喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 目 錄 1 前言 .1 2 總體方案論證 .3 2.1 組合式選粉機(jī)的工作原理 .3 2.2 設(shè)計方案的選擇 .4 2.3 設(shè)備性能特點(diǎn) .4 2.4 主要技術(shù)參數(shù)的設(shè)計計算 .5 2.4.1 風(fēng)量計算 .6 2.4.2 風(fēng)機(jī)的選型 .6 2.4.3 選粉室直徑與轉(zhuǎn)子直徑的確定 .6 2.4.4 主軸轉(zhuǎn)速的確定 .6 2.4.5 選粉機(jī)需要功率的計算 .7 2.4.6 電動機(jī)功率的確定 .8 2.5 選擇電動機(jī) .8 2.6 選擇減速機(jī) .9 2.7 雙出風(fēng)口旋風(fēng)筒的方案設(shè)計 .9 2.8 轉(zhuǎn)子部件的方案設(shè)計 .9 2.9 殼體部件的方案設(shè)計 .9 3 雙出風(fēng)口旋風(fēng)分離器設(shè)計 .10 3.1 旋風(fēng)分離器工作原理 .10 3.2 雙出風(fēng)口旋風(fēng)分離器結(jié)構(gòu)設(shè)計 .12 3.2.1 旋風(fēng)筒結(jié)構(gòu)形式對性能的影響 .12 3.2.2 旋風(fēng)分離器分離器主要尺寸的計算 .14 3.2.3 旋風(fēng)分離器的結(jié)構(gòu)設(shè)計和相關(guān)尺寸設(shè)計 .14 4 選粉機(jī)的安裝、操作、維護(hù)及檢修 .19 4.1 安裝要求 .19 4.2 操作 .19 4.3 維護(hù) .19 4.4 檢修及注意事項 .20 4.5 產(chǎn)品細(xì)度的調(diào)節(jié) .20 4.6 常見故障的處理方法 .20 5 工藝平衡計算 .21 5.1 設(shè)計水泥粉磨工藝圖 .21 5.2 根據(jù)物料平衡對設(shè)備進(jìn)行選型計算 .21 6 結(jié)論 .23 參考文獻(xiàn) .24 致 謝 .25 附 錄 .26 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 1 摘要:選粉機(jī)是圈流粉磨系統(tǒng)的主要設(shè)備之一,通過選粉機(jī)對粉末粒徑的選擇, 能夠很大程度上減少細(xì)粉重新進(jìn)磨,解決對粗粉粉磨的緩沖作用問題,從而提高粉 磨效率,進(jìn)而提高了能源利用率。本課題設(shè)計的是FXS900組合式選粉機(jī),它是在旋 風(fēng)式選粉機(jī)的基礎(chǔ)上進(jìn)行改進(jìn)而成的一種高效旋粉機(jī)。該設(shè)計吸收了O-SEPA選粉機(jī) 的的先進(jìn)懸浮分散技術(shù)和平面渦流理論,并在選粉機(jī)主體四周設(shè)有旋風(fēng)筒來收集細(xì) 粉。設(shè)計內(nèi)容分為選粉機(jī)總體設(shè)計和雙出風(fēng)口分離器的設(shè)計。在進(jìn)行總體設(shè)計時, 通過風(fēng)量的計算選擇風(fēng)機(jī),確定旋粉室直徑與轉(zhuǎn)子直徑,再計算主軸的轉(zhuǎn)速和選粉 機(jī)的功率,選擇電機(jī)和減速機(jī)。雙出風(fēng)口分離器的設(shè)計是我此次設(shè)計的重點(diǎn)。雙出 風(fēng)口分離器的結(jié)構(gòu)設(shè)計主要是在單出風(fēng)口分離器的基礎(chǔ)上改進(jìn)而來。傳統(tǒng)的旋風(fēng)分 離器存在下述三個主要缺陷: a旋風(fēng)分離器中心凈化氣流是一股較強(qiáng)的旋渦流無用壓力損失占分離器總壓力 損失 65%以上。 b在上進(jìn)風(fēng)口與上出風(fēng)口間存在短路流。 c錐部集料口因氣流轉(zhuǎn)向而導(dǎo)致已沉降微細(xì)粉塵“二次返混”。 通過在筒體內(nèi)增設(shè)可調(diào)節(jié)開度的導(dǎo)流口,改善了旋風(fēng)分離器內(nèi)的流場,使得分 離器的捕集細(xì)粉能力有了顯著的提高,為現(xiàn)行組合式選粉機(jī)改造拓展了市場。 關(guān)鍵詞:選粉機(jī),雙出風(fēng)口分離器,圈流粉磨 ,平面渦流 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 2 The Design of FXS900 Combination Separator and Cyclone Collector with Double Outlet for Dust Abstract: The separator is a major equipment of the circle grinding system. Through the separators choice of the size of the power, it reduces the chance that thin power return to the ball mill, solves the problem of buffer action to the thick power grinding, enhances the grinding rate, and improves the energy efficiency. This graduated course is the design of FXS900 combination separator. It is a high efficiency separator, which is based on the cyclone separator. This design absorbed the advanced Suspension Technology Plane Vortex Technology of O-SEPA separator, and also absorbed Cyclones Collecting Technology of cyclone separator .And around the separator, there are a fewer of cyclone collectors which are used to collect the thin power. The contents of this design are overall design of FXS900 combination separator and design of Cyclone Collector with Double Outlet for Dust . In the design of the separator, at first, calculate the air amount choose the air fan ,then confirm the diameters of the dust separator room and rotor. After calculate the rotor speed of main shaft and the power capacity, choose the electromotor and decelerate machine. The cyclone collectors design is the point of my design. Design of the structural of the cyclone collector with double outlet for dust is based on the traditional cyclone collector. There are three imperfections on the traditional cyclone collector: a. The airflow in the center of the cyclone collector is a strong swirling flow. The uselessness gas pressure loss is 65% of the total loss. b. Between the upper air import and outlet ,there is a short-circuit faultc. c. The air-flow at the outlet of dust steer and bring on the micro dust which has ground settlement mixes again. Increase an adjustable opening degree construction diversion in the barrel part .It improves the stream field and the ability of catching the micro dust. It expands the market for existing Combination Separator. 