構(gòu)尺寸設(shè)計 31 5 配油盤受力分析與設(shè)計 32 5.1 配油盤受力分析 32 5.1.1 壓緊 力 33yp 5.1.2 分離力 34fp 5.2 配油盤設(shè)計 35 5.2.1 過渡區(qū)設(shè)計35 5.2.2 配油盤主要尺寸確定37 5.2.3 驗算比壓 p比功 pv 38 6 缸體受力分析與設(shè)計40 6.1 缸體的穩(wěn)定性40 6.2 缸體主要結(jié)構(gòu)尺寸的確定40 6.2.1 通油孔分布圓半徑 和面積 F 40fR 6.2.2 缸體內(nèi)外直徑 的確定 421D2 6.2.3 缸體高度 H 43 7 柱塞回程機構(gòu)設(shè)計44 8 斜盤力矩分析 46 8.1 柱塞液壓力矩 461M 8.2 過渡區(qū)閉死液壓力矩46 8.2.1 具有對稱正重迭型配油盤46 8.2.2 零重迭型配油盤47 8.2.3 帶卸荷槽非對稱正重迭型配油盤47 攀枝花學(xué)院畢業(yè)設(shè)計 目錄 - 3 - 8.3 回程盤中心預(yù)壓彈簧力矩 483M 8.4 滑靴偏轉(zhuǎn)時的摩擦力矩 484 8.5 柱塞慣性力矩 485 8.6 柱塞與柱塞腔的摩擦力矩 496 8.7 斜盤支承摩擦力矩 497 8.8 斜盤與回程盤回轉(zhuǎn)的轉(zhuǎn)動慣性力矩 508 8.9 斜盤自重力矩 509M 9 變量機構(gòu)51 9.1 手動變量機構(gòu)51 9.2 手動伺服變量機構(gòu)53 9.3 恒功率變量機構(gòu)55 9.4 恒流量變量機構(gòu)56 結(jié)論 57 參考文獻58 致謝 59 攀枝花學(xué)院畢業(yè)設(shè)計 緒論 4 緒論 隨著工業(yè)技術(shù)的不斷發(fā)展,液壓傳動也越來越廣,而作為液壓傳動系統(tǒng)心 臟的液壓泵就顯得更加重要了。在容積式液壓泵中,惟有柱塞泵是實現(xiàn)高壓 高速化大流量的一種最理想的結(jié)構(gòu),在相同功率情況下,徑向往塞泵的徑向 尺寸大、徑向力也大,常用于大扭炬、低轉(zhuǎn)速工況,做為按壓馬達使用。而軸 向柱塞泵結(jié)構(gòu)緊湊,徑向尺寸小,轉(zhuǎn)動慣量小,故轉(zhuǎn)速較高;另外,軸向柱塞 泵易于變量,能用多種方式自動調(diào)節(jié)流量,流量大。由于上述特點,軸向柱塞 泵被廣泛使用于工程機械、起重運輸、冶金、船舶等多種領(lǐng)域。航空上,普遍 用于飛機液壓系統(tǒng)、操縱系統(tǒng)及航空發(fā)動機燃油系統(tǒng)中。是飛機上所用的液壓 泵中最主要的一種型式。 本設(shè)計對柱塞泵的結(jié)構(gòu)作了詳細的研究,在柱塞泵中有閥配流軸配流 端面配流三種配流方式。這些配流方式被廣泛應(yīng)用于柱塞泵中,并對柱塞泵的 高壓高速化起到了不可估量的作用。可以說沒有這些這些配流方式,就沒有 柱塞泵。但是,由于這些配流方式在柱塞泵中的單一使用,也給柱塞泵帶來了 一定的不足。設(shè)計中對軸向柱塞泵結(jié)構(gòu)中的滑靴作了介紹,滑靴一般分為三種 形式;對缸體的尺寸結(jié)構(gòu)等也作了設(shè)計;對柱塞的回程結(jié)構(gòu)也有介紹。 柱塞式液壓泵是靠柱塞在柱塞腔內(nèi)的往復(fù)運動,改變柱塞腔容積實現(xiàn)吸油 和排油的。是容積式液壓泵的一種。柱塞式液壓泵由于其主要零件柱塞和缸休 均為圓柱形,加工方便配合精度高,密封性能好,工作壓力高而得到廣泛的應(yīng) 用。 柱塞式液壓泵種類繁多,前者柱塞平行于缸體軸線,沿軸向按柱塞運動形 式可分為軸向柱塞式和徑向往塞式兩大類運動,后者柱塞垂直于配油軸,沿徑 向運動。這兩類泵既可做為液壓泵用,也可做為液壓馬達用。 泵的內(nèi)在特性是指包括產(chǎn)品性能、零部件質(zhì)量、整機裝配質(zhì)量、外觀質(zhì)量 等在內(nèi)的產(chǎn)品固有特性,或者簡稱之為品質(zhì)。在這一點上,是目前許多泵生產(chǎn) 廠商所關(guān)注的也是努力在提高、改進的方面。而實際上,我們可以發(fā)現(xiàn),有許 多的產(chǎn)品在工廠檢測符合發(fā)至使用單位運行后,往往達不到工廠出廠檢測的效 果,發(fā)生諸如過載、噪聲增大,使用達不到要求或壽命降低等等方面的問題; 而泵在實際當(dāng)中所處的運行點或運行特征,我們稱之為泵的外在特性或系統(tǒng)特 性。 正如科學(xué)技術(shù)的發(fā)展一樣,現(xiàn)階段科技領(lǐng)域中交叉學(xué)科、邊緣學(xué)科越來越 豐富,跨學(xué)科的共同研究是十分普遍的事情,作為泵產(chǎn)品的技術(shù)發(fā)展亦是如此。 攀枝花學(xué)院畢業(yè)設(shè)計 緒論 5 以屏蔽式泵為例,取消泵的軸封問題,必須從電機結(jié)構(gòu)開始,單局限于泵本身 是沒有辦法實現(xiàn)的;解決泵的噪聲問題,除解決泵的流態(tài)和振動外,同時需要 解決電機風(fēng)葉的噪聲和電磁場的噪聲;提高潛水泵的可靠性,必須在潛水電機 內(nèi)加設(shè)諸如泄漏保護、過載保護等措施;提高泵的運行效率,須借助于控制技 術(shù)的運用等等。這些無一不說明要發(fā)展泵技術(shù)水平,必須從配套的電機、控制 技術(shù)等方面同時著手,綜合考慮,最大限度地提升機電一體化綜合水平。 柱塞式液壓泵的顯著缺點是結(jié)構(gòu)比較復(fù)雜,零件制造精度高,成本也高, 對油液污染敏感。這些給生產(chǎn)、使用和維護帶來一定的困難。 攀枝花學(xué)院畢業(yè)設(shè)計 1 直軸式軸向柱塞泵工作原理與性能參數(shù) 6 1 直軸式軸向柱塞泵工作原理與性能參數(shù) 11 直軸式軸向柱塞泵工作原理 直軸式軸向柱塞泵主要結(jié)構(gòu)如圖 1.1 所示。柱塞的頭部安裝有滑靴,滑靴底 面始終貼著斜盤平面運動。當(dāng)缸體帶動柱塞旋轉(zhuǎn)時,由于斜盤平面相對缸體平 面(xoy 面)存在一傾斜角 ,迫使柱塞在柱塞腔內(nèi)作直線往復(fù)運動。