煤礦絞車設(shè)計(jì)含開題及9張CAD圖
煤礦絞車設(shè)計(jì)含開題及9張CAD圖,煤礦,絞車,設(shè)計(jì),開題,cad
附錄
外文資料與中文翻譯
外文資料:
MICRO PLANETARY REDUCTION GEAR USING SURFACE-MICROMACHINING
Abstract
A micro planetary gear mechanism featuring a high gear reduction ratio with compactness in size ispresented in this paper. SUMMiT V is employed for the fabrication method so that the redundancy of assembling parts is eliminated. The design rules of which has also been checked. To make full use of the benefits of the surface- micro - machining, the planetary reduction gear is designed toward using the on-chip micro- engine. The expected gearreduction ratio is calculated and compared with the conventional chain gear mechanism. The microplanetary gear mechanism presented in this paper is expected to have 162:1 reduction ratio utilizing less space consumption. This is an order of magnitude higher than the previously reported design in a single reduction gear train.
Keywords:MEMS, Planetary gear, Reduction gear surface-micromachining, SUMMiT V process
Nomenclature
a sun gear
b planet gears
c internal gear (fixed)
d internal gear (rotary)
n the number of units of gear train
D diameter of the pitch circle
N number of teeth
P number of planets
angular velocity
Introduction
The gear mechanisms in microelectro mechanical systems(MEMS) are commonly expected to generate high torque in the confined micro-size systems. However, it is generally difficult for the micro-scale systems to have such a high torque without having multiple reduction systems.
The design of the reduction gear drive based on a planetary paradox gear mechanism can increase the torque within a compact area, since the microplanetary gear system has an advantage of high reduction ratio per unit volume [1]. However its mechanism is so complicated that relatively few attempts have been made to miniaturize the gear systems [2-3]. Suzumori et al. [2] used the mechanical paradox planetary gear mechanism to drive a robot for 1-in pipes forward or backward. They employed a single motor to drive the gear mechanisms with high reduction ratio. Precise gear fabrication was enabled by micro wire electrical discharge machining (micro-EDM). These parts, however, should be assembled before the drive motor is attached to the gearbox. Takeuchi et. al. [3] also used micro-EDM to fabricate the micro planetary gears. They suggested special cermets or High Carbon Steel for possible materials. While the design can achieve a reduction ratio of 200, the gears should also be assembled and motor driven.To enable the driving of the planetary gear by onchip means, Sandia Ultra- planar Multi-level MEMS Technology (SUMMiT-V) process [4] for planetary gear fabrication is adopted in this study. The SUMMiT-V process is the only foundry process available which utilizes four layers of releasable polysilicon, for a total of five layers (including a ground plane) [5]. Due to this fact, it is frequently used in complicated gear mechanisms being driven by on-chip electrostatic actuators [5].However, in many cases, the microengines may not produce enough torque to drive the desired mechanical load, since their electrostatic comb drives typically only generate a few tens of micronewtons of force. Fortunately, these engines can easily be driven at tens of thousands of revolutions per minutes. This makes it very feasible to trade speed for torque [7].Rodgers et al. [7] proposed two dual level gears with an overall gear reduction ratio of 12:1. Thus six of these modular transmission assemblies can have a 2,985,984:1 reduction ratio at the cost of the huge space.
With the desire for size compactness and at the same time, high reduction ratios, the planetary gear system is presented in this paper. It will be the first planetary gear mechanism using surface micromachining,to the authors knowledge. The principles of operations of the planetary gear mechanism, fabrication, and the expected performance of the planetary gear systems are described in this paper.
Principles of operation
An alternative way of using gears to transmit torque is to make one or more gears, i.e., planetary gears, rotate outside of one gear, i.e. sun gear. Most planetary reduction gears, at conventional size, are used as well-known compact mechanical power transmission systems [1]. The schematic of the planetary gear system employed is shown in Figure
Since SUMMiT V designs are laid out using AutoCAD 2000, the Figure 1 is generated automatically from the lay out masks (Appendix [1]). One unit of the planetary gear system is composed of six gears: one sun gear, a, three planetary gears, b, one fixed ring gear, c, one rotating ring gear, d, and one output gear. The number of teeth for each gear is different from one another except among the planetary gears. An input gear is the sun gear, a, driven by the arm connected to the micro-engine. The rotating ring gear, d, is served as an output gear. For example, if the arm drives the sun gear in the clockwise direction, the planetary gears, b, will rotate counter-clockwise at their own axis and at the same time, those will rotate about the sun gear in clockwise direction resulting in planetary motion. Due to the relative motion between the planetary gears, b, and the fixed ring gear, c, the rotating ring gear, d, will rotate counterclockwise direction. This is so called a 3K mechanical paradox planetary gear [1].