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 3 Key words: separator; cyclones separator with Double Outlet for Dust; circle grinding system; plane eddy 1 前言 選粉機(jī)是閉路粉磨系統(tǒng)的主要設(shè)備之一,通過選粉機(jī)對粉末粒徑的選擇,能夠 很大程度上減少細(xì)粉重新進(jìn)磨,解決對粗粉粉磨的緩沖作用問題,從而提高粉磨效 率,進(jìn)而提高了能源利用率。由磨機(jī)、選粉機(jī)等設(shè)備組成的閉路粉磨系統(tǒng),比無選 粉機(jī)的開路粉磨系統(tǒng)提高產(chǎn)量 1020%。因此,粉磨作業(yè)中選用選粉機(jī)作為磨機(jī)的 配套設(shè)備是提高產(chǎn)量的主要途徑之一。 水泥工業(yè)用選粉機(jī)于 1885 年發(fā)明,由美國斯特蒂文特( Sturtovant)公司生產(chǎn),即 離心式選粉機(jī),這就是第一代選粉機(jī)。離心式選粉機(jī)至今已經(jīng)歷經(jīng)了幾次重大的變 革,雖然最初的離心式選粉機(jī)經(jīng)過多次的改進(jìn)而仍在大量使用,但還是無法消除其 存在的三個根本性缺點(diǎn): a. 循環(huán)氣流中粉塵多,使選粉區(qū)內(nèi)物料的實際濃度大,降低了系統(tǒng)的沉降率; b. 選粉區(qū)內(nèi)存在較大的風(fēng)速梯度,使分離粒經(jīng)不均,粗顆粒會被高速風(fēng)帶出; c. 存在邊壁效應(yīng)問題,使細(xì)小顆粒隨粗顆粒在此區(qū)域碰撞而同時降落。 60 年代原西德的 WEDAG 公司開發(fā)了旋風(fēng)式選粉機(jī),采用外部循環(huán)風(fēng)機(jī)供風(fēng)來取 代離心式選粉機(jī)的內(nèi)部供風(fēng),用小旋風(fēng)筒取代離心式選粉機(jī)的大直徑外筒來收集細(xì) 粉,提高了收塵效率,從而使得循環(huán)氣流中含塵濃度大為降低,基本克服了離心式 選粉機(jī)的第一項缺點(diǎn),但無法消除第二、三項缺點(diǎn),故其分離效率仍偏低。 直至 1979 年日本的小野田公司開發(fā)了 O-SEPA 選粉機(jī),才消除了離心式選粉機(jī) 存在的第二、三項缺點(diǎn),成為了較理想的高效分選設(shè)備。O-SEPA 選粉機(jī)既保留了旋 風(fēng)式選粉機(jī)外部供風(fēng)循環(huán)氣流高效凈化,又利用了平面螺旋氣流選粉的原理,以籠 式轉(zhuǎn)子取代小風(fēng)葉,使氣流在橫截面上與切向成一定角度穩(wěn)定均勻地穿越整個選粉 區(qū),這樣就消除了離心式選粉機(jī)存在的第二、三項缺點(diǎn),但由于 O-SEPA 選粉機(jī)的 細(xì)粉收集須通過氣箱脈沖袋收塵,以至系統(tǒng)價格較高。 隨著我國節(jié)能降耗的不斷深入,水泥行業(yè)要得到可持續(xù)發(fā)展,就必須走資源節(jié) 約型、環(huán)保型的道路,這就要求我們發(fā)展高性能水泥,減少混凝土中水泥的用量。 因此對水泥質(zhì)量和節(jié)能降耗提出了越來越高的要求。實際上這也是對選粉機(jī)的研究 提出了方向,高性能選粉機(jī)的研究和開發(fā)應(yīng)是選粉機(jī)今后的發(fā)展趨勢。所謂高性能 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 4 選粉機(jī)應(yīng)該是不僅選粉效率高,而且具有能明顯改善產(chǎn)品的顆粒分布、分級精度高、 設(shè)備能耗低、磨耗低、阻力損失低等特點(diǎn)。優(yōu)秀的選粉機(jī)要求具有良好的分散功能、 最先進(jìn)的分級機(jī)理、廉價而實用的收集裝置。 本課題是 FXS900 組合式選粉機(jī)的設(shè)計。課題來源:江蘇蘇亞機(jī)電制造有限公 司。 課題為 2 人共同承擔(dān)設(shè)計任務(wù),本人主要承擔(dān) FXS900 組合式選粉機(jī)的總體設(shè)計和 雙出風(fēng)口分離器的設(shè)計。 FXS900 組合式選粉機(jī),組合式選粉機(jī)集前幾代選粉機(jī)的優(yōu)點(diǎn)于一體。它不僅吸 收了 O-SEPA 式選粉機(jī)先進(jìn)的懸浮分散技術(shù)、平面渦流技術(shù),同時又吸收了旋風(fēng)式 選粉機(jī)利用幾個旋風(fēng)筒收集成品的技術(shù)。需要說明的是,該選粉機(jī)采用導(dǎo)流口可調(diào) 式雙出風(fēng)口旋風(fēng)分離器技術(shù)取代傳統(tǒng)單出風(fēng)口分離器,對現(xiàn)行組合式選粉機(jī)進(jìn)行改 進(jìn),降阻節(jié)能,提高選粉機(jī)選粉收集效率,從而改觀產(chǎn)品細(xì)度,提高粉磨產(chǎn)品的產(chǎn) 量和質(zhì)量,市場前景良好,因此本課題的研究是有一定市場價值的。 FXS900 組合式選粉機(jī)總體的設(shè)計要解決的實際問題是如何高系統(tǒng)的效率,降低 電耗,提高使用壽命,能更加合理和科學(xué)的選擇和設(shè)計其結(jié)構(gòu),最終提高選粉機(jī)的 性能。 分離器的結(jié)構(gòu)設(shè)計對選粉機(jī)的選粉效率有著重要的影響。通過對傳統(tǒng)單出風(fēng)口 旋風(fēng)分離器的改進(jìn),采用雙出風(fēng)口解決旋風(fēng)分離器長期存在的缺陷: A旋風(fēng)分離器中心凈化氣流是一股較強(qiáng)的旋渦流無用壓力損失占分離器總壓力 損失 65%以上。 B在上進(jìn)風(fēng)口與上出風(fēng)口間存在短路流。 C錐部集料口因氣流轉(zhuǎn)向而導(dǎo)致已沉降微細(xì)粉塵“二次返混”。 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 5 2 總體方案論證 2.1 組合式選粉機(jī)的工作原理 風(fēng)機(jī)把空氣從進(jìn)風(fēng)口切向送入選粉機(jī),經(jīng)滴流裝置的縫隙旋轉(zhuǎn)上升,進(jìn)入選粉 室。粉料由進(jìn)料斗喂入,落在撒料盤上,在撒料盤的旋轉(zhuǎn)作用下立即向四周甩出, 經(jīng)反擊板撞擊后撒到選粉區(qū)中,與上升的旋轉(zhuǎn)氣流相遇。在選粉室內(nèi)被氣流分散的 粉粒,經(jīng)過導(dǎo)流葉片和轉(zhuǎn)子作渦流調(diào)整,由離心力與內(nèi)向氣流間產(chǎn)生平衡實現(xiàn)分級。 粉料中的粗粉質(zhì)量較大,受撒料盤、籠型轉(zhuǎn)子旋轉(zhuǎn)引起的旋轉(zhuǎn)氣流作用產(chǎn)生的慣性 離心力也較大,被甩到選粉室的四周邊緣。當(dāng)它與壁面相撞碰后,失去動能,便被 收集下來,落到滴流裝置處。在該處被上升氣流再次分選,然后落到內(nèi)錐體處,作 為粗粉經(jīng)粗粉管排出。