如果缸體 按圖示 n 方向旋轉(zhuǎn),在 范圍內(nèi),柱塞由下死點(對應(yīng) 位置)開始18036180 不斷伸出,柱塞腔容積不斷增大,直至上死點(對應(yīng) 位置) 止。在這過程中,0 柱塞腔剛好與配油盤吸油窗相通,油液被吸人柱塞腔內(nèi),這是吸油過程。隨著 缸體繼續(xù)旋轉(zhuǎn),在 范圍內(nèi),柱塞在斜盤約束下由上死點開始不斷進入 腔內(nèi),柱塞腔容積不斷減小,直至下孔點止。在這過程中,柱塞腔剛好與配油 盤排油窗相通,油液通過排油窗排出。這就是排油過程。由此可見,缸體每轉(zhuǎn) 一跳各個往塞有半周吸油、半周排油。如果缸體不斷旋轉(zhuǎn),泵便連續(xù)地吸油和 排油。 圖 1.1 直軸式軸向柱塞泵工作原理 1.2 直軸式軸向柱塞泵主要性能參數(shù) 給定設(shè)計參數(shù) 最大工作壓力 max40PM 額定流量 =100L/minQ 攀枝花學(xué)院畢業(yè)設(shè)計 1 直軸式軸向柱塞泵工作原理與性能參數(shù) 7 最大流量 max20/inQL 額定轉(zhuǎn)速 n=1500r/min 最大轉(zhuǎn)速 ax3/inr 1.2.1 排量流量與容積效率 軸向柱塞泵排量 是指缸體旋轉(zhuǎn)一周,全部柱塞腔所排出油液的容積,即bq 2maxmax4bXFsZds = (19.50)(19.502)9p 0.84(L) 不計容積損失時,泵的理論流量 為tbQ2max4tbbqndsZn =0.841500 =1260(L) 式中 柱塞橫截面積;xF 柱塞外徑;d 柱塞最大行程;maxs Z柱塞數(shù); 傳動軸轉(zhuǎn)速。bn 泵的理論排量 q 為 (ml/r)10107.2.5.9vQnh= 為了避免氣蝕現(xiàn)象,在計算理論排量時應(yīng)按下式作校核計算: 13max.pqC 07.2066p= 式中 是常數(shù),對進口無預(yù)壓力的油泵 =5400;對進口壓力為 5kgf/cm 的油pC 攀枝花學(xué)院畢業(yè)設(shè)計 1 直軸式軸向柱塞泵工作原理與性能參數(shù) 8 泵 =9100,這里取 =9100 故符合要求。pCpC 排量是液壓泵的主要性能參數(shù)之一,是泵幾何參數(shù)的特征量。相同結(jié)構(gòu)型 式的系列泵中,排量越大,作功能力也越大。因此,對液壓元件型號命名的標(biāo) 準(zhǔn)中明確規(guī)定用排量作為主參數(shù)來區(qū)別同一系列不同規(guī)格型號的產(chǎn)品。 從泵的排量公式 中可以看出,柱塞直徑 分布圓直徑24bxfqdDZtgzd 柱塞數(shù) Z 都是泵的固定結(jié)構(gòu)參數(shù),并且當(dāng)原動機確定之后傳動軸轉(zhuǎn)速 也fD bn 是不變的量。要想改變泵輸出流量的方向和大小,可以通過改變斜盤傾斜角 來實現(xiàn)。對于直軸式軸向柱塞泵,斜盤最大傾斜角 ,該設(shè)計 max1520 是通軸泵,受機構(gòu)限制,取下限,即 。15gO= 泵實際輸出流量 為gbQ =100-3=97(ml/min)tb: 式中 為柱塞泵泄漏流量。b: 軸向柱塞泵的泄漏流量主要由缸體底面與配油盤之間滑靴與斜盤平面之 間及柱塞與柱塞腔之間的油液泄漏產(chǎn)生的。此外,泵吸油不足柱塞腔底部無 效容積也造成容積損失。 泵容積效率 定義為實際輸出流量 與理論流量 之比,即 VBgbQtb =gbt97%10 軸向柱塞泵容積效率一般為 =0.940.98,故符合要求。b 1.2.2 扭矩與機械效率 不計摩擦損失時,泵的理論扭矩 為tbM =2btpq:6610.841.0(.)Nm= 式中 為泵吸排油腔壓力差。bp: 考慮摩擦損失 時,實際輸出扭矩 為bMgbM =gtb:6661.0.21.80(.)Nm+= 軸向柱塞泵的摩擦損失主要由缸體底面與配油盤之間滑靴與斜盤平面之 間柱塞與柱塞腔之間的摩擦副的相對運動以及軸承運動而產(chǎn)生的。 泵的機械效率定義為理論扭矩 與實際輸出扭矩 之比,即tbgb 攀枝花學(xué)院畢業(yè)設(shè)計 1 直軸式軸向柱塞泵工作原理與性能參數(shù) 9 61.08.9%tbtbm bg fMMh=+: 1.2.3 功率與效率 不計各種損失時,泵的理論功率 tbN =2tbtgpQnM:6150.823()kwp= 泵實際的輸入功率 為r =12brbgbtmNn61502.28()0.9kwp 泵實際的輸出功率 為bc =3gbtbNpQgh=:631.095427()kw= 定義泵的總 效率 為輸出功率 與輸入功率 之比,即bcbrN = 12tbcbmrtbpNMghh=:0.89.70.86 上式表明,泵總效率為容積效率與機械效率之積。對于軸向柱塞泵,總效 率一般為 =0.850.9,上式滿足要求。bh 攀枝花學(xué)院畢業(yè)設(shè)計 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 10 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 泵在一定斜盤傾角下工作時,柱塞一方面與缸體一起旋轉(zhuǎn),沿缸體平面做 圓周運動,另一方面又相對缸體做往復(fù)直線運動。這兩個運動的合成,使柱塞 軸線上任一點的運動軌跡是一個橢圓。此外,柱塞還可能有由于摩擦而產(chǎn)生的 相對缸體繞其自身軸線的自轉(zhuǎn)運動,此運動使柱塞的磨損和潤滑趨于均勻,是 有利的。 2.1 柱塞運動學(xué)分析 柱塞運動學(xué)分析,主要是研究柱塞相對缸體的往復(fù)直線運動。即分析柱 塞與缸體做相對運動時的行程速度和加速度,這種分析是研究泵流量品質(zhì) 和主要零件受力狀況的基礎(chǔ)。 2.1.1 柱塞行程 S 圖 2.1 為一般帶滑靴的軸向柱塞運動分析圖。