Fabrication procedure and test structures
The features of the SUMMiT V process offer four levels of structural polysilicon layers and an electrical poly level, and also employ traditional integrated circuit processing techniques [4]. The SUMMiT V technology is especially suitable for the gear mechanism. The planetary gear mechanism can be driven by the on-chip engine and thus is another reason of using the SUMMiT V process.
Since the Sandia process is such a well-known procedure [5-7], only brief explanation is presented. Figure 2 represents the cross-sectional view of Figure 1, and also was generated from the AutoCAD layout masks (Appendix [1]). The discontinuity in the cross-section is for the etch holes. The poly1 (gray) is used for the hubs and also patterned to make the fixed ring gear, i.e., c, the sun gear, i.e., a, the rotating ring gear, i.e., c, and the output gear is patterned in the poly2. Since the planetary gear needs to contact both the fixed ring and rotating ring gear, poly2 is added to poly3, where the gear teeth are actually formed. The poly4 layer is used for the arm that drives the sun gear. After the release etch, the planetary gears will fall down so that those will engage both the ring gears.
The figures for the test structures are presented in Appendix [2]. Since the aim of this paper is to suggest a gear reduction mechanism, the planetary gear system is decomposed to several gear units to verify its performance. The first test structure is about the arm, which rotates the sun gear, connected to the on-chip engine. The angular velocity of the arm depends on the engine output speed. The second test structure describes the point at which the sun gear and planetary gears are engaged to the fixed ring gear. Because of the fact that the ring gear is fixed, the planetary gear is just transmitting the torque from the sun gear to the fixed ring gear without planet motion, e.g., rotating its own axis not around the sun gear. When the rotating ring gear is mounted on top of the fixed ring gear, i.e., the third test structure, the planetary gears begin to rotate around the sun gear so that the planet motion are enabled. Therefore, once one output gear is attached to the rotating ring gear, i.e., the final test structure, the whole reduction unit is completed. Dismantling the
planetary gear into three test structures allows the pinpointing of possible errors in the gear system.
Solutions procedure and expected performance
The reduction ratio is defined as the ratio between the angular velocity of the driver gear and that of the driven gear. High reduction ratios indicate trading speed for torque. For example, a 10:1 gear reduction unit could increase torque an order of magnitude. Since the gears in the planetary system should be meshed to one another , the design of gear module should follow a restriction. For example, the number of teeth for the sun gear plus either that of the fixed ring gear or that of the rotating ring gear should be the multiple of the number of planets, P (equation 1). Equation 2, which represent the reduction ratio, should observe the equation 1 first. The N is the number of the teeth for corresponding gear.
Gears, a, b, c, d in the planetary gear system have a tooth module of 4 ìm, which is a comparable size of the current gear reduction units[5], and the tooth numbers are 12, 29, 69, and 72 respectively. Therefore the overall reduction ratio is 162:1 from equation (2). Rodgers et al. [7] reported a 12:1 reduction unit using surface micromachining, which is less than order of magnitude for the gear reduction ratio of the planetary gear system. Although the reduction from Rodgers et al. [7] needs to be occupied in approximately 0.093 mm2, the planetary gear system only utilizes an area of approximately 0.076 mm2. Thus, this planetary reduction design can achieve an order of magnitude higher reduction ratio with less space. Since thereduction module is composed of several reduction units, the advantage of using a planetary gear system is self evident in Figure 3.
Figure 3 shows the comparison of reduction ratios between the proposed planetary gear mechanism i.e. 162n, and the Sandia gear system [7], i.e. 12n, as a function of the number of units, i.e., n. The ordinate is drawn in log scale so that the orders of magnitude differences between two modules are evident. For example, in a module with five numbers of units, the reduction ratio difference between two is approximately six orders of magnitudes. Furthermore, the planetary gear system can save 8500 m2 in such a five unit reduction system.