粉料中的細(xì)顆粒,質(zhì)量較小,在選粉室中隨氣流進(jìn)入轉(zhuǎn)子內(nèi), 經(jīng)由配風(fēng)室分六路進(jìn)入雙出風(fēng)口旋風(fēng)分離器,氣流從切線方向進(jìn)入旋風(fēng)分離器的, 在筒內(nèi)形成一股猛烈旋轉(zhuǎn)氣流。處在氣流中的顆粒受到慣性離心力的作用,甩向四 周筒壁,向下落到下部的外錐體中,作為細(xì)粉經(jīng)細(xì)粉管排出。清除細(xì)粉后的空氣經(jīng) 旋風(fēng)分離器中心的上下兩排風(fēng)管經(jīng)集氣管再返回通風(fēng)機(jī),形成了閉路循環(huán)。 粉塵顆粒將同時受重力、風(fēng)力和旋轉(zhuǎn)離心力的作用,氣流中的物料受較強(qiáng)的離 心力,該力的大小可以通過調(diào)節(jié)主軸的轉(zhuǎn)速來調(diào)節(jié)。當(dāng)轉(zhuǎn)速增大時,該力也增大。 此時如果保持處理風(fēng)量一定,則此時的切割粒徑減少,產(chǎn)品變細(xì)。如轉(zhuǎn)速降低則產(chǎn) 品變粗。 在組合式選粉機(jī)工作時,主要分為(a)分散(b)分級(c)收集三個過程。 其中考核分離效率高低的主要標(biāo)準(zhǔn)就是分級。 A.撒料盤的懸浮分散分離 通過組合式選粉機(jī)殼體上的兩個喂料口,物料落在下方轉(zhuǎn)子上部的撒料盤上。 物料在撒料盤上均勻撒開,隨著撒料盤一同旋轉(zhuǎn),由于離心力的關(guān)系,物料撞在反 擊板上進(jìn)入下級分離區(qū)。 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 6 B.轉(zhuǎn)子平面渦流分級分離 由于重力作用,懸浮分散的物料落入導(dǎo)向風(fēng)葉和轉(zhuǎn)子之間的選粉區(qū)。在選粉氣 流和轉(zhuǎn)子旋轉(zhuǎn)的共同作用下,物料將同時受到重力、風(fēng)力和離心力的作用,較小的 顆粒進(jìn)入轉(zhuǎn)子內(nèi)部,經(jīng)由配風(fēng)室進(jìn)入下級分離區(qū),而粗粉留在選粉室,經(jīng)滴溜裝置 落入粗粉收集倒錐內(nèi),再通過粗粉出口排出。 C.旋風(fēng)筒氣固分離 切向進(jìn)入旋風(fēng)筒的含塵氣體,經(jīng)蝸角區(qū)形成螺旋下行氣流,細(xì)粉由于離心力作 用沿筒壁下滑至下錐內(nèi)由細(xì)粉出口排出。而氣體由出風(fēng)口排出進(jìn)入循環(huán)風(fēng)機(jī)進(jìn)行內(nèi) 部循環(huán)。 1粗粉管;2滴流裝置;3轉(zhuǎn)子;4雙出風(fēng)口分離器;5轉(zhuǎn)子;6喂料斗;7集風(fēng)管; 8電機(jī);9減速機(jī);10分岔風(fēng)管;11豎直風(fēng)管;12進(jìn)風(fēng)管;13內(nèi)錐;14外錐圖 2-1 FXS900 組合式選粉機(jī) 2.2 設(shè)計方案的選擇 方案一:在旋風(fēng)式選粉機(jī)基礎(chǔ)上采用傳統(tǒng)大前年出風(fēng)口分離器設(shè)計組合式旋風(fēng) 機(jī)??梢杂行У靥岣哌x粉效率但由于單出風(fēng)口分離器自身有許多缺陷,增大了整個 系統(tǒng)得風(fēng)損,系統(tǒng)整體效率的提高很有限。因此不采用此方案。 方案二:在旋風(fēng)式選粉機(jī)基礎(chǔ)上結(jié)合雙出風(fēng)口分離器和 O-SEPA 的平面渦流轉(zhuǎn) 子相結(jié)合設(shè)計組合式選粉機(jī)。O-SEPA 的平面渦流分級理論是較先進(jìn)的分級理論,操 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 7 作簡單,細(xì)度調(diào)節(jié)方便;選粉效率高,雙出風(fēng)口分離器是我院倪文龍教授的專利,這 一技術(shù)可以解決傳統(tǒng)單出風(fēng)口分離器的 3 個缺陷,減小了中心強(qiáng)制渦帶來的壓力損 失,消除了短路流和“二次返混”現(xiàn)象。 所以此次設(shè)計選用方案二。 2.3 設(shè)備性能特點(diǎn) 設(shè)備將渦流分級、慣性分級、離心分級原理學(xué)科學(xué)地組合在一起,與其它選粉 系統(tǒng)相比,新型組合式選粉機(jī)主要有如下優(yōu)點(diǎn): a. 能處理較大量的含塵氣體系統(tǒng)中料路、氣路合一,使整個系統(tǒng)更簡單,特 別是在烘干粉磨系統(tǒng)和風(fēng)掃磨系統(tǒng)中,可省去為處理大量含塵氣體而建立的粗粉分 離器系統(tǒng),其優(yōu)越性能加顯著。 b. 自帶旋風(fēng)收塵器 新型組合式選粉機(jī)自帶一組低阻高效旋風(fēng)收塵器,可將 80的合格成品收集下 來,因而大大減輕了下一級收塵器的處理壓力和工作負(fù)荷,使系統(tǒng)的運(yùn)轉(zhuǎn)率更高, 投資更省。 c. 系統(tǒng)的阻力更小,工藝布置更流暢 新型組合式選粉機(jī)采用了從下部進(jìn)風(fēng)(含塵氣體)的型式,系統(tǒng)的阻力更小, 工藝布置更流暢。 d. 選粉效率高 新型組合式選粉機(jī)能大幅度提高磨機(jī)產(chǎn)量,提高開流磨產(chǎn)量 60-100,閉路磨 產(chǎn)量(與離心式選粉機(jī)比)提高 30-40%。 e. 降低粉磨系統(tǒng)電耗可節(jié)電 5-20%。 f. 能改善顆粒分布,提高水泥質(zhì)量。 g. 產(chǎn)品細(xì)度調(diào)節(jié)范圍廣,控制簡單,改變細(xì)度不停機(jī)。 h. 設(shè)備體積小,重量輕,布置靈活,使用壽命長,維護(hù)保養(yǎng)方便。 j. 系統(tǒng)采用全負(fù)壓操作,杜絕粉塵污染,保養(yǎng)方便。 綜上所述:新型組合式選粉機(jī)性能優(yōu)越、結(jié)構(gòu)合理,是選粉機(jī)發(fā)展的大趨勢。 另外在具體技術(shù)方面還主要采用了下訴幾種亮點(diǎn): a.高效旋風(fēng)分離器采用雙出風(fēng)口分離器技術(shù)。與傳統(tǒng)旋風(fēng)分離器相比:出口風(fēng) 速降低近半,壓力損失顯著降低;筒身縱向開設(shè)多個導(dǎo)流口,可基本消除核心強(qiáng)制 渦;導(dǎo)流筒上口與上出風(fēng)口下端聯(lián)接,可消除短路流;導(dǎo)流筒下口與下出風(fēng)口上端 聯(lián)接,并設(shè)置反射屏,可顯著降低粉塵返混現(xiàn)象,分離效率可進(jìn)一步提高。 b.轉(zhuǎn)子部分采用先進(jìn)的籠型轉(zhuǎn)子技術(shù)?;\形轉(zhuǎn)子由分級圈和撐柱構(gòu)成框架,上 部固定著迷宮密封圈,表面焊有帶輻射筋并噴涂耐磨材料的撒料盤。一周固定有許 多均勻分布的豎向窄而長的分級葉片,中部有一錐體,且通過撐板連接起來,形成 一個籠形轉(zhuǎn)子。轉(zhuǎn)子用鍵固定在主軸上從而帶動整個籠形轉(zhuǎn)子轉(zhuǎn)動。 c.內(nèi)循環(huán)收集技術(shù)。細(xì)粉的收集采用六個高效旋風(fēng)分離器,布置于選粉機(jī)主體 的四周形成一整體,一方面可提高細(xì)粉的分離效率;另一方面與其它高效選粉機(jī)相 比,有效地簡化了系統(tǒng)的工藝流程,減少了占地面積,降低了后續(xù)布袋除塵器的負(fù) FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 8 荷和要求,降低系統(tǒng)的一次性投資及裝機(jī)容量。 d 籠式轉(zhuǎn)子與撒料盤一起安裝在主軸上,主軸傳動采用調(diào)速裝置,從而保證了 分級力場的強(qiáng)度可通過改變電機(jī)轉(zhuǎn)速靈活調(diào)節(jié),以改變分級力場中顆粒的受力情況, 控制分級的切割粒徑,調(diào)節(jié)產(chǎn)品的細(xì)度與粒度分布,滿足生產(chǎn)需要。 