若斜盤傾斜角為 ,柱塞 分布圓半徑為 ,缸體或柱塞旋轉(zhuǎn)角為 a,并以柱塞腔容積最大時的上死點fR 位置為 ,則對應(yīng)于任一旋轉(zhuǎn)角 a 時,0 圖 2.1 柱塞運動分析 攀枝花學(xué)院畢業(yè)設(shè)計 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 11 cosffhRa=- 所以柱塞行程 S 為 1(s)stgtg- 當(dāng) 時,可得最大行程 為180aO=max ax2ffsRtDt=3918039()tmO= 2.1.2 柱塞運動速度分析 v 將式 對時間微分可得柱塞運動速度 v 為1(cos)shtgRtg .sinsafttdRtgauw= 當(dāng) 及 時, ,可得最大運動速度 為90a27in1max max509.2.189(/)6fRtgtgsupO= 式中 為缸體旋轉(zhuǎn)角速度, 。watw= 2.1.3 柱塞運動加速度 a 將 對時間微分可得柱塞運動加速度 a 為.sinsafttdRtg 2.cosafttdRtga 當(dāng) 及 時, 可得最大運動加速度 為0a18cos1,max 2max15089219(/)6fRtgswp= 柱塞運動的行程 s速度 v加速度 與缸體轉(zhuǎn)角 a 的關(guān)系如圖 2.2 所示。a 攀枝花學(xué)院畢業(yè)設(shè)計 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 12 圖 2.2 柱塞運動特征圖 2.2 滑靴運動分析 研究滑靴的運動,主要是分析它相對斜盤平面的運動規(guī)律,即滑靴中心在 斜盤平面 內(nèi)的運動規(guī)律(如圖 2.3) ,其運動軌跡是一個橢圓。橢圓的長xoy 短軸分別為 長軸 23940.()cos15fRbmgO= 短軸 ()fa 設(shè)柱塞在缸體平面上 A 點坐標(biāo)為 sincofxRy 如果用極坐標(biāo)表示則為 矢徑 2221coshfxtga 極角 (cos)artga 滑靴在斜盤平面 內(nèi)的運動角速度 為xoy h 攀枝花學(xué)院畢業(yè)設(shè)計 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 13 22cosinhtdaaqwg=+ 由上式可見,滑靴在斜盤平面內(nèi)是不等角速度運動,當(dāng) 時, 最23h 大(在短軸位置)為 maxcoshwg=15026(/)radspO= 當(dāng) 時, 最小(在長軸位置)為0ah min150cs2cos152(/)6radspO 由結(jié)構(gòu)可知,滑靴中心繞 點旋轉(zhuǎn)一周( )的時間等于缸體旋轉(zhuǎn)一周o 的時間。因此,其平均旋轉(zhuǎn)角速度等于缸體角速度,即 7(/)0ap radsw= 2.3 瞬時流量及脈動品質(zhì)分析 柱塞運動速度確定之后,單個柱塞的瞬時流量可寫成 2sintiztftQFRtga 式中 為柱塞橫截面積, 。zF4zzd 泵柱塞數(shù)為 9,柱塞角距(相鄰柱塞間夾角)為 ,位于20.79Z 排油區(qū)的柱塞數(shù)為 ,那么參與排油的各柱塞瞬時流量為0Z 123sin()i2tzftzfQFRtgatwq=+ 0sin(1)tzfQFRtgaZ 泵的瞬時流量為 120ttttzQ 攀枝花學(xué)院畢業(yè)設(shè)計 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 14 0100sin(1)siZzftzfFRgaiZt 由上式可以看出,泵的瞬時流量與缸體轉(zhuǎn)角 a 有關(guān),也與柱塞數(shù)有關(guān)。/2 圖 2.3 奇數(shù)柱塞泵瞬時流量 對于奇數(shù)柱塞,排油區(qū)的柱塞數(shù)為 。oZ 當(dāng) 時,取 = ,由泵的流量公式可得瞬時流量為0aZo1952+= cos2intzfaZQFRtg 當(dāng) 時,取 ,同樣由泵的流量公式可得瞬時流量為2aZ012Z 3cos2intzfaZQFRtg 攀枝花學(xué)院畢業(yè)設(shè)計 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 15 當(dāng) a=0 時,可得瞬時流量的最小值為Z2 min12sintzfQFRtgZ 奇數(shù)柱塞泵瞬時流量規(guī)律見圖 23 我們常用脈動率 和脈動頻率 f 表示瞬時流量脈動品質(zhì)。 定義脈動率 maxinttpQd-= 這樣,就可以進行流量脈動品質(zhì)分析。 2.3.1 脈動頻率 當(dāng) Z=9,即為奇數(shù)時 150294()6fnZHz= 2.3.2 脈動率 當(dāng) Z=9,即為奇數(shù)時 .()0.26%2494tgtgZppd= 利用以上兩式計算值,可以得到以下內(nèi)容: 表 2.1 柱塞泵流量脈動率 由以上分析可知: (1) 隨著柱塞數(shù)的增加,流量脈動率下降。 (2) 相鄰柱塞數(shù)想比,奇數(shù)柱塞泵的脈動率遠小于偶數(shù)柱塞泵的脈動率。這 就是軸向柱塞泵采用奇數(shù)柱塞的根本原因。 從中還可以看出,奇數(shù)柱塞中,當(dāng) 時,脈動率已小于 1%.因此,從泵13Z Z (%) 6 13.40 8 7.61 10 4.89 12 3.41 14 2.61 16 1.92 攀枝花學(xué)院畢業(yè)設(shè)計 2 直軸式軸向柱塞泵運動學(xué)及流量品質(zhì)分析 16 的結(jié)構(gòu)考慮,軸向柱塞泵的柱塞數(shù)常取 Z=7911. 泵瞬時流量是一周期脈動函數(shù).由于泵內(nèi)部或系統(tǒng)管路中不可避免地存在 有液阻,流量的脈動必然要引起壓力脈動.這些脈動嚴(yán)重影響了輸出流量品質(zhì),使 系統(tǒng)工作不穩(wěn)定,當(dāng)泵的脈動頻率與液壓油柱及管路的固有頻率相當(dāng),就產(chǎn)生了 諧振的條件,諧振時壓力脈動可能很高,這時系統(tǒng)的構(gòu)件有極大的潛在破壞性.在 一些極端情況下,幾分鐘之內(nèi)管路或附件即可達到疲勞破壞極限.液壓油的流量 壓力脈動在管路或附件中激勵起高頻率的機械震動將引起導(dǎo)致管路附件及 安裝構(gòu)件的應(yīng)力.液壓泵的供壓管路,一般是最容易受到破壞的部位.以上,對飛 機液壓系統(tǒng)尤其重要. 