喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請(qǐng)放心下載,,文件全都包含在內(nèi),,【有疑問(wèn)咨詢(xún)QQ:414951605 或 1304139763】
喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請(qǐng)放心下載,,文件全都包含在內(nèi),,【有疑問(wèn)咨詢(xún)QQ:414951605 或 1304139763】
南昌航空大學(xué)科技學(xué)院外文翻譯
關(guān)于離心流化床烘干機(jī)熱量與質(zhì)量傳遞的試驗(yàn)研究
M.H.Shi,H.Wang,Y.L.Hao
中國(guó)南京東南大學(xué)電力工程系 210096
摘要
我們正在做一項(xiàng)熱量和質(zhì)量傳遞特性的試驗(yàn)研究,就是前兩天潮濕的物質(zhì)在離心流化床(CFB)烘干機(jī)的干燥過(guò)程。每分鐘轉(zhuǎn)數(shù)要300到500之間。測(cè)試材料有濕的沙,玻璃粉和切成片的食物。入口和出口的氣體溫度和濕球溫度,以及床的溫度都被測(cè)出。通過(guò)質(zhì)量平衡法,在氣體階段立即決定了水分含量??梢詼y(cè)出表面氣流速度、顆粒直徑和形狀、床的厚度、床的轉(zhuǎn)數(shù)以及干燥特性最初的溫度的影響。我們獲得了一個(gè)經(jīng)驗(yàn)系數(shù),可以用來(lái)計(jì)算在離心流化干燥器內(nèi)氣體顆粒的熱量傳遞系數(shù)。
關(guān)鍵詞:干燥;熱量和質(zhì)量傳遞;離心流化床
1. 引言
CFB干燥是一項(xiàng)新技術(shù),潮濕的材料要離心力范圍內(nèi)通過(guò)機(jī)床的旋轉(zhuǎn)來(lái)完成一個(gè)被高度提高的熱量和質(zhì)量傳遞。這種機(jī)床本質(zhì)上是一個(gè)圍繞對(duì)稱(chēng)軸旋轉(zhuǎn)的圓柱形籃子,上面有一個(gè)能滲水的圓柱形墻體。干燥物進(jìn)入籃子,因?yàn)樾D(zhuǎn)產(chǎn)生的強(qiáng)大的離心力,它們被迫在籃子周?chē)纬梢粋€(gè)環(huán)形層。氣體通過(guò)能滲水的圓柱墻注入,當(dāng)力量通過(guò)流化介質(zhì)平衡了離心力,機(jī)床開(kāi)始流化。不像垂直機(jī)床一樣有一個(gè)固定的引力力場(chǎng),離心床的體積力成為一個(gè)可調(diào)節(jié)的參數(shù),這個(gè)參數(shù)由旋轉(zhuǎn)速度和籃子的半徑?jīng)Q定。原則上,在任何氣體流速情況下,通過(guò)改變機(jī)床旋轉(zhuǎn)速度都能達(dá)到最小流化作用。用一個(gè)比引力還大得多的強(qiáng)離心力場(chǎng),機(jī)床可以經(jīng)得起一個(gè)大的流速,而不形成大的氣泡。因此,在高氣體流速下氣體-液體的聯(lián)系得到了改進(jìn),并且在干燥過(guò)程中能達(dá)到熱量和質(zhì)量傳遞。因?yàn)檫@個(gè)原因,CFB干燥器在干燥業(yè)得到頗多關(guān)注。
文獻(xiàn)中只能找到一些研究CFB干燥的調(diào)查著作。拉扎爾和法卡斯[1,2]布朗[3]執(zhí)行了CFB切片水果和蔬菜的干燥過(guò)程,卡爾森[4]調(diào)查了CFB大米干燥情況。這些調(diào)查報(bào)告都非常的有益,但它們主要關(guān)注的是工業(yè)申請(qǐng)CFB的可能性。CFB的流動(dòng)行為和干燥特性是非常復(fù)雜的,并且仍然不是很清楚。為了評(píng)估物體表面溫度,從氣體到物體的熱量傳遞知道是標(biāo)非常有必要的。為了特定的目的,定量的CFBs熱量傳遞特性的知識(shí)是必須的。
