柴油機(jī)進(jìn)氣管鑄造設(shè)計(jì)【說(shuō)明書+CAD】
柴油機(jī)進(jìn)氣管鑄造設(shè)計(jì)【說(shuō)明書+CAD】,說(shuō)明書+CAD,柴油機(jī)進(jìn)氣管鑄造設(shè)計(jì)【說(shuō)明書+CAD】,柴油機(jī),氣管,鑄造,鍛造,設(shè)計(jì),說(shuō)明書,仿單,cad
柴油機(jī)進(jìn)氣管鑄造設(shè)計(jì)
題目:柴油機(jī)進(jìn)氣管鑄造設(shè)計(jì)
姓 名
學(xué) 號(hào)
班 級(jí)
指導(dǎo)教師
職 稱
日 期
文字說(shuō)明與設(shè)計(jì)步驟
參考資料
一、設(shè)計(jì)任務(wù)及分析:
1105柴油機(jī)進(jìn)氣管凈重3公斤,才質(zhì)HT15-33,生產(chǎn)性質(zhì)是大批量生產(chǎn)。
柴油機(jī)進(jìn)氣管是為柴油燃燒提供空氣通道,即它一端與氣缸的配氣室相連(通過(guò)配氣閥來(lái)控制進(jìn)氣量)。這就要求:一、進(jìn)氣管內(nèi)壁要光滑,減少進(jìn)氣阻力;二、氣管不得有粘砂等物,否則,就會(huì)造成氣缸磨損、甚至使配氣閥失控等嚴(yán)重事故;三、進(jìn)氣管不得有裂紋、夾渣、氣孔、夾砂等缺陷,因進(jìn)氣管上承濾清器的重量,加之柴油機(jī)振動(dòng)較大,仍造成進(jìn)氣管損壞而停機(jī)。
本零件的主要壁厚為7mm,是合理的壁厚。雖有局部較厚之處,如主視圖右上部16×22處,但由于是HT15-33,碳當(dāng)量較高,故對(duì)鑄件質(zhì)量及工藝無(wú)大影響。此外,零件的結(jié)構(gòu)及圓角連接設(shè)計(jì)也比較合理。
二、鑄造工藝方案的確定與論證:
1、造型造芯方法的選擇:
由于零件是大批量生產(chǎn),故采用生產(chǎn)率高、質(zhì)量比較穩(wěn)定的機(jī)器造型、造芯來(lái)進(jìn)行生產(chǎn)。造型機(jī)選用Z145A,制芯機(jī)選用Z236A。
2、鑄型、型芯種類的確定:
鑄型種類選用濕型。優(yōu)點(diǎn)是成本低、生產(chǎn)率高、勞動(dòng)條件較好,適用于中小件。砂芯選用合脂砂,用以保證零件要求及管內(nèi)壁光滑,成本也較低。
3、鑄件凝固原則、澆注位置和分型面的選?。?
鑄件的材質(zhì)是HT15-33,零件的壁厚差又較小,因此按同時(shí)凝固原則設(shè)計(jì)。
此零件有兩個(gè)法蘭端面需要加工,為保證加工質(zhì)量,應(yīng)將加工面置于澆注位置底面,但因兩法蘭面不在同一平面而是互成直角,這樣兩加工面都放在底面是不可能的。若一面放在底面,一
文字說(shuō)明及設(shè)計(jì)步驟
砂型鑄造工藝、工裝設(shè)計(jì)
P6表1-2
參考資料
面置于側(cè)面,對(duì)鑄件質(zhì)量雖好,卻使制芯工作量加大,成本增大,權(quán)衡利弊將兩加工面均置于側(cè)面,這樣既保證讓質(zhì)量又降低了成本。
分型面的選擇如工藝圖所示,此分型面起模方便,簡(jiǎn)化操作(沒(méi)有活塊),砂芯的數(shù)量最少,分型面與澆注位置一致。
4、砂箱中鑄件數(shù)量的確定:
小件在流水線上生產(chǎn)。一般采用通用砂箱,此采用500×400×150通用砂箱。查得鑄件距砂箱壁最小尺寸為20mm,鑄件間最小尺寸為30mm,此件的最大外輪廓尺寸為210×100mm,故一箱內(nèi)只能安放4個(gè)鑄件,即長(zhǎng)度方向210×2+30=450、寬度方向100×2+30=230。
5、主要工藝參數(shù)的選擇:
1)鑄造收縮率:
由表查得此件的收縮率應(yīng)為0.9%,考慮此件采用濕型及合脂砂芯,收縮阻力較小,加之零件較小,取收縮率為1%。
2)鑄件精度等級(jí)、尺寸、重量及偏差:
查表得鑄件尺寸精度是5-6級(jí),選6級(jí)精度,按此精度查得鑄件尺寸極限偏差值為1.5mm,合格鑄件允許重量偏差為5%。
3)機(jī)械加工余量:
以鑄件的精度等級(jí)及公稱尺寸查得機(jī)械加工余量頂面、側(cè)面為5mm、底面為3.5mm,由于模具精度較高及冷加工希望減少加工余量(零件精度要求不高),取為3.5mm。
4)拔模斜度:
此件可查得拔模斜度為0°45′~2°之間,去0°45′~1.5°,均取增厚型的。
6、砂芯設(shè)計(jì):
1)砂芯數(shù)量及其分割面的確定:
由于一箱四體件,管子(φ56—φ46)砂芯可采用拋擔(dān)砂芯,
文字說(shuō)明及設(shè)計(jì)步驟
JB2854-80
砂型鑄造工藝、工裝設(shè)計(jì)
表3-24
參考資料
可以減少芯頭長(zhǎng)度和防止漂芯(不用芯撐)。
關(guān)于外皮型芯的設(shè)計(jì)有三種方案(因?yàn)槿粝认峦馄ば?,將使管芯下不去,若先下管芯,將使外皮芯下不下去。)?
a、是在外皮芯后的一定空隙,芯子下完后填砂,這樣放率太低;
b、是將外皮芯沿90×74法蘭水平分芯,這樣使下芯順利。但由于分芯必然造成一道飛邊,很難清理(砂輪有些地方磨不到);
c、是將外皮芯分成2塊(1#及3#)。優(yōu)點(diǎn)是外皮芯是一整芯,沒(méi)有飛邊,缺點(diǎn)是增加了一個(gè)3#砂芯,為保證逐漸質(zhì)量選用此方案。
3#芯長(zhǎng)40mm多,高100mm,厚20mm,為便于制造,將此芯分成8小塊,每塊寬度50mm。
2)芯頭形狀、尺寸、斜度、間隙及防壓環(huán)、壓環(huán)、集砂槽設(shè)計(jì):
2#芯系水平砂芯,可得φ46砂芯頭長(zhǎng)度應(yīng)是25-40mm,φ56砂芯頭長(zhǎng)度應(yīng)是30-45mm,由于砂箱長(zhǎng)度方向尺寸較緊,故將φ46芯頭長(zhǎng)取20mm,φ56芯頭長(zhǎng)取30mm,為制芯方便芯頭斜度取5°。
驗(yàn)算φ46芯頭承壓面積
砂芯重量G(粗計(jì))3.14×0.562/4×1.2×1.6≈0.48(kg)
砂芯浮力P(粗計(jì))3.14×0.562/4×1.2×7=2.1(kg)
實(shí)際芯頭面積Sk=1.5(P-G)/2×0.6≈2(cm2)
1#芯是懸臂芯,查得芯頭長(zhǎng)度應(yīng)為50mm,但此芯是二件合用,中間有一段與鑄型接觸,為加大吃砂量懸臂芯取懸臂的一段,即60mm
3#芯是垂直砂芯,起填砂作用,故芯頭長(zhǎng)取20mm,砂芯間隙為0.75mm。
3)芯骨填料:
1#芯采用φ10圓鋼,2#芯采用8#鐵絲。
7、澆注系統(tǒng)的選取和計(jì)算:
1) 澆注系統(tǒng)的類型、形式及在鑄件上的開設(shè)部位:
文字說(shuō)明及設(shè)計(jì)步驟
砂型鑄造工藝、工裝設(shè)計(jì)
P64表4-5
砂型鑄造工藝、工裝設(shè)計(jì)P65
鑄鐵手冊(cè)P773
砂型鑄造工藝、工裝設(shè)計(jì)P65
參考資料
此件是小件,為了造型簡(jiǎn)便,采用與分型面一致的中間注入式。
由于零件較小,一箱四體,澆口開設(shè)位置只有兩處,一處是加強(qiáng)筋處,一是法蘭處,為了不使內(nèi)澆口局部過(guò)大,采用兩處分散開設(shè)。
2) 澆注時(shí)間和澆道中阻流截面的計(jì)算:
a、 一個(gè)零件澆注金屬總重計(jì)算:
由于本件加工量較少,參考文獻(xiàn)中表7,取
3.067/毛重=0.90
毛重≈3.4(kg)