在設(shè)計液壓泵和液壓系統(tǒng)時,要考慮采取措施抑制或吸收壓力脈動,避免 引起諧振。對于壓力脈動的幅值,在航空液壓標(biāo)準(zhǔn)中有嚴(yán)格的規(guī)定,例如航標(biāo) 變量泵通用技術(shù)條件 (HB583983)中規(guī)定:在任何情況下,壓力脈動均不 超過額定出口壓力的 。實際上 的指標(biāo)還是偏大,但由于制造工藝上10%10 的原因,壓力脈動的指標(biāo)還不能定的很嚴(yán)格,但降低泵的壓力脈動無疑是今后 液壓技術(shù)發(fā)展的一種趨勢。 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 17 3 柱塞受力分析與設(shè)計 柱塞是柱塞泵主要受力零件之一。單個柱塞隨缸體旋轉(zhuǎn)一周時,半周吸 油一周排油。柱塞在吸油過程與在排油過程中的受力情況是不一樣的。下 面主要討論柱塞在排油過程中的受力分析,而柱塞在吸油過程中的受力情況 在回程盤設(shè)計中討論。 3.1 柱塞受力分析 圖 3.1 是帶有滑靴的柱塞受力分析簡圖。 圖 3.1 柱塞受力分析 作用在柱塞上的力有: 3.1.1 柱塞底部的液壓力 bP 柱塞位于排油區(qū)時,作用于柱塞底部的軸向液壓力 為bP 236max(01)40125()4bdp N-= 式中 為泵最大工作壓力。maxP 3.1.2 柱塞慣性力 B 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 18 柱塞相對缸體往復(fù)直線運動時,有直線加速度 a,則柱塞軸向慣性力 為BP 2cos10()zBzfGPmaRtgNw=- =- 式中 為柱塞和滑靴的總質(zhì)量。zmG 慣性力 方向與加速度 a 的方向相反,隨缸體旋轉(zhuǎn)角 a 按余弦規(guī)律變化。當(dāng)B 和 時,慣性力最大值為0a18 223max0.6150191543()6ZBfGPRtgtgNwp- O= 3.1.3 離心反力 t 柱塞隨缸體繞主軸作等速圓周運動,有向心加速度 ,產(chǎn)生的離心反力ta 通過柱塞質(zhì)量重心并垂直軸線,是徑向力。其值為tP 243907()15ZtztfGPmaRNgtwO= 3.1.4 斜盤反力 N 斜盤反力通過柱塞球頭中心垂直于斜盤平面,可以分解為軸向力 P 及徑向力 即0T cos12560cos123()inin50PNTNg O= 軸向力 P 與作用于柱塞底部的液壓力 及其它軸向力相平衡。而徑向力bP T 則對主軸形成負(fù)載扭矩,使柱塞受到彎矩作用,產(chǎn)生接觸應(yīng)力,并使缸體 產(chǎn)生傾倒力矩。 3.1.5 柱塞與柱塞腔壁之間的接觸應(yīng)力 和1p2 該力是接觸應(yīng)力 和 產(chǎn)生的合力。考慮到柱塞與柱塞腔的徑向間隙遠小1p2 于柱塞直徑及柱塞腔內(nèi)的接觸長度。因此,由垂直于柱塞腔的徑向力 T 和離心 力 引起的接觸應(yīng)力 和 可以看成是連續(xù)直線分布的應(yīng)力。fp12 3.1.6 摩擦力 和1fPf 柱塞與柱塞腔壁之間的摩擦力 為fp 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 19 12()(01582)0.1592.()fPpf N=+= 式中 為摩擦系數(shù),常取 =0.050.12,這里取 0.1。f 分析柱塞受力,應(yīng)取柱塞在柱塞腔中具有最小接觸長度,即柱塞處于上死點 時的位置。此時,N 和 可以通過如下方程組求得1p2 0y12sin0tNp 0 zM12021 12cos33bszztfplldpl fdflg-=-+-= 式中 柱塞最小接觸長度,根據(jù)經(jīng)驗 = ,這里取0l 0l(.52)d: = =78mm;0l2d 柱塞名義長度,根據(jù)經(jīng)驗 = ,這里取l l(2.73)d: = =117mm;0l3d 柱塞重心至球心距離, =tl tl0285.620.4m-= 以上雖有三個方程,但其中 也是未知數(shù),需要增加一個方程才能求解。2l 根據(jù)相似原理有 1max022pl 又有 1ax0()l 2m2zzpd 所以 0122()l 將式 代入 求解接觸長度 。為簡化計算,012()lp12sin0tNp2l 力矩方程中離心力 相對很小可以忽略,得tP 2 20026436784783.19785.6()11260.zlfdl m-= 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 20 將式 代入 可得 2012()lp12cos0bsNfpp 1 20(sin)1()1txPplg=+-3(570si5.)20.1().57kNO+= 322 20in710sin83()()(8.6)txNPlgO+=- 將以上兩式代入 可得0221 12033zztlldplpffpl-+-= 1560.78.57()cosincossinbBtPfN KNjgOO+=- 式中 為結(jié)構(gòu)參數(shù)。 2202()(785.6)11.78xxllj-+=- 3.2 柱塞設(shè)計 3.2.1 柱塞結(jié)構(gòu)型式 軸向柱塞泵均采用圓柱形柱塞。根據(jù)柱塞頭部結(jié)構(gòu),可有以下三種形式: 點接觸式柱塞,如圖 3.2(a)所示。這種柱塞頭部為一球面,與斜盤為點接 觸,其零件簡單,加工方便。但由于接觸應(yīng)力大,柱塞頭部容易磨損剝落和 邊緣掉塊,不能承受過高的工作壓力,壽命較低。這種點接觸式柱塞在早期泵 中可見,現(xiàn)在很少有應(yīng)用。 線接觸式柱塞,如圖 3.2(b)所示。柱塞頭部安裝有擺動頭,擺動頭下部可 繞柱塞球窩中心擺動。擺動頭上部是球面或平面與斜盤或面接觸,以降低接 觸應(yīng)力,提高泵工作壓。擺動頭與斜盤的接觸面之間靠殼體腔的油液潤滑, 相當(dāng)于普通滑動軸承,其 值必須限制在規(guī)定的范圍內(nèi)。pv 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 21 帶滑靴的柱塞,如圖 3.2(c)所示。柱塞頭部同樣裝有一個擺動頭,稱滑靴, 可以繞柱塞球頭中心擺動。