Conclusion and discussions
The planetary gear reduction system using surface-micromachining, driven by an on-chip engine, first appears in this paper within the authors’ knowledge. The single reduction unit can achieve an order of magnitude higher reduction ratio than that of the previous design. However, due to the surface friction, and the backlash, which is inevitable for the gear manufacturing process, the overall reduction ratio may be less than 162:1 in the real situation. Even though some loss might be expected in the real application, the overall reduction ratio should be order of magnitude higher and the space consumption is less than the previous design [7].
The authors learned a lot about the surfacemicromachining process during the project grant,and realized that a lot of the design needed to be revisited and corrected. This became prevalent when drawing the cross-sectional views of the design. Since the authors utilized the SUMMit V Advanced design Tools Software package and verified the design rules, the planetary gear layout is ready for fabrication. The authors hope that this planetary reduction unit will continue to be updated by successive researchers.
Acknowledgement
The authors would acknowledge that discussions with Prof. Kris Pister, Prof. Arun Majumdar, Ms. Karen Cheung, and Mr. Elliot Hui contributed to this work tremendously.
References
1. Hori, K., and Sato, A., “Micro-planetary reduction gear” Proc. IEEE 2nd Int. Symp. Micro Machine and Human Sciences, pp. 53- 60 (1991).
2. Suzumori, K., Miyagawa, T., Kimura, M., and Hasegawa, Y., “Micro Inspection Robot for 1-in Pipes”, IEEE/ASME Trans. On Mechatronics, Vol. 4., No. 3, pp. 286-292 (1999).
3. Takeuchi, H., Nakamura, K., Shimizu, N., and Shibaike, N., “Optimization of Mechanical Interface for a Practical Micro-Reducer”, Proc. IEEE 13th Int. Symp. Micro Electro Mechanical Systems, pp. 170-175 (2000).
4. Sandia National Laboratories, “Design Rules Design Rules”, Microelectronics
Development Laboratory, Version 0.8, (2000)