在這篇論文中,做了一個(gè)關(guān)于流動(dòng)行為和CFB的氣體-液體的熱量和質(zhì)量傳遞特性的試驗(yàn),影響干燥過(guò)程的主要因素被檢測(cè)和討論。
2. 實(shí)驗(yàn)裝置
圖1為實(shí)驗(yàn)裝置示意表。一個(gè)圍繞水平軸的圓柱形籃子安裝在一個(gè)密封的圓柱形盒子內(nèi)?;@子直徑為200mm,寬度為80mm。籃子的側(cè)面有直徑為3mm的洞,用來(lái)分散氣體,有22.7%的開(kāi)放區(qū)域。
圖1.實(shí)驗(yàn)裝置
內(nèi)表覆有200個(gè)不銹鋼絲網(wǎng),用來(lái)防止機(jī)床材料腐蝕。在籃子末端墻體的中心處有一個(gè)直徑為80mm的洞,用來(lái)排出氣體。一個(gè)變速發(fā)動(dòng)機(jī)被用來(lái)轉(zhuǎn)動(dòng)籃子,通過(guò)一個(gè)軸來(lái)連接籃子墻體的另一端。用一個(gè)LZ-45轉(zhuǎn)速計(jì)來(lái)測(cè)量發(fā)動(dòng)機(jī)的轉(zhuǎn)速??諝庥梢粋€(gè)鼓風(fēng)機(jī)吹入??諝赓|(zhì)量流率的測(cè)量采用孔板流量計(jì)??諝饧訜崾褂玫氖且粋€(gè)電熱器。一個(gè)t形管閥是用來(lái)控制流體方向??諝鉁囟确€(wěn)定在期望值(約100℃)后,打開(kāi)球上的閥門(mén),干燥實(shí)驗(yàn)便開(kāi)始了;熱空氣流經(jīng)分散器到達(dá)機(jī)床后進(jìn)入大氣層。壓降是通過(guò)一個(gè)U形量表來(lái)測(cè)量的。一個(gè)壓力探針沿著中心線伸到籃筐里,離端壁10毫米遠(yuǎn)。在相同的操作條件下,也進(jìn)行了不使用機(jī)床材料來(lái)獲取穿過(guò)分散器的壓力差異的試驗(yàn)。穿過(guò)機(jī)床的壓降通過(guò)ΔpBed =Δ pTotal ? Δp分散器來(lái)測(cè)量。入口氣體溫度、出口氣體溫度和在不同位置的床溫度隨時(shí)間變化是使用熱電偶探頭來(lái)測(cè)量的,數(shù)據(jù)記錄是采用3497A記錄數(shù)據(jù)采集/控制單元。在干燥過(guò)程中測(cè)試材料的含水量是通過(guò)在氣體階段的水分平衡法來(lái)測(cè)量,即通過(guò)測(cè)量在氣體階段用干濕燈泡溫度計(jì)來(lái)入口與出口處的濕潤(rùn)度。
圖2.離心流化床的一個(gè)特別部分
時(shí)間間隔從tj到tjC1的水分平衡是 (公式1)。在時(shí)間tj+1,測(cè)試材料的水含量是 (公式2)。采用干燥重量法測(cè)試材料樣品達(dá)到初始含水率,我們能得到隨著時(shí)間的含水率的變化,因而,干燥率計(jì)算為 (公式3). 干燥的表面Sp作為測(cè)試材料全部表面積為(公式4)。忽略射線熱傳導(dǎo)和周?chē)臒釗p失,如圖2所示,不同體積時(shí), 在任何給定的時(shí)間機(jī)床的能量等式是這樣的:(公式5)。該方程可以使用在整個(gè)機(jī)床來(lái)獲得傳熱系數(shù):(公式6)
3.結(jié)果與討論
3.1.機(jī)床的壓降與初始流化特性
圖3顯示機(jī)床壓降的變化,沙床表面氣流速度,在干燥測(cè)試中不同的旋轉(zhuǎn)速度,在初始流化階段,壓降增大均隨著流速。
圖3.CFB沙子的流化曲線 (dpD0.245 mm, nD400rpm).材料 (上/下): (m/h) 沙; (d/s) 玻璃珠