滑靴與斜盤間為面接觸,接觸應(yīng)力小,能承受較 高的工作壓力。高壓油液還可以通過柱塞中心孔及滑靴中心孔,沿滑靴平面 泄漏,保持與斜盤之間有一層油膜潤滑,從而減少了摩擦和磨損,使壽命大 大提高。目前大多采用這種軸向柱塞泵。 (a) ( b ) ( c ) 圖 3.2 柱塞結(jié)構(gòu)型式 圖 3.3 封閉薄壁柱塞 從圖 3.2 可見,三種型式的柱塞大多做成空心結(jié)構(gòu),以減輕柱塞重量,減 小柱塞運動時的慣性力。采用空心結(jié)構(gòu)還可以利用柱塞底部高壓油液使柱塞局 部擴張變形補償柱塞與柱塞腔之間的間隙,取得良好的密封效果??招闹麅?nèi) 還可以安放回程彈簧,使柱塞在吸油區(qū)復(fù)位。 但空心結(jié)構(gòu)無疑增加了柱塞在吸排油過程中的剩余無效容積。在高壓泵中, 由于液體可壓縮性能的影響,無效容積會降低泵容積效率,增加泵的壓力脈動, 影響調(diào)節(jié)過程的動態(tài)品質(zhì)。 因此,采用何種型式的柱塞要從工況條件性能要求整體結(jié)構(gòu)等多方面 權(quán)衡利弊,合理選擇。 航空液壓泵通常采用圖 3.3 所式的封閉壁結(jié)構(gòu)。這種結(jié)構(gòu)不僅有足夠的剛 度,而且重量減輕 10%20%。剩余無效容積也沒有增加。但這種結(jié)構(gòu)工藝比較 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 22 復(fù)雜,需要用電子束焊接。 3.2.2 柱塞結(jié)構(gòu)尺寸設(shè)計 柱塞直徑 及柱塞分布塞直徑ZdfD 柱塞直徑 柱塞分布塞直徑 和柱塞數(shù) Z 都是互相關(guān)聯(lián)的。根據(jù)統(tǒng)計 資料,在缸體上各柱塞孔直徑 所占的弧長約為分布圓周長 的 75%,即ZdfD 0.75f 由此可得 93.82.fxDmdp= 式中 為結(jié)構(gòu)參數(shù)。 隨柱塞數(shù) Z 而定。對于軸向柱塞泵,其 值如表 3.1 所m 示。 Z 7 9 11 m 3.1 3.9 4.5 表 3.1 當(dāng)泵的理論流量 和轉(zhuǎn)速 根據(jù)使用工況條件選定之后,根據(jù)流量公式可得fbQbn 柱塞直徑 為Zd 3420.3tbZQdmzgp= 由上式計算出的 數(shù)值要圓整化,并應(yīng)按有關(guān)標(biāo)準(zhǔn)選取標(biāo)準(zhǔn)直徑,應(yīng)選取 20mm.Z 柱塞直徑 確定后,應(yīng)從滿足流量的要求而確定柱塞分布圓直徑 ,即xd fD 241.953tbfxDdmdgZnp= 柱塞名義長度 l 由于柱塞圓球中心作用有很大的徑向力 T, ,為使柱塞不致被卡死以及保持 有足夠的密封長度,應(yīng)保證有最小留孔長度 ,一般?。?l 20bpMa(1.48)zd: 3025zl 因此,柱塞名義長度 應(yīng)滿足:l 0maxinlsl+ 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 23 式中 柱塞最大行程;maxs 柱塞最小外伸長度,一般取 。inl min0.27.8zld= 根據(jù)經(jīng)驗數(shù)據(jù),柱塞名義長度常取: 20bpMa(.35)zl: 324zd 這里取 317ldm= 柱塞球頭直徑 按經(jīng)驗常取 ,如圖 3.4 所示。1(0.8)zd: 圖 3.4 柱塞尺寸圖 為使柱塞在排油結(jié)束時圓柱面能完全進入柱塞腔,應(yīng)使柱塞球頭中心至圓柱 面保持一定的距離 ,一般取 ,這里取 。dl(0.45)dzld=:0.519.dzlm= 柱塞均壓槽 高壓柱塞泵中往往在柱塞表面開有環(huán)行均壓槽,起均衡側(cè)向力改善潤滑 條件和存儲贓物的作用。均壓槽的尺寸常?。荷?h=0.30.7mm;間距 t=210mm 實際上,由于柱塞受到的徑向力很大,均壓槽的作用并不明顯,還容易滑 傷缸體上柱塞孔壁面。因此,目前許多高壓柱塞泵中的柱塞不開設(shè)均壓槽。 3.2.3 柱塞摩擦副比壓 P比功 驗算vP 攀枝花學(xué)院畢業(yè)設(shè)計 3 柱塞受力分析與設(shè)計 24 對于柱塞與缸體這一對摩擦副,過大的接觸應(yīng)力不僅會增加摩擦副之間的 磨損,而且有可能壓傷柱塞或缸體。其比壓應(yīng)控制在摩擦副材料允許的范圍內(nèi)。 取柱塞伸出最長時的最大接觸應(yīng)力作為計算比壓值,則 31max20.123094zpMpapadl-= 柱塞相對缸體的最大運動速度 應(yīng)在摩擦副材料允許范圍內(nèi),即axv 3max19.504.6150.5/8/fvRtgtgmsvswO-= 由此可得柱塞缸體摩擦副最大比功 為maxpv 1max220.51./60./fzpvRtgMspvasdl= 上式中的許用比壓 許用速度 許用比功 的值,視摩擦副材料而v 定,可參考表 3.2。 材料牌號 許用比壓 p (Mpa ) 許用滑動速度 v ( m/s) 許用比功 pv (Mpa.m/s) ZQAL94 30 8 60 ZQSn101 15 3 20 球磨鑄鐵 10 5 18 表 3.2 材料性能 柱塞與缸體這一對摩擦副,不宜選用熱變形相差很大的材料,這對于油溫 高的泵更重要。同時在鋼表面噴鍍適當(dāng)厚度的軟金屬來減少摩擦阻力,不選用 銅材料還可以避免高溫時油液對銅材料的腐蝕作用。 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 25 4 滑靴受力分析與設(shè)計 目前高壓柱塞泵已普遍采用帶滑靴的柱塞結(jié)構(gòu)?;ゲ粌H增大了與斜盤的接 觸面減少了接觸應(yīng)力,而且柱塞底部的高壓油液,經(jīng)柱塞中心孔 和滑靴中0d 心孔 ,再經(jīng)滑靴封油帶泄露到泵殼體腔中。由于油液在封油帶環(huán)縫中的流動,0d 使滑靴與斜盤之間形成一層薄油膜,大大減少了相對運動件間的摩擦損失,提 高了機械效率。這種結(jié)構(gòu)能適應(yīng)高壓力和高轉(zhuǎn)速的需要。 4.1 滑靴受力分析 液壓泵工作時,作用于滑靴上有一組方向相反的力。