5. Krygowask, T. W., Sniegowask, J. J., Rodgers, M. S., Montague, S., and Allen, J. J., “Infrastructure, Technology and Applications of Micro-Electro-Mechanical Systems (MEMS)”, Sensor Expo 1999 (1999).
6. Sniegowski, J. J., Miller, S. L., LaVigne, G. F., Rodgers, M. S., and McWhorter, P. J., “Monolithic Geared-Mechanisms Driven by aPolysilicon Surface-Micromachined On-Chip Electrostatic Microengine”, Solid-State Sensor and Actuator Workshop, pp. 178-182, (1996).
7. Rogers, M. S., Sniegowski, S. S., Miller, S., and LaVigne, G. F., “Designing and Operating Electrostatically Driven Microengines”, Proceedings of the 44th International Instrumentation Symposium, Reno, NV, May 3-7, pp. 56-65 (1998).
Figure 1. The schematic of the planetarygear mechanism generated from SUMMiT V
Figure 2. A schematic cross-section of the planetary gear system
Figure 3. The comparison of reduction ratios as a function of the number of uni
中文翻譯:
采用表面微加工技術(shù)制造微型行星齒輪減速器
摘要
這篇文章論述了一種結(jié)構(gòu)緊湊、傳動(dòng)比高的微型行星齒輪減速機(jī)構(gòu)。這種機(jī)構(gòu)的加工方法采用桑迪亞國家實(shí)驗(yàn)室研發(fā)的過度平面的多極微機(jī)電系統(tǒng)技術(shù)去除整體結(jié)構(gòu)的冗余部分,而且這種設(shè)計(jì)原理已經(jīng)得到承認(rèn)。為了充分利用表面微加工技術(shù),我們在設(shè)計(jì)加工這種行星減速齒輪時(shí),需要使用安裝在芯片上的微電機(jī)。我們將計(jì)算這種齒輪預(yù)期的減速比,并把它與傳統(tǒng)的鏈傳動(dòng)和齒輪傳動(dòng)相比較。在這篇論文中演示的微行星輪占用較少的空間,消耗較少的材料,減速比卻有望達(dá)到162:1。這比以前的論文中設(shè)計(jì)的減速器的傳動(dòng)比要高的多,簡直是一個(gè)神話。
關(guān)鍵字:微機(jī)電 行星齒輪 減速器 表面微加工 過度平面的多極微機(jī)電系統(tǒng)的加工(簡稱為SUMMiT V)
術(shù)語:
a.太陽輪
b.行星輪
c.內(nèi)齒圈(固定)
d.內(nèi)齒圈(旋轉(zhuǎn))
n.齒輪系組成單元的數(shù)目
D.節(jié)圓的直徑
N.齒數(shù)
P.行星輪的數(shù)目
.角速度
介紹
在微機(jī)電系統(tǒng)中的齒輪結(jié)構(gòu)通常希望用來在微小的體積內(nèi)產(chǎn)生較大的扭矩。但是沒有較大重量的減速器,往往是很難達(dá)到這樣的目的。研究發(fā)現(xiàn)擁有微行星齒輪的減速機(jī)構(gòu)能夠在狹小的空間內(nèi)增加扭矩,這好像有點(diǎn)自相矛盾。這是因?yàn)槲⑿行驱X輪系統(tǒng)能在每單位體積內(nèi)產(chǎn)生更大的傳動(dòng)比。然而它的結(jié)構(gòu)是如此的復(fù)雜,以至于我們很少嘗試將齒輪系統(tǒng)微型化。Suzumori以及他的小組成員曾經(jīng)用類似的行星齒輪結(jié)構(gòu)來驅(qū)動(dòng)一個(gè)機(jī)器人,并使它在