e 選粉機(jī)的處理風(fēng)量采用外部循環(huán)風(fēng)機(jī)供給并可根據(jù)工藝要求調(diào)節(jié)。這樣,處 理風(fēng)量的變化也可起到調(diào)節(jié)分級力場強(qiáng)度、控制產(chǎn)品細(xì)度與粒度組成的作用。 f 內(nèi)襯的處理采用混凝土和鐵皮替代鑄石襯板,方法簡便,成本較低。 2.4 主要技術(shù)參數(shù)的設(shè)計計算 已知參數(shù)如下: 選粉機(jī)規(guī)格:FXS900 粉磨對象:425 礦渣水泥,臺時產(chǎn)量 36t/h 產(chǎn)品細(xì)度:比表面積330m 2/kg 通過量:65t/h 選粉效率:80% 系統(tǒng)阻力1.7kpa 2.4.1 風(fēng)量計算 根據(jù)參考資料1,選粉機(jī)選粉所需要的空氣量 Qa是根據(jù)在分級腔內(nèi)料氣濃度 來確定的,即每立方米空氣內(nèi)所含的物料量,稱為料氣濃度比,簡稱料氣比,用 kg/m3表示。對此次設(shè)計的 FXS900 選粉機(jī)而言,其選粉空氣量是按料氣比 I=1.2kg/m3確定的。因此選粉空氣量可按下式計算: (2-1)106.7aAQII 式中 A喂料量,取 A=65t/h 取35.1.902.7/min0aII390/inaQ 2.4.2 風(fēng)機(jī)的選型 風(fēng)機(jī)的風(fēng)壓一般取 2.35kPa(20), 一般通風(fēng)換氣及逆風(fēng)故選取離心通風(fēng)機(jī), FXS900 選粉機(jī)的體外風(fēng)機(jī)選型為: 型號:SCFNo16B; 風(fēng)壓(Pa):2520; 風(fēng)量(m /h):107500;3 電機(jī)功率(KW):110。 2.4.3 選粉室直徑與轉(zhuǎn)子直徑的確定 由于選粉機(jī)采用內(nèi)循環(huán)風(fēng),忽略漏風(fēng),系統(tǒng)內(nèi)風(fēng)量是固定不變的。 已知總風(fēng)量 Q=900m3/min,根據(jù)生產(chǎn)實踐,當(dāng)操作溫度為 100oC,成品在 0.080mm 方孔篩上篩余位 6%8%時,一般選粉室截面氣流上升速度取 3.44.0m/s,選粉濃 度取 500g/m3較為合適 4。所以選粉室直徑為 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 9 (22) 4QDu 其中 u=4.0m/s,Q=900 m 3/min,代入求得 D=2.186m,圓整得 D=2.2m。 由生產(chǎn)經(jīng)驗可知轉(zhuǎn)子直徑 d=0.7D=1540mm,轉(zhuǎn)子高度為 h=0.5d=770mm。 2.4.4 主軸轉(zhuǎn)速的確定 根據(jù)參考資料 3公式(11-13) ,選粉機(jī)的主軸轉(zhuǎn)速可按下式估算: (2-3) 2zrB=153.8V.0nd (c/g) 式中 B-用比表面積表示產(chǎn)品細(xì)度 cm 2/g,由設(shè)計已知條件 B330m 2/kg dz 轉(zhuǎn)子外徑,m; n 轉(zhuǎn)子主軸轉(zhuǎn)速,r/min。 430126.037/min8.05z8.5.Br 根據(jù)參考資料9公式(11-12) ,OSEPA 選粉機(jī)的主軸轉(zhuǎn)速可按下式估算: (2 4) 9nD 式中 D 選粉機(jī)直徑,m; n 選粉機(jī)主軸轉(zhuǎn)速,r/min。 27409/ir 綜上: 選粉機(jī)主軸轉(zhuǎn)速 267409/minnr 2.4.5 選粉機(jī)需要功率的計算 根據(jù)參考資料 7 選粉機(jī)在穩(wěn)定狀態(tài)下的運(yùn)轉(zhuǎn)功率包括兩個方面。其一是撒料,可按每小時喂料 量從撒料盤上水平零速,達(dá)到最大滑離速度的動能來計算: (25)22211013603670faaamQPVVQg 式中: 撒料功率,Kwf 撒料量,t/h(如上喂料則 等于喂料量,下部氣流噴進(jìn)喂料則Q 0,上、下均喂,則應(yīng)扣除下部氣流帶入) ;65t/h 撒料盤速度,m/s(與轉(zhuǎn)子速度相近) 。aV 12.5/6zndms 其二是抵消轉(zhuǎn)子葉片回轉(zhuǎn)時料幕的阻力,該阻力亦可認(rèn)為是流體運(yùn)動對阻礙物的推 力。轉(zhuǎn)子葉片切割料幕時,相對速度 Ve 近似于 Va。因此所有葉片的總阻力為: (2-6) 20()areFCAg 式中:F轉(zhuǎn)子葉片回轉(zhuǎn)時的總阻力,KN FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 10 Cr阻力系數(shù),與 Re有關(guān) A0轉(zhuǎn)子葉片總面積,m 2,取 3 m2 Ca喂料濃度,kg/m 3,取 3.0 kg/m3 re氣體密度,kg/m 3,取 1.2 kg/m3 Va轉(zhuǎn)子的線速度,m/s 消耗的功率為 PD (KW) (2- 30()/12raeaCAVFV 7) 阻力系數(shù) Cr: 可以從氣體繞平板運(yùn)動的原理得出。 根據(jù)流體力學(xué),顆粒的繞流阻力系數(shù) Cr與 Re之間有如下關(guān)系:e2413R,;0,;reree 1000Re100000,Cr減降至 0.18。 高效選粉機(jī)實際計算求得的 Re一般110 5 。因此其繞流阻力正處于速降至 0.18 的范圍。由此選粉機(jī)的運(yùn)行功率為: (2-8) 2300.18()7Daf aeaQVPCrAV 選粉機(jī)在實際運(yùn)轉(zhuǎn)時還有機(jī)械摩擦消耗,如軸承和軸封的摩擦損失、轉(zhuǎn)子和導(dǎo) 向葉之間的圓盤氣阻磨損等。由于轉(zhuǎn)子安裝的工藝限制,實際轉(zhuǎn)子在高速運(yùn)轉(zhuǎn)時,會 出現(xiàn)振動,損耗相當(dāng)一部分功率.這些可以用上述運(yùn)轉(zhuǎn)功率 P 的百分?jǐn)?shù)來計算。因此 選粉機(jī)的實際功率 P0可以按下式計算: ()DfkkW 式中:K選粉機(jī)動力系數(shù),K1,K 值應(yīng)該從實際選粉機(jī)運(yùn)轉(zhuǎn)功率反求得出。根據(jù) 一些高效籠式選粉機(jī)的計算統(tǒng)計 K 值波動于 1.31.6,取 1.6。所以需用功率 P0的 計算式為: (2-9) 230 0()Daf aeQVPkCrVAk 代入數(shù)據(jù):得 2 30651.0.8(31.2).527 kw 2.4.6 電動機(jī)功率的確定 由參考資料3公式(7-4): 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 11 (2-10)01Pa 式中: 電動機(jī)的儲備系數(shù),取 =0.2; 傳動裝置的機(jī)械效率,由表 7-9 取 =0.95。 10.2531.9aPKW 2.5 選擇電動機(jī) 選擇電動機(jī),按已知工作要求和條件選用一般用途的全封閉自冷扇籠型三相異 步電動機(jī),因為此次設(shè)計的籠式選粉機(jī)直徑不是很大,采用 4 級電動機(jī),又因為設(shè) 計原始數(shù)據(jù)要求電機(jī)功率 P31.5kw,所以選用 YCT315-4A 型號的電動機(jī),其功率 為 37kw,轉(zhuǎn)速為 1320132 r/min。 2.6 選擇減速機(jī) a 傳動裝置總傳動比 (2-11)1320.749mwni b 減速機(jī)型號:B CFL 65-12-I i=3.5 因此電動機(jī)實際轉(zhuǎn)速為 1320934.5r/min 2.7 雙出風(fēng)口旋風(fēng)筒的方案設(shè)計 雙出風(fēng)口旋風(fēng)筒的設(shè)計是以本院倪文龍教授的“雙出風(fēng)口旋風(fēng)分離器的研究與 應(yīng)用”的理論為依據(jù)而設(shè)計出來的。