當(dāng)?shù)竭_(dá)臨界點(diǎn)時(shí),壓降將保持幾乎不變。但是,切片,觀察成塊的材料所得的結(jié)果不同。壓降曲線有一個(gè)最大值,它對(duì)應(yīng)的臨界液化點(diǎn),如圖4。在初始流化階段,慢慢增大壓力降的增加與流速。當(dāng)達(dá)到臨界點(diǎn),壓降隨著氣速的增加而下降。這是因?yàn)樵陔x心力場(chǎng)內(nèi),切片材料的自鎖現(xiàn)象逐漸減弱,并且因?yàn)闄C(jī)床變得統(tǒng)一。這造成了一個(gè)流阻。降低機(jī)床轉(zhuǎn)速可以降低機(jī)床壓降和臨界氣速,如圖4。
這是由于減在了床上旋轉(zhuǎn)速度就會(huì)削弱離心力場(chǎng)和導(dǎo)致流動(dòng)阻力減少。它也可以從圖4看出來(lái):切片土豆的臨界流化速度要小于塊狀土豆,是由于片狀材料更大地觸風(fēng)面積。
圖4.不同形狀材料的流化曲線(切片土豆10mm_10mm_1.5 mm, nD300 rpm; (h) 塊狀土豆5mm_5mm_5 mm, nD300 rpm; (s)塊狀土豆5mm_5mm_5 mm, nD250 rpm.
3.2.干燥曲線
典型的氣體溫度和機(jī)床層溫度曲線和濕沙的干燥曲線的在間歇干燥過(guò)程中顯示如圖5。
圖5.CFB間歇干燥曲線(sand,dpD0.411mm,MD2.48kg, !D41.9rads?1,U0D1.71ms?1,HinD0.016kg kg?1): (1) Tg;in ; (2) Tg;out ;(3) Tb; (4) R; (5) x.
并且,片狀材料機(jī)床的壓降也小于塊狀物料機(jī)床,是因?yàn)樗槠牧显贑FB有更好的流化特性。這從理論性顆粒物質(zhì)模型[6]是獲得的初始流化關(guān)系并不適合切片材料。不同形狀切片材料的初始流化條件是試驗(yàn)性的,單獨(dú)決定的。
圖6片狀土豆的水份含量變化(曲線6)和干燥率(曲線7)
這也顯示出像沙子這種干燥材料的特點(diǎn),其中水分含量主要是表面的水分, 就像在一個(gè)普通的干燥機(jī),整個(gè)干燥過(guò)程即可分為三個(gè)階段。在一個(gè)簡(jiǎn)短的初期階段,材料預(yù)熱和干燥速度迅速增加; 機(jī)床溫度增加到一個(gè)穩(wěn)定值。第二階段是干燥速率恒定階段,從氣體到材料的熱量轉(zhuǎn)移完全為材料表面水分的蒸發(fā)。材料溫度保持不變,干燥速率也不變。最后一個(gè)階段被稱(chēng)為降速階段,材料的溫度和干燥速率也逐漸增加,直到干燥過(guò)程的最后。
CFB片狀食品產(chǎn)品的干燥行為與圖6所示的沙子又有些不同。顯然,CFB切片土豆的干燥特性與在傳統(tǒng)的干燥過(guò)程基本相似。在一開(kāi)始,有一個(gè)短暫的最初階段。在這一時(shí)期,機(jī)床材料預(yù)先加熱;機(jī)床溫度迅速達(dá)到一個(gè)穩(wěn)定值,干燥速率快速增加。這個(gè)初步的時(shí)期之后是一個(gè)干燥速率穩(wěn)定階段。在恒定的速率期,測(cè)試材料的表面覆蓋著一層很薄的水膜。氣體流動(dòng)至材料的熱轉(zhuǎn)移用來(lái)完全蒸發(fā)水分,所以切片材料的溫度保持平衡,溫度和干燥速度是在最大值。這是很重要的,土豆的主要的水分含量是細(xì)胞水分,所以恒定的速率時(shí)期是很短暫的。最重要的干燥過(guò)程是在降速時(shí)期完成的。在降速時(shí)期,表面附近的干燥層出現(xiàn)并由于內(nèi)部水分外流的運(yùn)輸阻力更大而逐漸減弱。這導(dǎo)致熱傳遞阻力增加,干燥速率在第一階段迅速降低。干層后的溫度已上升到一定的值,干燥速率慢慢的減少。這表明,在該降速時(shí)期,切片土豆在循環(huán)流化床干燥機(jī)可以分開(kāi)成兩個(gè)不同的階段。這對(duì)工程設(shè)計(jì)與操作都至關(guān)重要。實(shí)驗(yàn)結(jié)果表明, 干燥過(guò)程中切片土豆比塊狀土豆有一個(gè)更大的干燥速率和較短的干燥時(shí)間。這是因?yàn)樵谇衅牧现袕膬?nèi)細(xì)胞到外蒸發(fā)表面的水分運(yùn)輸距離比在塊狀材料中要短。特別值得一提的是,在干燥過(guò)程中,在第二階段的降速時(shí)期片狀材料更短。