一是柱塞底部液壓力圖 把滑靴壓向斜盤,稱為壓緊力 ;另一是由滑靴面直徑為 的油池產(chǎn)生的靜壓yp1D 力 與滑靴封油帶上油液泄漏時油膜反力 ,二者力圖使滑靴與斜盤分離開,1fp 2fp 稱為分離 。當(dāng)壓緊力與分離力相平衡時,封油帶上將保持一層穩(wěn)定的油膜,f 形成靜壓油墊。下面對這組力進行分析。 4.1.1 分離力 f 圖 111 為柱塞結(jié)構(gòu)與分離力分布圖。根據(jù)流體學(xué)平面圓盤放射流動可知, 油液經(jīng)滑靴封油帶環(huán)縫流動的泄漏量 q 的表達式為 312()6pqRln 若 ,則0zp 3126pqRln 式中 為封油帶油膜厚度。 封油帶上半徑為 的任儀點壓力分布式為r211ln()rRrpP 若 ,則0zp 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 26 21lnrRp 從上式可以看出,封油帶上壓力隨半徑增大而呈對數(shù)規(guī)律下降。封油帶上總的 分離力 可通過積分求得。fp 圖 4.1 滑靴結(jié)構(gòu)及分離力分布 如圖 4.1,取微環(huán)面 ,則封油帶分離力 為2rd2fp 2 221111()lnRfrpdRP 油池靜壓分離力 為1fp 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 27 211fpR 總分離力 為fp 225112()(41)0.61()lnlnfffRpKN-=+= 4.1.2 壓緊力 yp 滑靴所受壓緊力主要由柱塞底部液壓力 引起的,即bp 215603()cos4cosbyzdKNgO= 4.1.3 力平衡方程式 當(dāng)滑靴受力平衡時,應(yīng)滿足下列力平衡方程式 yfp 221()4coslnbzRdP 即 211l()coszbpR 將上式代入式 中,得泄漏量為 3126qln 32333272610.1.0(91)(/min)()cos(4)cos5bzpdq LR pmg- O=- 除了上述主要力之外,滑靴上還作用有其他的力。如滑靴與斜盤間的摩擦力, 由滑靴質(zhì)量引起的離心力,球鉸摩擦力,帶動滑靴沿斜盤旋轉(zhuǎn)的切向力等。這 些力有的使滑靴產(chǎn)生自轉(zhuǎn),有利于均勻摩擦;有的可能使滑靴傾倒而產(chǎn)生偏磨, 并破壞了滑靴的密封,應(yīng)該在滑靴結(jié)構(gòu)尺寸設(shè)計中予以注意。 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 28 4.2 滑靴設(shè)計 滑靴設(shè)計常用剩余壓緊力法。 4.2.1 剩余壓緊力法 剩余壓緊力法的主要特點是:滑靴工作時,始終保持壓緊力稍大于分離力, 使滑靴緊貼斜盤表面。此時無論柱塞中心孔 還是滑靴中心孔 ,均不起節(jié)流0d 0d 作用。靜壓油池壓力 與柱塞底部壓力 相等,即1pbp = b 將上式代入式 中,可得滑靴分離力為 211ln()coszbRdp 22611(41)01253.()lnlnbpNR 設(shè)剩余壓緊力 ,則壓緊系數(shù)yfp ,這里取 0.1。0.5.1yp: 滑靴力平衡方程式即為 (1)(.)32.79()fy N 用剩余壓緊力法設(shè)計的滑靴,油膜厚度較薄,一般為 0.0080.01mm 左右。滑 靴泄漏量少,容積效率教高。但摩擦功率較大,機械效率會降低。若選擇適當(dāng) 的壓緊系數(shù) ,剩余壓緊力產(chǎn)生的接觸應(yīng)力也不會大,仍有較高的總效率和較 長的壽命。剩余壓緊力法簡單適用,目前大多數(shù)滑靴都采用這種方法設(shè)計。 4.3 滑靴結(jié)構(gòu)型式與結(jié)構(gòu)尺寸設(shè)計 4.3.1 滑靴結(jié)構(gòu)型式 滑靴結(jié)構(gòu)有如圖 4.2 所示的幾種型式。圖中(a)所示為簡單型,靜壓油池 較大,只有封油帶而無輔助支承面。結(jié)構(gòu)簡單,是目前常用的一種型式。 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 29 圖 4.2(a) 圖中(b)所式滑靴增加了內(nèi)外輔助支承面。減小了由剩余壓緊力產(chǎn)生的 比壓,同時可以克服滑靴傾倒產(chǎn)生的偏磨使封油帶被破壞的情況。 圖 4.2(b) 圖中(c)所示的滑靴在支承面上開設(shè)了阻尼形螺旋槽與縫隙阻尼共同形成 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 30 液阻。從而實現(xiàn)滑靴油膜的靜壓支承。 圖 4.2(c) 滑靴結(jié)構(gòu)型式 4.3.2 結(jié)構(gòu)尺寸設(shè)計 下面以簡單型滑靴為例,介紹主要結(jié)構(gòu)尺寸的選擇和計算。 滑靴外徑 2D 滑靴在斜盤上的布局,應(yīng)使傾角 時,互相之間仍有一定的間隙 s,如圖0 4.3 所示。 滑靴外徑 為2 2sin39sin0.24()fDmZ 一般取 s=0.21,這里取 0.2。 油池直徑 初步計算時,可設(shè)定 ,這里取 0.8.120.68: 2.43.2 中心孔 及長度0d0l 如果用剩余壓緊力法設(shè)計滑靴,中心孔 和 可以不起節(jié)流作用。為改善0d 加工工藝性能,取 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 31 (或 )=0.81.5mm 0d0 如果采用靜壓支承或最小功率損失法設(shè)計滑靴,則要求中心孔 (或 )0d0 對油液有較大的阻尼作用,并選擇最佳油膜厚度 。節(jié)流器有0.1.2m: 以下兩種型式: / 圖 4.3 滑靴外徑 的確定2D (a) 節(jié)流器采用節(jié)流管時,常以柱塞中心孔 作為節(jié)流裝置,如圖 4.1 所0d 示。