傳統(tǒng)旋風(fēng)選粉機(jī)因分離效率低而影響粉磨產(chǎn)品 的產(chǎn)量和質(zhì)量,采用導(dǎo)流口可調(diào)式雙出風(fēng)口旋風(fēng)分離器技術(shù)取代傳統(tǒng)單出風(fēng)口分離 器,降阻節(jié)能作用顯著,分離效率明顯提高,其提高部分恰是捕集細(xì)粉增加部分, 因而產(chǎn)品細(xì)度改觀,比表面積增大。 本部分的設(shè)計是該課題的一大重要的任務(wù),也是該課題的核心技術(shù)。 2.8 轉(zhuǎn)子部件的方案設(shè)計 轉(zhuǎn)子部件是 FXS900 組合式選粉機(jī)的重要組成部分,它的好壞直接影響產(chǎn)品的 質(zhì)量,效率和效益。轉(zhuǎn)子部件主要包括渦流調(diào)整葉片、導(dǎo)向葉片和撒料盤。成品細(xì) 度易于調(diào)節(jié),選粉效率高。但維修困難,易損件多,價格高,油耗大,制造復(fù)雜。 2.9 殼體部件的方案設(shè)計 殼件部件的設(shè)計按照做的出來,裝得上去,拆得下來,用得起來和零件好加工 的原則,以及從資料上得來的經(jīng)驗數(shù)據(jù)和畢業(yè)設(shè)計時現(xiàn)場測繪的數(shù)據(jù)進(jìn)得設(shè)計。 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 12 3 雙 出 風(fēng) 口 旋 風(fēng) 分 離 器 設(shè) 計 3.1 旋風(fēng)分離器工作原理 如圖示,下面兩圖分別為普通單出風(fēng)口分離器和雙出風(fēng)口分離器的結(jié)構(gòu)示意圖 1上出風(fēng)口;2蝸角區(qū);3筒體;4下錐;5細(xì)粉出口;6-進(jìn)風(fēng)口 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 13 圖 3-1 單出風(fēng)口旋風(fēng)分離器 圖 3-1 所示的傳統(tǒng)單出風(fēng)口旋風(fēng)分離器的基本結(jié)構(gòu)是由 4 錐型外筒、6 進(jìn)氣管、 1 排氣管(內(nèi)圓筒)和 2 圓柱筒組成。排氣管插入外圓管里邊形成了內(nèi)圓筒。內(nèi)圓 筒與排灰口中心在一條直線上。進(jìn)氣管口與外圓筒相切,外圓筒下部是圓錐筒 含塵氣流以較高速度(一般為 1424 米/秒)從進(jìn)氣口沿外圓筒的切線方向進(jìn)入, 由于外圓筒上蓋及內(nèi)外筒壁的作用,逼迫氣流由上向下作螺旋線型的旋轉(zhuǎn)運(yùn)動,稱 它為外旋流。含塵氣旋轉(zhuǎn)運(yùn)動過程中,產(chǎn)生很大的離心力。由于塵粒慣性力比氣體 大得多,因而將大部分粒子甩向外筒壁,使外圓筒壁下部形成料粒濃集區(qū)。當(dāng)料粒 一進(jìn)入濃集區(qū)后由于塵粒之間與筒壁之間的碰撞,逐漸失去慣性力并受重力影響而 沿壁面旋轉(zhuǎn)下落,與氣流逐漸分離,經(jīng)排灰口流入下部外錐內(nèi),經(jīng)細(xì)粉出口排出。 旋轉(zhuǎn)下降的外旋流沿錐體向下運(yùn)動時,隨著錐體收縮而向中心部分靠攏,達(dá)到錐體 下部時,由于下部成密封狀態(tài)而迫使氣流開始旋轉(zhuǎn)上升,形成一股自下向上的螺旋 線運(yùn)動,稱作內(nèi)旋流,經(jīng)內(nèi)圓筒向外排出。在內(nèi)旋流開始形成的時候,由于內(nèi)、外 兩旋轉(zhuǎn)氣流相互干擾形成渦流。這股渦流有很大害處,它把沉于底部的塵粒又帶起, 其中細(xì)粒子有一部分被攜帶走。這就是旋風(fēng)筒內(nèi)的二次飛揚(yáng)現(xiàn)象成因。旋風(fēng)筒內(nèi)的 氣流的徑向速度方向與塵粒的徑向速度方向相反,粒子是由內(nèi)向外,氣體是由外向 內(nèi)流動。由于氣流旋轉(zhuǎn)原因,使旋風(fēng)筒內(nèi)壓強(qiáng)越接近軸心越低。即使采用正壓操作, 系統(tǒng)排氣管直通大氣,在軸心處仍常為負(fù)壓。當(dāng)負(fù)壓操作時,軸心處的負(fù)壓值將更 大。這說明排灰口有點(diǎn)漏風(fēng)就會明顯地降低選粉效果,這是值得工廠自制旋風(fēng)筒與 操作時應(yīng)注意的要點(diǎn)之一。嚴(yán)格密封對保證一定選粉收集的效率是很主要的。 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 14 1上出風(fēng)管;2筒體 ;3可調(diào)葉片;4導(dǎo)流管;5下錐;6反射屏;7下出風(fēng)管 ; 8焊接彎管;9葉片開度調(diào)節(jié)裝置; 10 進(jìn)風(fēng)口 圖 3-2 雙出風(fēng)口旋風(fēng)分離器 基于上述問題,在本課題中我們采用雙出風(fēng)口分離器來代替?zhèn)鹘y(tǒng)的單出風(fēng)口分 離器。 從兩個圖的對比可以看出,在外觀結(jié)構(gòu)上兩者基本上沒有多大的差別,后者的 核心技術(shù)就在與它在中部開設(shè)了導(dǎo)流口,并設(shè)有反射屏。由流體力學(xué)中的知識可知, 當(dāng)流體的流量一定時流體的流速和流體所流過區(qū)域的接截面積成反比。利用這一原 理在中部開設(shè)導(dǎo)流口,讓旋風(fēng)筒內(nèi)的空氣由上,下兩個出風(fēng)管排出,這就相當(dāng)于增 加了流體通過的截面積,從而降低了風(fēng)速。筒體內(nèi)的風(fēng)速降低了,細(xì)粉的收集效率 明顯得到提高,而且降低了氣體流經(jīng)旋風(fēng)筒的壓力損失,這也提高了整個系統(tǒng)的效 率。 實驗研究結(jié)果證明,在旋風(fēng)筒內(nèi),外旋流向下旋轉(zhuǎn),內(nèi)旋流向上旋轉(zhuǎn)。向下與 向上氣流分界面上各點(diǎn)的軸向速度必為零而這個分界面成為倒錐體形狀錐角約為 7。 分界面以外的氣流切線速度,其值隨與軸心的距離的減小而增大,越接近軸心切 線速度越大。氣流切向速度 Wt與旋轉(zhuǎn)半徑 R、外圓筒內(nèi)徑 D1、氣流進(jìn)口速度 Wi之間 的關(guān)系為: (3-1)1 ntiDK0.560.82n式 中 ; 由此可知?dú)饬髑邢蛩俣葹椋篧 t=28m/s,分界面內(nèi)的氣流切線速度隨著軸心距離的減 小而降低。氣流切線速度與旋轉(zhuǎn)半徑的關(guān)系為:W T/R=常數(shù)。 3.2 雙出風(fēng)口旋風(fēng)分離器結(jié)構(gòu)設(shè)計 固體顆粒運(yùn)動也是很復(fù)雜的,有圓周、徑向和軸向的運(yùn)動。粒子在沉降過程中 隨著旋轉(zhuǎn)半徑和相應(yīng)的圓周線速度的變化,它的離心加速度也不斷變化。它說明了 離心沉降速度并不是一個定值。但是流經(jīng)選粉室的風(fēng)量與進(jìn)入旋風(fēng)分離器的風(fēng)量可 視為相等,根據(jù)這一關(guān)系,可以算出旋風(fēng)分離器的直徑。 3.2.1 旋風(fēng)筒結(jié)構(gòu)形式對性能的影響 在水泥生產(chǎn)的預(yù)分解窯系統(tǒng)中,而旋風(fēng)筒則是它的核心,故其性能直接影響系統(tǒng) 的技術(shù)經(jīng)濟(jì)指標(biāo)。對旋風(fēng)筒本身的設(shè)計,主要應(yīng)考慮如何獲得較高的分離效率和較 低的壓力損失,為獲得這種效果,就要求旋風(fēng)筒本身具有合理的結(jié)構(gòu)形式。理論分 析及實驗測試均已表明,在操作參數(shù)一定的情況下,影響旋風(fēng)筒分離效率及壓力損 失的因素,一是旋風(fēng)筒的幾何形狀,二是流體本身的物理性能。由于旋風(fēng)筒所處理 的含塵氣流的物理性能大致確定,所以,旋風(fēng)筒的結(jié)構(gòu)是否合理,技術(shù)參數(shù)選取是 否適當(dāng),直接影響其性能指標(biāo) 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 15 a) 筒體直徑(D) 旋風(fēng)筒的直徑對分離效率的影響較大。