一般來(lái)說(shuō),由于薄片材料可能被流態(tài)化和混合得很好,干燥時(shí)間極短。例如,CFB切片土豆的干燥時(shí)間比隧道式干燥機(jī)短15倍,比常規(guī)流化干燥器短5倍。
3.3.操作參數(shù)的影響
3.3.1表面氣體流速
很明顯,表面流速的增加將增加流化的程度,因此,氣體階段與固體階段之間的熱量與質(zhì)量傳遞可能會(huì)大幅提高。這導(dǎo)致了干燥速度更大和干燥時(shí)間短,是,如圖7。這臨界水分含量會(huì)隨氣流速度增加而增加,如圖7虛線所示。對(duì)于食品原料,實(shí)驗(yàn)結(jié)果表明,在穩(wěn)定速度時(shí)期和在第一時(shí)期,干燥速度會(huì)隨著在低氣流速度區(qū)域的氣體流速的增加而增加。因此,總干燥時(shí)間會(huì)減少。然而,當(dāng)流速增加到一定值,恒定的速率會(huì)消失,降速時(shí)期的第一階段減短而第二階段增長(zhǎng)。 .
圖7表觀氣速對(duì)水分含量的影響
(dpD0.411 mm, MD2.50 kg, !D41.9 rad s?1, HinD0.016 kg kg?1): (1)
U0D1.66ms?1; (2) U0D2.17ms?1.
M.H. Shi et al. / 化工雜志 78 (2000) 107–113 111
總干燥時(shí)間就會(huì)保持不變;這是因?yàn)轳R鈴薯的主要水含量是內(nèi)層細(xì)胞水和主要的干燥過(guò)程是在降速時(shí)期的第二階段。增加進(jìn)口燃?xì)鉁囟?所有的干燥速率和干燥周期總數(shù)增加,干燥時(shí)間就減少。然而,燃?xì)鉁囟鹊脑黾訒?huì)受制于干燥食物的質(zhì)量。我們的測(cè)試中,最好的入口氣體溫度大約是100-110℃。實(shí)驗(yàn)結(jié)果也表明, 在相同的操作條件下,固定尺寸的切片蘿卜的干燥速率比切片土豆的更大。這是因?yàn)槲⒂^組織的測(cè)試實(shí)例表明,蘿卜比土豆有一個(gè)更大的帶有一種更加規(guī)則性排列細(xì)胞結(jié)構(gòu),而且,蘿卜細(xì)胞里液體的粘性更??;這些結(jié)構(gòu)特點(diǎn)讓蘿卜容易干燥。
3.3.2.旋轉(zhuǎn)速度
相同的氣速,降低床上旋轉(zhuǎn)速度將會(huì)減少離心力作用于物質(zhì)的流態(tài)化程度,而提高材料的流化程度;這導(dǎo)致氣體階段和固體階段之間的熱量和質(zhì)量傳遞會(huì)增加。因此,當(dāng)減少機(jī)床的旋轉(zhuǎn)速度,干燥速度增加了,如圖8。并且整個(gè)機(jī)床的干燥過(guò)程會(huì)比較均勻。這意味著,對(duì)于CFB一個(gè)給定的材料干燥,機(jī)床轉(zhuǎn)速應(yīng)盡量放低,直到流化狀態(tài)可能就不能維持。當(dāng)通過(guò)提高在CFB干燥器內(nèi)的氣體速度來(lái)增強(qiáng)干燥過(guò)程, 同時(shí),必須增加速度,避免干燥材料從機(jī)床上吹出去。在理論上,通過(guò)限制CFB機(jī)床的旋轉(zhuǎn)速度,在任何氣體流速下機(jī)床操作都能是最佳流化狀態(tài)。
圖8.旋轉(zhuǎn)速度的影響 (dpD0.411 mm, MD2.41 kg, U0D
1.43ms?1, HinD0.0123 kg kg?1): (1) !D52.4 rad s?1; (2) !D41.9 rad s?1.