根據(jù)流體力學(xué)細長孔流量 q 為 401()28bplK 式中 細長管直徑長度;0dl K修正系數(shù); 0164xRdKl 1602.xd0.65xdR .80.x 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 32 把上式代入滑靴泄漏量公式 可得 3126pqRln 43012()86lnbdpK 整理后可得節(jié)流管尺寸為 代入數(shù)據(jù)可以求得 430216lnbdapRl =1 0dm08l 式中 為壓降系數(shù), 。當(dāng) 時,油膜具有最大剛度,承載能力a1bpa2.673 最強。為不使封油帶過寬及阻尼管過長,推薦壓降系數(shù) =0.80.9,這里取a 0.8。 (b) 節(jié)流器采用節(jié)流孔時,常以滑靴中心孔 作為節(jié)流裝置,如圖 4.1 所示。0d 根據(jù)流體力學(xué)薄壁孔流量 q 為 201()4bgCpr 式中 C 為流量系數(shù),一般取 C=0.60.7。 把上式代入 中,有 3126pqRln 2 30 112()46lnbdpgCpRr 整理后可得節(jié)流孔尺寸 代入數(shù)據(jù)可以求得 32021.lnbadpRgCr 0m 以上提供了設(shè)計節(jié)流器的方法。從上兩式中可以看出,采用節(jié)流管的柱塞 滑靴組合,公式中無粘度系數(shù) ,說明油溫對節(jié)流效果影響較小,但細長孔的 攀枝花學(xué)院畢業(yè)設(shè)計 4 滑靴受力分析與設(shè)計 33 加工工藝性較差,實現(xiàn)起來有困難。采用滑靴中心孔為薄壁孔節(jié)流,受粘度 系數(shù) 的影響,油溫對節(jié)流效果影響較大,油膜穩(wěn)定性也要差些。但薄壁孔加 工工藝性較好。 為防止油液中污粒堵塞節(jié)流器,節(jié)流器孔徑應(yīng) 。0.4m 攀枝花學(xué)院畢業(yè)設(shè)計 5 配油盤受力分析與設(shè)計 34 5 配油盤受力分析與設(shè)計 配油盤是軸向柱塞泵主要零件之一,用以隔離和分配吸排油油液以及承受 由高速旋轉(zhuǎn)的缸體傳來的軸向載荷。它設(shè)計的好壞直接影響泵的效率和壽命。 5.1 配油盤受力分析 不同類型的軸向柱塞泵使用的配油盤是有差別的,但是功用和基本構(gòu)造則相 同。圖 5.1 是常用的配油盤簡圖。 液壓泵工作時,高速旋轉(zhuǎn)的缸體與配油盤之間作用有一對方向相反的力;即 缸體因柱塞腔中高壓油液作用而產(chǎn)生的壓緊力 ;配油窗口和封油帶油膜對缸yp 體的分離力 。fp 1吸油窗 2排油窗 3過度區(qū) 4減振槽 5內(nèi)封油帶 6外封油帶 7輔助支承面 圖 5.1 配油盤基本構(gòu)造 5.1.1 壓緊力 yp 壓緊力是由于處在排油區(qū)是柱塞腔中高壓油液作用在柱塞腔底部臺階上,使 缸體受到軸向作用力,并通過缸體作用到配油盤上。 對于奇數(shù)柱塞泵,當(dāng)有 個柱塞處于排油區(qū)時,壓緊力 為1()2Z1yp 攀枝花學(xué)院畢業(yè)設(shè)計 5 配油盤受力分析與設(shè)計 35 2 261max91. 301240()44yzbyZpdp N 當(dāng)有 個柱塞處于排油區(qū)時,壓緊力 為()2yp 2 26min91. 30159320()44yzbypdp 平均壓緊力 為 12()(15092)7()yy N 5.1.2 分離力 fp 分離力由三部分組成。即外封油帶分離力 ,內(nèi)封油帶分離力 ,排油1fp2fp 窗高壓油對缸體的分離力。 對于奇數(shù)泵,在缸體旋轉(zhuǎn)過程中,每一瞬時參加排油的柱塞數(shù)量和位置不同。 封油帶的包角是變化的。實際包角比配油盤油窗包角 有所擴大,如圖 5.2 所0 示。 當(dāng)有 個柱塞排油時,封油帶實際包角 為1()2Z1 102()(9)293Za 當(dāng)有 個柱塞排油時,封油帶實際包角 為1()2Z2 201128(3)(93)9Za 平均有 個柱塞排油時,平均包角 為2p 1201287()()()39pZa 式中 柱塞間距角, ;aa 柱塞腔通油孔包角,這里取 。0 029a 外封油帶分離力 1fp 外封油帶上泄漏流量是源流流動,對封油帶任儀半徑上的壓力 從 到y(tǒng)p2R 積分,并以 代替 ,可得外封油帶上的分離力 為1Rp21fp 攀枝花學(xué)院畢業(yè)設(shè)計 5 配油盤受力分析與設(shè)計 36 圖 5.2 封油帶實際包角的變化 21212()4lnppf bbRPR 62677(5)1099251054ln =3.()N 外封油帶泄漏量 為1q 331 7120.125699()lnlnpb mlR 內(nèi)封油帶分離力 f 內(nèi)封油帶上泄漏流量是匯流流動,同理可得內(nèi)封油帶分離力 為2fp 23422 3()lnppf bbRRP 攀枝花學(xué)院畢業(yè)設(shè)計 5 配油盤受力分析與設(shè)計 37 = 26267(91)09104ln 5.2()N 內(nèi)封油帶泄漏量 為2q 332 740.125694()ln1ln9pb mlR 排油窗分離力 3fp 22337()(15)601.()9pf bRN 配油盤總分離力 1f 123.4521.60()ffffpp 總泄漏量 q 為 1297()qN 5.2 配油盤設(shè)計 配油盤設(shè)計主要是確定內(nèi)封油帶尺寸吸排油窗口尺寸以及輔助支承面各 部分尺寸。 5.2.1 過渡區(qū)設(shè)計 為使配油盤吸排油窗之間有可靠的隔離和密封,大多數(shù)配油盤采用過渡角 大于柱塞腔通油孔包角 的結(jié)構(gòu),稱正重迭型配油盤。具有這種結(jié)構(gòu)的配油1a0a 盤,當(dāng)柱塞從低壓腔接通高壓腔時,柱塞腔內(nèi)封閉的油液會受到瞬間壓縮產(chǎn)生 沖擊壓力;當(dāng)柱塞從高壓腔接通底壓腔時,封閉的油液會瞬間膨脹產(chǎn)生沖擊壓 力。這種高低壓交替的沖擊壓力嚴(yán)重降低流量脈動品質(zhì),產(chǎn)生噪音和功率消耗 以及周期性的沖擊載荷。對泵的壽命影響很大。為防止壓力沖擊,我們希望柱 塞腔在接通高低壓時,腔內(nèi)壓力能平緩過渡從而避免壓力沖擊。 