由于顆粒所受的離心慣性與其運(yùn)動軌跡 的曲率半徑成一定的反比關(guān)系,所以隨著旋風(fēng)筒直徑的縮小,離心力均可增強(qiáng), 從而使效率提高。但直徑過小時,較大的顆粒碰撞彈跳易被帶入內(nèi)旋流中而被帶出。 旋風(fēng)筒的直徑?jīng)Q定于旋風(fēng)筒的處理能力,其處理能力又決定于通過的風(fēng)量和截面風(fēng) 速。風(fēng)量一定時,截面風(fēng)速愈大,旋風(fēng)筒的直徑就愈小。過去的旋風(fēng)筒平均截面風(fēng) 速一般在 3m/s5m/s 范圍內(nèi)。近年來普遍有所提高,一般在 5m/s6.5m/s 之間。 研究表明:若保持旋風(fēng)筒的直徑不變而提高截面風(fēng)速,只要相應(yīng)擴(kuò)大進(jìn)出口面積, 并保持進(jìn)出口氣體速度不變,旋風(fēng)筒的阻力并不會顯著增加。即在一定范圍內(nèi)旋風(fēng) 筒截面風(fēng)速對壓力損失影響很小,但截面風(fēng)速也不能太大,否則仍將影響阻力和分 離效率。 b) 旋風(fēng)筒的相對高度(H/D) 增長旋風(fēng)筒高度,可增加氣流在筒內(nèi)旋轉(zhuǎn)圈數(shù),使粉料有足夠的沉降時間,有 利于提高分離效率。近年來 H/D 普遍有所增大。但 H 增大,會增加窯尾框架高度和 鋼材耗量。為了確定合理的旋風(fēng)筒高度,可按照 Alexander 提出的“旋風(fēng)自然長” 的概念而得到旋風(fēng)筒的計算高度 Hi=Hc+S 式中: Hi:一旋風(fēng)筒的計算高度; Hc :一 旋風(fēng)自然長; S :一 內(nèi)筒插入深度。 旋風(fēng)筒的分離效率隨 H/D 與 H/Hi 的增大而提高,H/Hi 接近 1 時對分離效率的 提高有利,H/Hi 大于 1 時,由于存在卷吸物料的作用,反而不利。 c) 進(jìn)口面積系數(shù) 在一定范圍內(nèi),旋風(fēng)筒進(jìn)口風(fēng)速越高,分離效率越高,但進(jìn)口風(fēng)速過大時,分 離效率也會下降,由于壓力損失與進(jìn)口風(fēng)速的平方成正比,因而不適當(dāng)?shù)靥岣哌M(jìn)口 風(fēng)速,將使阻力呈平方增加而分離效率并不提高。所以,必須合理確定各級旋風(fēng)筒 的進(jìn)口面積系數(shù)。定義進(jìn)口面積系數(shù)為進(jìn)口截面積與筒體截面積之比。 d) 進(jìn)口形狀和氣流進(jìn)入方式 在進(jìn)口面積一定時,其高寬比(a/b)對分離效率影響較大。一般的說,高寬 比大,提供了有利于氣流流動的結(jié)構(gòu)形式,使入口含塵氣體行程偏離氣體排出管較 遠(yuǎn),并縮短了被分離料粉到筒壁的徑向距離,對提高分離效率有利。但高寬比過大, 將使柱體高度增加,也不合理,一般在 0.40.6 為宜。氣流入口的方式,一般有 兩類,即進(jìn)口氣流外緣與圓柱體相切的直入式和進(jìn)入氣流內(nèi)緣與圓柱體相切的渦殼 式。渦殼式又可分為 900 切和 2700 切。由于渦殼式進(jìn)口能使進(jìn)入旋風(fēng)筒內(nèi)氣流通 道逐漸變窄,有利于減小顆粒向筒壁移動分離的距離,而且增加了氣流通向排氣管 的距離,避免產(chǎn)生短路,因此可提高分離效率,同時處理風(fēng)量較大。 e) 排氣管的尺寸和內(nèi)筒插入深度 排氣管下端直徑是一個十分重要的尺寸,它決定了內(nèi)外旋流的分界點(diǎn)位置及最 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 16 大切向速度值,因而對分離效率和壓力損失的影響很大。排氣管下端直徑越小,即 出口面積越小,外旋流區(qū)越大,離心力場越強(qiáng),效率可提高,但壓降也隨之增大。 若主要希望高效,壓降沒有太嚴(yán)格的限制,則排氣管直徑可取小些。但過小也不好, 對排氣管末端的向心徑向氣流也變大了,對分離反而不利。定義出口面積系數(shù)為出 口截面積與筒體截面積之比。由于旋風(fēng)氣流在內(nèi)筒內(nèi)器壁之間運(yùn)動,因而內(nèi)筒插入 深度對旋風(fēng)筒的性能也有一定的影響。插入太短,易使排氣管末端的短路流加劇, 不利于分離;若過長,反使分離空間長度變小,對分離效率也沒好處,并且使壓降 增加。近年來,一些公司普遍采用短內(nèi)筒,目的是在較小影響分離效率的條件下, 降低阻力損失。 f) 錐體高度與形式 錐體高度(h2)與形式對分離效率和壓力損失都有一定的影響。錐角較大的長 錐體,氣流變向緩慢、壓力較小、分離效率較高;錐角大的短錐體,氣流變向急促、 阻力較大、分離效率也較低。排料口直徑 E 和錐角 a 偏大時,有利于物料向下流動, 減少下料口結(jié)皮堵塞。但排料口物料填充率低,容易漏風(fēng)、負(fù)壓將引起二次飛揚(yáng), 把分離下來的物料重新卷入旋流核心之中, 影響分離效率;E 與 a 太小, 容易造 成“自由旋流”與錐壁過早接觸,同時離心力將使物料壓在錐壁上,造成物料向下 流動困難易引起堵塞。 (一般有 tga=h2/(D-E))因此,正確選擇 E 和 a 值對減小漏 風(fēng)、提高效率和消除堵塞現(xiàn)象有著重要意義。以上我們討論了旋風(fēng)筒的主要性能與 結(jié)構(gòu)參數(shù)的關(guān)系,將這些參數(shù)總結(jié)歸納于表 4-9 中。由表中可以看出,除總高 H 增 加對分離效率和阻力損失都有利外,其余尺寸的變化對兩者有相反的作用,但 H 增 高,將增加建筑高度、設(shè)備容積和鋼材耗量,因此必須統(tǒng)籌考慮。 表 3-1 旋風(fēng)筒結(jié)構(gòu)參數(shù)對主要性能的影響趨勢 因素 符號 分離效率 壓力損 筒體內(nèi)徑增大 D 減小 減小 總高增大 H 增大 減小 進(jìn)口面積增大 ab 減小 減小 內(nèi)筒直徑增大 d1 減小 減小 內(nèi)筒插入深度增大 h2 增大 增大 3.2.2 旋風(fēng)分離器分離器主要尺寸的計算 由經(jīng)驗公式先計算大致尺寸 已知風(fēng)量 900m3/min=15 m3 /s , 一般進(jìn)入旋風(fēng)筒的風(fēng)速為 2225 m/s , 取風(fēng) 速 v=21 m/s,計算如下: 總截面積 S=Q/v1 (3-2) 代入數(shù)據(jù)得,S=15/20.71 m 2 預(yù)安裝六個旋風(fēng)筒,每個旋風(fēng)筒的截面積為 S1=S/6=0.71/6=0.12 m2.設(shè)旋風(fēng)筒 入口寬為 a ,則入口高為 1.2a(由經(jīng)驗得) , 由式 S1=1.2a2=0.077 得 a 316mm 考慮各種原因所以 a 取 300mm,即旋風(fēng)筒入口寬為 300 mm , 入口高 H 為 400 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 17 mm 。 由關(guān)系式 H=(0.40.5)D o (3- 3) 取 0.4 可得旋風(fēng)筒筒徑 Do =1000 mm 表 3-2 單出風(fēng)口旋風(fēng)筒結(jié)構(gòu)尺寸的參考值(單位 mm) 直 筒 高 h1 =2 Do =2000 錐 筒 高 h2 =2 Do =2000 出 口 直 徑 De = Do/2 =500 灰塵出口直徑 L = Do/4 =250 內(nèi) 筒 長 L = Do/3 =267 由于考慮到雙出風(fēng)口的特殊結(jié)構(gòu),特此做出調(diào)整上出風(fēng)口直徑 d1=450mm,上出 風(fēng)口長為 800mm,下出風(fēng)口直徑 d11=400mm。 3.2.3 旋風(fēng)分離器的結(jié)構(gòu)設(shè)計和相關(guān)尺寸設(shè)計 本部分是雙出風(fēng)口分離器的核心設(shè)計部分,它的結(jié)構(gòu)是否合理直接影響到雙出 風(fēng)口分離器的改良是否有效。 