圖 9. 粒子直徑的影響 (MD2.4 kg, !D41.9 rad s?1, U0D
1.43ms?1, HinD0.0123 kg kg?1): (1) dpD0.245 mm; (2) dpD0.411 mm.
3.3.3.粒子直徑
圖9顯示了CFB下粒子直徑對(duì)干燥行為的影響。顯而易見(jiàn)的是,對(duì)于走直徑更大的粒子,由于氣體和固體顆粒之間更大的下滑速度,干燥過(guò)程中的熱量與質(zhì)量傳遞將會(huì)增強(qiáng)。 因此,CFB干燥速率會(huì)隨著粒子直徑的增加而增加,如圖9所示。然而,隨著增加物質(zhì)維度,內(nèi)部傳熱傳質(zhì)阻力會(huì)增加,因此,對(duì)于一個(gè)給定的干燥材料,在特定操作條件下,那對(duì)于決定干燥過(guò)程中最佳材料規(guī)模是非常重要的。
3.3.4.機(jī)床厚度
圖10顯示初始床厚度的影響上干燥工藝。可以看出,以提高料層厚度,干燥速率會(huì)減少,這是因?yàn)闅怏w階段和固體階段之間的熱量與質(zhì)量傳遞的驅(qū)動(dòng)力在陜窄的機(jī)床條件下更大。
圖 10. 機(jī)床厚度的影響 (dpD0.411 mm, !D41.9 rad s?1,
U0D1.43ms?1, HinD0.0123 kg kg?1): (1) L0D30 mm; (2) L0D20 mm.
112 M.H. Shi et al. / 化工雜志78 (2000) 107–113
圖 11.初始水分含量(dpD0.411 mm, MD2.48 kg, !D41.9
rad s?1, U0D1.71ms?1, HinD0.016 kg kg?1): (1) x0D0.221 kg kg?1; (2)
x0D0.0574 kg kg?1.