直徑為一寸的鋼管里前后移動(dòng)。他們利用一個(gè)馬達(dá)來驅(qū)動(dòng)高傳動(dòng)比的齒輪機(jī)構(gòu),通過微電線的放電加工技術(shù)能夠?qū)崿F(xiàn)這種齒輪機(jī)構(gòu)的精確加工。但是這些部件應(yīng)該在裝配驅(qū)動(dòng)馬達(dá)之前安裝在齒輪箱上。Takeuchi 等人也用這種技術(shù)制造了微行星齒輪。他們建議用特殊的含陶合金和高碳鋼作為最佳選擇材料。當(dāng)這種齒輪系統(tǒng)的傳動(dòng)比達(dá)到200的時(shí)候,才可以安裝馬達(dá)并使之驅(qū)動(dòng)。為了實(shí)現(xiàn)用芯片的方法來實(shí)現(xiàn)行星齒輪的驅(qū)動(dòng),在研究中我們采用SUMMiT V方法來加工微行星齒輪。SUMMiT V過程是唯一可以實(shí)現(xiàn)對于總數(shù)為五層(其中一層為地平面)的硅中釋放四層的鑄造過程由于這個(gè)原因,它經(jīng)常被用來通過安裝在芯片上的電子執(zhí)行器來驅(qū)動(dòng)復(fù)雜的齒輪機(jī)構(gòu)。然而, 在許多情形,微電機(jī)不可能提供充足的轉(zhuǎn)力矩來驅(qū)動(dòng)機(jī)械負(fù)荷,因?yàn)樗鼈兊撵o電梳的典型驅(qū)動(dòng)只產(chǎn)生幾十微牛頓的力。幸運(yùn)的是,這些引擎能容易地達(dá)到每分鐘幾萬轉(zhuǎn)的速度。這就使將轉(zhuǎn)矩轉(zhuǎn)化為速度變成是可行的。羅杰等人設(shè)計(jì)了二個(gè)傳動(dòng)比為12:1的雙重的水平齒輪。如此六個(gè)這樣的模組的傳輸集合在以占據(jù)極大的空間為代價(jià)的前提下可以達(dá)到2,985,984:1的傳動(dòng)比。為了達(dá)到結(jié)構(gòu)緊湊,同時(shí)達(dá)到高傳動(dòng)比的目的少比, 行星齒輪系統(tǒng)將被作為研究對象。根據(jù)作者的認(rèn)識,它將會(huì)是第一個(gè)使用表面微加工原理設(shè)計(jì)的行星齒輪結(jié)構(gòu)。我們還將闡述行星齒輪的操作規(guī)則,加工過程和希望達(dá)到的行星齒輪系統(tǒng)的性能。
操作原則
使用齒輪傳輸轉(zhuǎn)矩的其它可行的方法是將一個(gè)或者多個(gè)的齒輪,也就是, 行星齒輪,在另一個(gè)齒輪的外面旋轉(zhuǎn),也就是太陽輪。按照傳統(tǒng)的尺寸設(shè)計(jì)的行星齒輪減速器是使整體結(jié)構(gòu)緊湊的常用的傳輸系統(tǒng)。圖1是上述的行星齒輪的示意圖。自從用AutoCAD設(shè)計(jì)SUMMiT V以來,圖(1)可以通過軟件自動(dòng)產(chǎn)生(附[1])。一個(gè)完整的行星齒輪系統(tǒng)是由六個(gè)齒輪組成的: 一個(gè)太陽齒輪 a,三個(gè)行星齒輪 b,一個(gè)固定的內(nèi)齒圈 c,一個(gè)旋轉(zhuǎn)的內(nèi)齒圈 d,和一個(gè)輸出齒輪 e。除了行星齒輪之外,每個(gè)齒輪的齒數(shù)都不相同。 太陽齒輪 a是輸入齒輪,由與微引擎連接的機(jī)械手驅(qū)動(dòng)。內(nèi)齒圈 d,被視為輸出齒輪。舉例來說,如果機(jī)械手驅(qū)動(dòng)太陽輪按照順時(shí)針方向方向旋轉(zhuǎn), 那么行星輪 b, 將繞著它們自己的軸按照逆時(shí)針方向宣戰(zhàn),同時(shí)也將繞著太陽輪按照順時(shí)針方向的方向旋轉(zhuǎn),這樣就形成了行星運(yùn)動(dòng)。 由于多個(gè)行星齒輪b和固定內(nèi)齒圈c之間的運(yùn)動(dòng)相似,所以旋轉(zhuǎn)的內(nèi)齒圈d將按照逆時(shí)針方向旋轉(zhuǎn)。這也被叫做3K行星齒輪。
加工過程和結(jié)構(gòu)測試
SUMMiT V程序的特征體現(xiàn)了硅層結(jié)構(gòu)、電解聚乙烯, 以及傳統(tǒng)的集成電路處理等技術(shù)水平的四個(gè)層次。SUMMiT V技術(shù)尤其適應(yīng)于齒輪機(jī)構(gòu)。行星齒輪機(jī)構(gòu)由芯片上的微引擎驅(qū)動(dòng),而且這也是采用SUMMiT V技術(shù)的另一個(gè)理由。
因?yàn)樯5蟻喅绦蚴且豢畋娝苤某绦?,所以我們只簡要的作些解釋。圖2是圖 1的截面視圖,也是由AutoCAD按照附錄[1]設(shè)計(jì)產(chǎn)生的,其中截面中的不連續(xù)的部分是為了鉆孔而設(shè)置的。聚乙烯1(灰色)用來制造輪轂以及固定的內(nèi)齒圈c,太陽齒輪a,旋轉(zhuǎn)的內(nèi)齒圈 c,而輸出齒輪是由聚乙烯2制造的。附錄 [2]是描述測試結(jié)構(gòu)的圖形。因?yàn)檫@篇文章的主旨是介紹一種齒輪減速機(jī)構(gòu),所以我們將整個(gè)行星齒輪系統(tǒng)分解成各個(gè)組成部分,以檢測它的性能。第一個(gè)測試結(jié)構(gòu)是驅(qū)動(dòng)太陽齒輪的機(jī)械手,如前述,這個(gè)機(jī)械手是由芯片上的引擎驅(qū)動(dòng)的,所以機(jī)械手的角速度是由引擎的輸出速度決定的。 