a.本著“裝得上去,拆得下來,用得起來得”設(shè)計標(biāo)準(zhǔn),在確定各內(nèi)部結(jié)構(gòu)尺寸 的同時,更多的要考慮其結(jié)構(gòu)上的合理性。 由于內(nèi)部的部件是在一個密閉的筒體內(nèi),如果只考慮密封將內(nèi)部的各部件通過 焊接的方式連成一體,毫無疑問,其收集效率最為理想。但是,再用“裝得上去, 拆得下來,用得起來得”設(shè)計標(biāo)準(zhǔn)考查其結(jié)構(gòu)的合理性。結(jié)論是相當(dāng)肯定的,那就 是無法實現(xiàn)這一裝置的生產(chǎn)。在設(shè)計的初期,我也曾一度苦惱,想找到一個完美的 解決方案,但是最終,我還是舍棄了理想化的內(nèi)部流場,從結(jié)構(gòu)的可行性上著手, 盡量減少對內(nèi)部流場的影響。 在設(shè)計的過程中,我考慮了很多方案,經(jīng)過對比,最終我還是采用了下面的 方案: 圓柱筒體和下圓錐之間采用螺栓連接,反射屏焊接在一段短圓筒上后,在將其 依次與焊接彎頭、下出風(fēng)管焊接為一體。在下圓錐的相應(yīng)位置開槽,使得上步所得 的整體可以將下出風(fēng)管伸出下圓錐到設(shè)計的位置,再按下出風(fēng)管尺寸和下圓錐的錐 度在卷制過的鋼板開孔,最后再將其在孔的直徑方向?qū)ΨQ割開,以便將下出風(fēng)口和 下圓錐焊接為一體。 為了導(dǎo)流管的安裝,必須在筒體上開一個檢修門,此檢修門采用螺栓鎖緊的方 式,并配有密封墊圈,保證不漏風(fēng)。具體的鎖緊裝置結(jié)構(gòu)如下圖所示: FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 18 圖 3-3 檢修門鎖緊裝置 而導(dǎo)流口則采用活動式連接,依靠其自重和底部的擋塊達(dá)到固定作用,詳細(xì)結(jié) 構(gòu)和尺寸見下圖 圖 3-4 導(dǎo)流口結(jié)構(gòu)及尺寸圖 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 19 圖 3-5 導(dǎo)流管的支撐裝置 導(dǎo)流管的安裝主要通過支撐裝置來實現(xiàn),主要過程為先將導(dǎo)流管由檢修門放入 筒體內(nèi)。再將圖 3-4 中的 1-上部接口部分插入上出風(fēng)管內(nèi),然后通過螺栓將導(dǎo)流 管和支撐裝置連接起來,最后將支撐裝置放在帶有反射屏的圓筒內(nèi)。就這樣,通過 支撐裝置四周焊接的 4 個擋塊和導(dǎo)流管上部接口的共同作用來實現(xiàn)導(dǎo)流管的定位安 裝。 為了在生產(chǎn)過成中方便調(diào)節(jié)導(dǎo)流口的開度,在筒體周向,導(dǎo)流葉片相應(yīng)位置設(shè) 有調(diào)節(jié)裝置。 b.確定結(jié)構(gòu)尺寸 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 20 圖 3-6 雙出風(fēng)口分離器結(jié)構(gòu)簡圖 表 3-3 旋風(fēng)筒具體尺寸 符號 取值(mm) 符號 取值(mm) d 1000 d3 d1+100=550 H 4000 d4 0.45d1=200 ab 400300 d5 d4+50=250 h1 2000 d6 d4+100=300 h2 700 d7 0.7d1=315 h3 200 d8 0.4d=400 h4 670 d9 0.5d+50=450 h5 850 d10 0.8d-100=700 h6 1200 d11 d9+50=500 d1 0.45d=450 d12 d9+100=550 d2 d1+50=500 雙出風(fēng)口分離器的具體結(jié)構(gòu)尺寸和相對關(guān)系如表 3-3 所示 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 21 c.注意問題: A 旋風(fēng)筒兩端的法蘭采用 10mm 厚的鋼板切割而成,旋風(fēng)筒的筒體則有 6mm 厚的 鋼板卷制而成; B 旋風(fēng)筒在焊接時,基本采用融化焊中的手工電弧焊,筒體焊接的接頭采用對 接接頭,焊縫形式則為對接焊縫;法蘭與筒體之間的焊接則采用 T 型接頭,焊縫形 式則為角焊縫;焊接時要先均勻點(diǎn)焊,以防焊接時變形,然后再焊接,焊接時要保 證密封性,不能有漏風(fēng)的現(xiàn)象,否則會影響選粉機(jī)的產(chǎn)量。 4 選粉機(jī)的安裝、操作、維護(hù)及檢修 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 22 4.1 安裝要求 a.選粉機(jī)可以安裝在堅固、平整的鋼筋混凝土基礎(chǔ)上,也可以用鋼結(jié)構(gòu)平臺支 持,安裝后的選粉機(jī)應(yīng)是無振動的。 b.選粉機(jī)在現(xiàn)場安裝時,應(yīng)注意主體的垂直度,尤其保證內(nèi)部轉(zhuǎn)子的垂直度, 安裝時可以在主軸皮帶上用水平儀校正主軸垂直度(2/1000) 。 c. 傳動部件安裝時的注意事項: A. 裝配前,軸承內(nèi)應(yīng)涂適量的 2#二硫化銅復(fù)合鈣基潤滑脂。 B. 密封可靠,不得有漏油現(xiàn)象。 C. 減速器支架的腿不能防礙卡殼聯(lián)軸器的傳動。 D. 裝配時可刮修軸承座,使上下軸承的不同心度不大于 0.005mm. E. 傳動裝置中,各帶輪軸線應(yīng)相互平行,各帶輪相對應(yīng)的 V 型槽的對稱平 面應(yīng)重合,誤差不得超過 20。 F. 帶傳動裝置應(yīng)加防護(hù)置,并應(yīng)能保證通風(fēng). d.各密封結(jié)合面處不得有漏氣、滲油現(xiàn)象,安裝時各法蘭必須用橡膠密封圈密 封。 e.風(fēng)機(jī)固定位置根據(jù)工作場所進(jìn)行合理選擇,注意聯(lián)接風(fēng)管不要太長,以免影 響風(fēng)壓,其支腳減振器應(yīng)放在平整、堅固的水平面上。為保證使用效果,風(fēng)機(jī)不配 節(jié)能減振支架,一律采用混凝土基礎(chǔ)。 f.現(xiàn)場安裝前,應(yīng)對回轉(zhuǎn)部分進(jìn)行檢查,主軸在鉛垂?fàn)顟B(tài)時轉(zhuǎn)動靈活,無卡滯 現(xiàn)象,風(fēng)葉、撒料盤的組裝件應(yīng)進(jìn)行靜平衡。 g.回轉(zhuǎn)部分的旋轉(zhuǎn)方向應(yīng)與主機(jī)進(jìn)風(fēng)口、撒料葉片、旋風(fēng)筒進(jìn)風(fēng)方向相一致, 不得相反。 h.安裝時,粗粉和細(xì)粉的雙聯(lián)鎖風(fēng)閥應(yīng)盡量垂直放置在粗粉、細(xì)粉管道的末端, 即盡可能靠近輸送設(shè)備的進(jìn)料口。 j.整機(jī)安裝完畢,應(yīng)在上蓋的加工面上測量水平誤差,其誤差在每 m 長度上不 得大于 2mm。 4.2 操作 a.試運(yùn)轉(zhuǎn):選粉機(jī)安裝結(jié)束后,應(yīng)將各潤滑點(diǎn)加上適量的潤滑油,隨后應(yīng)進(jìn)行 試運(yùn)行 48 小時,檢查各軸承供油情況是否正常,轉(zhuǎn)子部分運(yùn)動是否平穩(wěn),有無 振動噪音,試運(yùn)轉(zhuǎn)認(rèn)為完全合格后才允許正式投入生產(chǎn)。 b.開機(jī)順序:成品輸送 選粉風(fēng)機(jī) 選粉機(jī)主軸電機(jī) 磨尾混合提升 磨機(jī)。關(guān)機(jī)順序與此相反。 c.喂料:當(dāng)選粉機(jī)達(dá)到正常轉(zhuǎn)速,并且風(fēng)機(jī)風(fēng)量達(dá)到正常時,才允許喂料,停 車時應(yīng)先停止喂料,才能停電動機(jī)。 4.3 維護(hù) 為保證選粉機(jī)長期安全運(yùn)轉(zhuǎn),需特別注意對選粉機(jī)進(jìn)行日常維護(hù)和定期檢修。 