3.3.5.初始水分含量的影響
很明顯,初始水分含量越大的材料干燥時(shí)間更長(zhǎng) (圖11),但是干燥特性都是相同的。唯一的區(qū)別在于恒定速率階段的持續(xù)時(shí)間。
3.4.熱量傳遞關(guān)聯(lián)性
65%的實(shí)驗(yàn)操作都是通過(guò)濕沙和玻璃珠進(jìn)行的,機(jī)床高度固定為10-30mm之間,雷諾系數(shù)從5.47到35.3以及離心力這重力的10.08到28倍。熱量傳遞系數(shù)被轉(zhuǎn)換成努塞系數(shù),看作是平均溫度下的平均直徑和熱電導(dǎo)率。使用迴歸分析的程式,獲得了在干燥過(guò)程中的CFB氣體與粒子間熱量傳遞的無(wú)量綱關(guān)聯(lián)。擴(kuò)散系數(shù)的指數(shù)比(Prandtl號(hào)碼)已被假設(shè)為1 / 3;
圖12.試驗(yàn)結(jié)果與計(jì)算結(jié)果的比較
(公式7)
因此,合適的參數(shù)范圍內(nèi)對(duì)上述二者的相互關(guān)系是,FcD10.0-28.0 ReD5.0-42.0。 努塞爾系數(shù)定義為NuDhdp /λ;雷諾數(shù)為ReDρgU0dp / μ;普朗特?cái)?shù)是PrDCpgμ/λ; 然后,無(wú)量綱的離心力被定義為Fc=ro ω2/g。圖12顯示的是試驗(yàn)的熱量傳遞與公式7的計(jì)量值比較。這項(xiàng)工作測(cè)試得到的所有數(shù)據(jù)偏差在25%以?xún)?nèi)。
4. 結(jié)語(yǔ)
1.CFB可能可以在填充床上操作,剛剛出現(xiàn)的流化或流化機(jī)床在給定的流速下,通過(guò)使用一個(gè)強(qiáng)流率的離心力場(chǎng),可以維持穩(wěn)定的流化狀態(tài)。
2.CFB分散器附近沒(méi)有明顯的“活躍區(qū)域”。在表觀氣速、粒子直徑、粒子形狀因子、、粒子密度、機(jī)床厚度和機(jī)床轉(zhuǎn)速的影響下,氣體與團(tuán)體之間的熱傳遞產(chǎn)生。
3.CFB干燥器中,干燥過(guò)程可以分為三個(gè)階段,干燥速度隨著表觀氣速和顆粒直徑的增加及旋轉(zhuǎn)速度和初始機(jī)床厚度的減少而增加,
4.在CFB中切片食品產(chǎn)品能夠流化和混合和非常好。壓降曲線有一個(gè)最大值,臨界流化參數(shù)隨著干燥產(chǎn)品及材料本身形狀和大小的變化及操作條件的變化而變化。
5.切片食品產(chǎn)品可以干得很好很快。干燥的主要過(guò)程是在降速期間,干燥速率速率取決于干燥產(chǎn)口的材料、形狀、和尺寸以及操作條件。
5.術(shù)語(yǔ)
a 顆粒表面每單位體積
Cpg,Cps 氣體或固體的比熱容
Dp 平均粒子直徑
DAB 分子擴(kuò)散性
Fc 無(wú)量鋼的離心力,
G 氣體質(zhì)量流率
h 熱傳系數(shù)
H 機(jī)床寬度;氣體可濕性
Lo 固定床厚度
M 干燥材料的重量
n 機(jī)床轉(zhuǎn)速(每分鐘轉(zhuǎn)速)
Nu 努塞爾數(shù),hdp/
△P 壓降(kpa)
Pr 普朗特系數(shù),
R 干燥速率
Re 雷諾系數(shù)
T 溫度
U0 表面氣體流速
x 水分含量
希臘字母
ε 多孔性
λ 導(dǎo)電性
μ 氣體粘度
υ 氣體運(yùn)動(dòng)粘度
氣體或固體密度
球形
ω 角速度
致謝
本項(xiàng)目由中國(guó)國(guó)家自然科學(xué)基金會(huì)支持。
參考文獻(xiàn)
[1] M.E. Lazar, D.F. Farkas, The centrifugal fluidized bed. 2. Drying studies on piece form foods, J. Food Sci. 36 (1971) 315–319.
[2] M.E. Lazar, D.F. Farkas, J. Food Sci. 44 (1979) 242–246.
[3] G.E. Brown, D.F. Farkas, Centrifugal fluidized bed, Food Technol. 26 (12) (1972) 23–30.
[4] R.A. Carlson, R.L. Roberts, D.F. Farkas, Preparation of quick cooking rice products using a centrifugal fluidized bed, J. Food Sci. 41 (1976) 1177–1179.
[5] D.F. Hanni, D.F. Farkas, G.E. Brown, Design and operating parameters for a continuous centrifugal fluidized bed drier, J. Food Sci. 41 (1976) 1172–1176.
[6] C.I. Metcalfe, J.R. Howard, Fluidization, Cambridge University Press, Cambridge, 1978, pp. 276–327.
13