攀枝花學(xué)院畢業(yè)設(shè)計 5 配油盤受力分析與設(shè)計 38 5.2.2 配油盤主要尺寸確定(圖 5.3) 圖 5.3 配油盤主要尺寸確定 (1)配油窗尺寸 配油窗口分布圓直徑一般取等于或小于柱塞分布圓直徑 fD 配油窗口包角 ,在吸油窗口包角相等時,取0 12a 為避免吸油不足,配油窗口流速應(yīng)滿足 滿足要求。002.3/tbQmsF 式中 泵理論流量;tb 配油窗面積, ;2 2023()R 許用吸入流速, =23m/s。00 由此可得 =23R0tQv (2)封油帶尺寸 攀枝花學(xué)院畢業(yè)設(shè)計 5 配油盤受力分析與設(shè)計 39 設(shè)內(nèi)封油帶寬度為 ,外封油帶寬度為 , 和 確定方法為:2b1b2 考慮到外封油帶處于大半徑,加上離心力的作用,泄漏量比內(nèi)封油帶泄漏量大, 取 略大于 ,即1b2 120.15zbRd234(.2)z: 當(dāng)配油盤受力平衡時,將壓緊力計算示與分離力計算示帶入平衡方程式可得 22 23412(1).lnlzpRZd 聯(lián)立解上述方程,即可確定配油盤封油帶尺寸 17Rm215 。31Rm49 5.2.3 驗算比壓 p比功 pv 為使配油盤的接觸應(yīng)力盡可能減小和使缸體與配油盤之間保持液體摩擦,配 油盤應(yīng)有足夠的支承面積。為此設(shè)置了輔助支承面,如圖 5.3 中的 。輔5D6 助支承面上開有寬度為 B 的通油槽,起卸荷作用。配油盤的總支承面積 F 為 22514123()()4FDF 式中 輔助支承面通油槽總面積;1 (K 為通油槽個數(shù), B 為通油槽寬度)5()BR 吸排油窗口面積。2F3 根據(jù)估算: 2104()m 配油盤比壓 p 為 51()284ytpKBRpaFld 式中 配油盤剩余壓緊力;yp 中心彈簧壓緊力;t 根據(jù)資料取 300pa; 攀枝花學(xué)院畢業(yè)設(shè)計 5 配油盤受力分析與設(shè)計 40 在配油盤和缸體這對摩擦副材料和結(jié)構(gòu)尺寸確定后,不因功率損耗過大而磨 損,應(yīng)驗算 pv 值,即 pvv 式中 為平均切線速度, = 。pv42()Dn 28(120)4586/5v Kgfcm 根據(jù)資料取 。v260/Kgfcm 攀枝花學(xué)院畢業(yè)設(shè)計 6 缸體受力分析與設(shè)計 41 6 缸體受力分析與設(shè)計 6.1 缸體的穩(wěn)定性 在工作過的配油盤表面上??吹皆诟邏簠^(qū)一側(cè)有明顯的偏磨現(xiàn)象,偏磨會使 缸體與配油盤間摩擦損失增大,泄漏增加,油溫升高,油液粘性和潤滑性下降, 而影響到泵的壽命,造成偏磨的原因,除了可能有受力不平衡外,主要是缸體 力矩不平衡,使缸體發(fā)生傾倒。 6.2 缸體主要結(jié)構(gòu)尺寸的確定 6.2.1 通油孔分布圓半徑 和面積 FfR / 圖 6.1 柱塞腔通油孔尺寸 為減小油液流動損失,通常取通油孔分布圓半徑 與配油窗口分布圓半徑fR 相等。即fr 23153fRm 式中 為配油盤配油窗口內(nèi)外半徑。2R3 通油孔面積近似計算如下(如圖 6.1 所示) 。 2220.15.43968()aaFlb 式中 通油孔長度, ;al zd 攀枝花學(xué)院畢業(yè)設(shè)計 6 缸體受力分析與設(shè)計 42 通油孔寬度, ;ab0.5azbd 6.2.2 缸體內(nèi)外直徑 的確定1D2 為保證缸體在溫度變化和受力狀態(tài)下,各方向的變形量一致,應(yīng)盡量使各處 壁厚一致(如圖 6.2) ,即 。壁厚初值可由結(jié)構(gòu)尺寸確定。然后進行123 強度和剛度驗算。 缸體強度可按厚壁筒驗算 22 2(39)15609(/)wzbdp kgfcm 式中 筒外徑, 。wzd 缸體材料許用應(yīng)力,對 ZQAL94: =600800 2(/)kgfcm 圖 6.2 缸體結(jié)構(gòu)尺寸 缸體剛度也按厚壁筒校驗,其變形量為 39()(20.156)0.38214zbdPmF 式中 E缸體材料彈性系數(shù); 材料波桑系數(shù),對剛質(zhì)材料 =0.230.30,青銅 =0.320.35; 允許變形量,一般剛質(zhì)缸體取 ,青銅則取0.65 攀枝花學(xué)院畢業(yè)設(shè)計 6 缸體受力分析與設(shè)計 43 。0.48m 符合要求。 6.2.3 缸體高度 H 從圖 62 中可確定缸體高度 H 為 0max345790.5312.()lSl m 式中 柱塞最短留孔長度;0l 柱塞最大行程;maxS 為便于研磨加工,留有的退刀槽長度,盡量取短;3l 缸體厚度,一般 =(0.40.6) ,這里取 0.5 。4 lzdzd 攀枝花學(xué)院畢業(yè)設(shè)計 7 柱塞回程機構(gòu)設(shè)計 44 7 柱塞回程機構(gòu)設(shè)計 直軸式軸向柱塞泵一般都有柱塞回程結(jié)構(gòu),其作用是在吸油過程中幫助把柱 塞從柱塞腔中提伸出來,完成吸油工作,并保證滑靴與斜盤有良好的貼合。 固定間隙式回程結(jié)構(gòu)使用于帶滑靴的柱塞。它的特點是在滑靴頸部裝一回程 盤 2,如圖 7.1,并用螺紋環(huán)聯(lián)結(jié)在斜盤上。當(dāng)滑靴下表面與回程盤貼緊時,應(yīng) 保證滑靴上表面與斜盤墊板 3 之間有一固定間隙,并可調(diào)。 回程盤是一平面圓盤,如圖 7.1 所示。盤上 為滑靴安裝孔徑, 為滑靴hdhD 安裝孔分布圓直徑。這兩個尺寸是回程盤的關(guān)鍵尺寸,設(shè)計不好會使滑靴頸部 及肩部嚴(yán)重磨損。下面主要研究這兩個尺寸的確定方法。 如前所述,滑靴在斜盤平面上運動軌跡是一個橢圓,橢圓的兩軸是 短軸 219.53()faRm 長軸 max4.coss20fb 和 的選擇應(yīng)保證泵工作時滑靴不與回程盤發(fā)生干涉為原則。因此,hdD 取橢圓長短軸的平均值較合理,即 max19.5461()2cosfhfRabm 從圖 7.1 中可以看出回程盤上安裝孔中心 O 與長 短軸端點 A 或 B 的最大 偏心距相等,且為 ,因而max12e axaxmax(41.52)6()coscosf ffRm 為了允許滑靴在任一方向偏離 ,而不與回程盤干涉,回程盤的安裝孔ax1