第二個(gè)測試結(jié)構(gòu)描述的是太陽輪和行星輪與固定的內(nèi)齒圈嚙合的點(diǎn)。因?yàn)槭聦?shí)上內(nèi)齒圈是固定的, 所以行星輪將太陽輪輸入的轉(zhuǎn)矩傳到固定的內(nèi)齒圈,因此這個(gè)過程并沒有經(jīng)過行星運(yùn)動(dòng)。也就是說,行星輪只繞它自己的軸轉(zhuǎn)動(dòng),而沒有繞太陽輪轉(zhuǎn)動(dòng)。第三個(gè)測試結(jié)構(gòu)是旋轉(zhuǎn)的內(nèi)齒圈,它安裝在固定的內(nèi)齒圈的頂端上,行星輪開始繞太陽輪旋轉(zhuǎn),這樣就可以實(shí)現(xiàn)行星傳動(dòng)。因此,一但輸出齒輪被安裝到旋轉(zhuǎn)的內(nèi)齒圈,也就是最后一個(gè)測試結(jié)構(gòu),整個(gè)減速系統(tǒng)完成。將行星齒輪成拆解成三個(gè)測試結(jié)構(gòu)的過程中允許齒輪系統(tǒng)存在極微小的誤差。
解決程序和預(yù)期的表現(xiàn)
傳動(dòng)比被定義為驅(qū)動(dòng)輪和被驅(qū)動(dòng)輪之間的角速度之比。高傳動(dòng)比意味著將速度轉(zhuǎn)化為轉(zhuǎn)矩。舉例來說, 一個(gè)傳動(dòng)比為10:1的齒輪可以按照一定的數(shù)量級增加轉(zhuǎn)矩。因?yàn)樾行禽喯档凝X輪要保證相互之間嚙合,除了行星齒輪,所以齒輪模數(shù)的設(shè)計(jì)應(yīng)該遵從一定得限制。舉例來說,太陽輪的齒數(shù)加上固定的或者旋轉(zhuǎn)的內(nèi)齒圈的齒數(shù)應(yīng)該等于行星輪齒數(shù)的整數(shù)倍星, P(可以為1)。P代表著傳動(dòng)比,如果P=2,應(yīng)該首先觀察P=1的情況 。 N 是對應(yīng)齒輪的齒數(shù)。
Ns + Nc (Nd ) (1)
(2)
行星輪系的齒輪a、b、c、d的齒型模數(shù)為4 um, 這是可以與現(xiàn)在的齒輪減速器相比較的模數(shù),而齒數(shù)分別是12,29,69,和72。因此根據(jù)等式(2)可知,輪系的傳動(dòng)比為162:1。根據(jù)羅杰等人的報(bào)告,他們設(shè)計(jì)出傳動(dòng)比為12:1的減速器,但是要比行星輪系減速器的傳動(dòng)比小一個(gè)數(shù)量級。雖然羅杰等人設(shè)計(jì)的減速器尺寸大約達(dá)到 0.093 mm 到2 mm之間, 但是本文的行星齒輪減速器設(shè)計(jì)大約可以達(dá)到0.076mm到 2mm的范圍. 因此, 行星齒輪減速器設(shè)計(jì)的傳動(dòng)比能夠達(dá)成更高的數(shù)量級,同時(shí)占用更少的空間。因?yàn)闇p速器是由數(shù)個(gè)部分組成,所以圖3充分顯示了使用行星齒輪系統(tǒng)的優(yōu)點(diǎn)。
圖3利用數(shù)字的功能來顯示本文提議的行星齒輪機(jī)制,也就是, 與桑迪亞齒輪系統(tǒng),也就是,之間的比較??v坐標(biāo)以較大的比例單位作圖來顯示兩者之間的區(qū)別是很顯然的。 舉例來說, 在一個(gè)由5個(gè)部分構(gòu)成的組件中,兩組之間的區(qū)別大約達(dá)到。此外,在這個(gè)由五個(gè)部分組成的減速器因?yàn)椴捎昧诵行禽喯?,面積減少了8500。
結(jié)論和討論
我們首先討論了利用表面微加工技術(shù)制造的行星齒輪減速系統(tǒng),它是由芯片上的引擎驅(qū)動(dòng)的。這種減速器系統(tǒng)在傳動(dòng)比方面比早先設(shè)計(jì)減速器提高了一個(gè)數(shù)量級。然而,由于表面的摩擦和反作用力在齒輪制造加工過程中是不可避免的。所以在實(shí)際情形中,減速器的傳動(dòng)比可能比 162:1 要小。即使在實(shí)際情形中一些可能的損失被考慮,減速器的傳動(dòng)比還是應(yīng)該比以前的設(shè)計(jì)提高一個(gè)數(shù)量級,而占據(jù)的空間會(huì)小很多。作者在設(shè)計(jì)過程中學(xué)習(xí)了許多關(guān)與微表面加工有關(guān)的知識,而且發(fā)現(xiàn)許多設(shè)計(jì)需要再研究和改正。當(dāng)畫這些設(shè)計(jì)得截面視圖時(shí),這些知識已經(jīng)變得很熟悉了。因?yàn)槲覀兝昧嘶赟UMMiT V的先進(jìn)的設(shè)計(jì)工具軟件包并確定了設(shè)計(jì)規(guī)則,行星齒輪的設(shè)計(jì)為制造加工做好了準(zhǔn)備。我們希望這種行星齒輪減速器能夠被研究人員繼續(xù)更新、完善。
收藏