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 23 使用廠家應(yīng)制定適合本廠實際情況的操作規(guī)程和維護(hù)制度。 日常運(yùn)轉(zhuǎn)過程中,要保證各潤滑點(diǎn)充分潤滑,選粉機(jī)內(nèi)部軸承及風(fēng)機(jī)軸承要定 期加入潤滑油(見下表) 。日常維護(hù)中應(yīng)注意選粉機(jī)轉(zhuǎn)子的平衡性,如果發(fā)現(xiàn)異常 振動現(xiàn)象,必須立即停車檢查原因,清除故障后才能繼續(xù)運(yùn)轉(zhuǎn)。定期清理匯風(fēng)管及 管道內(nèi)的積灰。 表 4-1 潤滑項目表 潤滑點(diǎn) 潤滑劑 潤滑方式 允許溫度 潤滑周期 選粉機(jī)主軸軸承 2#鋰基脂 油杯 750C 一周 風(fēng)機(jī)主軸承箱 20#機(jī)油(夏用)10#機(jī)油(冬用) 連續(xù)無壓 600C 視油位情況定期加油 4.4 檢修及注意事項 選粉機(jī)必須定期檢修。停機(jī)后,轉(zhuǎn)子部分等數(shù)分鐘后才會停止轉(zhuǎn)動,待選粉機(jī) 內(nèi)物料沉淀后,才能打開檢修門。一般對下述零件進(jìn)行檢修。清除軸承中黃油渣, 注意不允許有灰塵進(jìn)入軸承內(nèi),更換分級片及襯板等已經(jīng)磨損零件。 注意:對轉(zhuǎn) 子部件的每一個零件都應(yīng)稱重合格后方可對稱裝配,確保更換磨損后能保持平衡。 4.5 產(chǎn)品細(xì)度的調(diào)節(jié) 細(xì)度調(diào)節(jié)通常采用調(diào)節(jié)主軸轉(zhuǎn)速的方法進(jìn)行。除特別需要,一般不應(yīng)用調(diào)節(jié)風(fēng) 量的辦法調(diào)節(jié)細(xì)度。一般情況下,在試生產(chǎn)時,通常將主風(fēng)全部打開,通過改變主 軸轉(zhuǎn)速來調(diào)節(jié)細(xì)度;轉(zhuǎn)速越高,細(xì)度越細(xì),轉(zhuǎn)速越低則細(xì)度越粗。如果此時不能將 細(xì)度調(diào)節(jié)到規(guī)范要求,則可以調(diào)節(jié)主風(fēng)閥的位置,改變循環(huán)風(fēng)量,一旦細(xì)度合乎要 求后,即將風(fēng)閥固定好,在正常生產(chǎn)過程中,不應(yīng)隨意調(diào)整。 4.6 常見故障的處理方法 由于操作維護(hù)不當(dāng),以及軸承支座螺母松動的磨損、損壞等原因造成各種故障, 應(yīng)及時處理。常見故障處理方法如下表: 表 4-2 故障處理方法 故障現(xiàn)象 產(chǎn)生原因 處理方法 選粉機(jī)電流突然增大 1.主軸下端大螺母或軸承支座螺母松動。 2.雜物卡住撒料盤。 3.主軸承壞或被異物卡住。 1. 擰緊螺母 2. 檢查清除 3. 檢查更換或清理、加油 電流擺動幅度大 2.軸承支座螺栓松動 3.零部件之間相互摩擦 4. 喂料不均,波動較大 1. 修換 2. 擰緊螺栓 3. 檢查、調(diào)整 產(chǎn)品細(xì)度突然變化 1.風(fēng)機(jī)皮帶打滑或損壞 1.張緊或更換皮帶 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 24 5 工藝平衡計算 5.1 設(shè)計水泥粉磨工藝圖 1-喂料倉; 2-輥壓機(jī) ;3-打散機(jī); 4-球磨機(jī) ;5-FXS 組合式選粉機(jī); 6-斗式提升機(jī); 7-粗粉分離器 ;8-除塵器 ;9-排風(fēng)機(jī) 圖 5-1 水泥粉磨流程圖 5.2 根據(jù)物料平衡對設(shè)備進(jìn)行選型計算 a.球磨機(jī) 由選粉機(jī)產(chǎn)量喂料量 65t/h,可知磨機(jī)產(chǎn)量為 65t/h。所選磨機(jī)型號 2.410m 中卸烘干磨。產(chǎn)量 G65.34t/h。 b.提升機(jī) G 提 =K(1+L)G G 提 提升機(jī)提升能力,t/h; K提升機(jī)提升物料不均衡系數(shù),K=1.2-1.3; L選粉機(jī)循環(huán)負(fù)荷率; G磨機(jī)產(chǎn)量,t/h G 提 =1.2(1+1.5)65.34=196.02 t/h 提升機(jī)設(shè)計計算: 設(shè)計計算:Q 實 =Q/K,選供料不均勻系數(shù) K=1.2 Q=K Q 實= 1.2196.02=235.2 t/h 由于輸送粉磨礦渣,查表得 =0.6 由公式 i0/a0= Q/3.6pv=235.2/(3.60.610 30.6)=1.8110 -4 m3/m 查表:選取 THD500 型斗式提升機(jī),斗寬為 500mm ,斗距為 450mm,料斗容積為 27L。輸送能力 260m3/h,提升高度 100m。 c.選粉機(jī) 根據(jù)選粉機(jī)喂料量 A=65t/h,令料氣比 I=1.2kg/m3。因此選粉空氣量可按下式 計算: 鹽城工學(xué)院本科生畢業(yè)設(shè)計說明書 2007 25 310656.71.904./min2aAQII 即,選粉機(jī)型號為 FXS900,自行設(shè)計。 d.打散機(jī) 由于磨機(jī)產(chǎn)量 G65.34t/h,球磨機(jī)循環(huán)負(fù)荷 L1.5。 喂料量 G0(L1)G163.4t/h 可知打散機(jī)產(chǎn)量 G 打散機(jī) G 0163.4t/h。打散機(jī)選型為 SF500/120 e輥壓機(jī) 輥壓機(jī)選型為 HPCG120-45,處理能力 100-150t/h,功率 2-220kw,入料粒度 60mm. f.袋收塵 氣箱脈沖袋收塵:SY-MCL1 處理風(fēng)量 3254465088m 3/h,風(fēng)機(jī) 9-26 4-16 功率 5.5-850kw。 g.磨機(jī)的通風(fēng)作用 A冷卻磨內(nèi)物料,改善物料的易磨性。80%以上的能量轉(zhuǎn)變?yōu)闊崮?,使磨?nèi) 物料溫度上升,且物料的易磨性隨溫度上升而降低,因物料溫度高會產(chǎn)生靜電效應(yīng), 使物料拈成團(tuán),粘附在研磨體和襯板上,降低粉磨效率。 B及時排除磨內(nèi)水蒸汽,可降低糊球和阻塞蓖孔現(xiàn)象。 C消除磨頭冒灰,改善環(huán)境衛(wèi)生,減少設(shè)備的磨損,同時還可以減少細(xì)粉 的緩沖墊層作用。因此合理選擇通風(fēng)量有很重要意義。 h磨機(jī)需要通風(fēng)量的計算 A.按磨機(jī)容積計算 Q= (34)V m 3/min 或 Q=(141188)DL m 3/h 式中 V-磨機(jī)有效容積,m 3; L-磨機(jī)有效長度 所以 Q= 1502.410=3600 m3/h B.按磨機(jī)產(chǎn)量計算: Q=(300 400)G 式中,G-磨機(jī)產(chǎn)量,t/h 因為 G=65.34 t/h,所以 Q=19602 26136m 3/h。采用不同的方法計算出的通風(fēng)量相 差很大。因此,應(yīng)全面衡量各方面的情況,選擇合理的通風(fēng)量,以求得最佳的經(jīng)濟(jì) 效率。 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器設(shè)計 26 6 結(jié)論 在本次 FXS900 組合式選粉機(jī)總體及雙出風(fēng)口分離器的設(shè)計過程中,我通過前 期對歷代選粉機(jī)的工作原理和性能上的優(yōu)缺點(diǎn)的認(rèn)真研究,加深了對選粉設(shè)備的認(rèn) 識,為我在后期的設(shè)計計算中能夠優(yōu)化和改進(jìn)傳統(tǒng)的設(shè)備提供了理論依據(jù)。 關(guān)于本次設(shè)計的 FXS900 組合式旋粉機(jī),我認(rèn)為有以下幾點(diǎn)特色: a.導(dǎo)流口可調(diào)式雙出風(fēng)口旋風(fēng)分離器的設(shè)計,有效克服了單出風(fēng)口旋風(fēng)分離器 三大先天缺陷