澆注系統(tǒng)估算,按教材取25%
澆注金屬總重為:3.4×1.25%=4.26(kg)
b、 單件澆注時(shí)間:
按公式: t=S√G
S=1.85 G=4.26(kg)
t=3.8(秒) 取t為4秒
c、 液面平均上升速度驗(yàn)算:
v=c/t=120/4=30(毫米/秒)
查表允許上升速度為20~30毫米/秒,故上升速度符合要求。
d、 直澆道高度的驗(yàn)算:
按HM=L×tgα
查得 α=120° L≈224mm
HM=47.62(mm),鑄件一半高60mm
直澆口最小高度:
60+47.62=107.62 (mm)
砂箱高度取150mm,150>107.62,故能滿足要求。
e、 平均壓頭計(jì)算:
HP=HO-c/8 =150-120/8=135mm=13.5cm
用水力學(xué)公式計(jì)算最小阻流端面:
文字說(shuō)明與設(shè)計(jì)步驟
機(jī)床制造中的鑄造
P17
鑄造工藝學(xué)P120
砂型鑄件工藝工裝設(shè)計(jì)
P85
同上P86
表5-7
同上P86及P87
砂型鑄造工藝工裝設(shè)計(jì)
參考資料
F內(nèi)=G/u.t.0.13√Hp u取0.42
=4.26/0.42×4×0.31×√13.5 =2.2(cm2)
f、 用表格法查F內(nèi)
按無(wú)錫柴油機(jī)廠資料為:F阻=1.9
北京第一機(jī)床廠資料:F內(nèi)=2-3
查手冊(cè)F內(nèi)=1.5
對(duì)上述結(jié)果分析比較后:
取F內(nèi)2 cm2
3) 澆道各基元的截面和尺寸的確定:
澆道各基元的截面比例?。?
F內(nèi):F橫:F直=1:1.06:1.17,則澆口截面積比(cm2)F內(nèi):F橫:F直=2:2.12:2.22
以上是一件的比例,一箱四件,若按此比例倍增,將會(huì)造成直、橫澆口過(guò)大。根據(jù)生產(chǎn)單位經(jīng)驗(yàn)按增加50%計(jì)。
即一個(gè)橫澆道澆2個(gè)件:2.15×1.5=3.18(cm2)
一個(gè)直澆道澆4個(gè)件:2.22×2.5=5.55(cm2)
經(jīng)系列化后直澆道取φ28(6.15cm),橫澆道為
(3.04 cm2)
內(nèi)澆口開2個(gè),一個(gè)開筋處,一個(gè)開法蘭處,按照開設(shè)處的情況,最后確定內(nèi)澆口尺寸為:
文字說(shuō)明與設(shè)計(jì)步驟
砂型鑄造工藝工裝設(shè)計(jì)
P94表5-10及P98表5-13
鑄鐵手冊(cè)P815表4-47
砂型鑄造工藝工裝設(shè)計(jì)P86
參考資料
(0.42 cm2) (1.53 cm2)
8、冒口及工藝出品率核算:
零件壁厚較均勻,不需設(shè)計(jì)冒口,為便利型腔排氣,設(shè)計(jì)四個(gè)φ5、長(zhǎng)度為50mm的出氣孔。
工藝出品率=鑄件重/鑄件重+澆冒口重=0.8
三、型、芯砂和涂料的種類、配方以及有關(guān)工藝的說(shuō)明:
砂型采用煤粉單一砂,配方如下:
新砂 11.5% 舊砂 85% 膨潤(rùn)土 1%
煤粉 2.5% 水 4.5% (強(qiáng)度0.5~0.7kg/cm2)
芯砂采用合脂砂,配方如下:
新砂 98% 膨潤(rùn)土 1% 糊精 1%
合脂 3.8% 水 2% (平拉強(qiáng)度12~16kg/cm2)
砂芯涂料采用烘干涂料,即工業(yè)酒精加鱗片石墨粉,烘干的砂芯涂以一層快干涂料,涂完點(diǎn)火即可(3#芯不刷)。
型芯烘干工藝:
加熱溫度210 ℃ 保溫時(shí)間1.5小時(shí)。
四、工藝裝配設(shè)計(jì)要點(diǎn)說(shuō)明:
1、模樣所用材料及其主要輪廓尺寸的計(jì)算:
模樣材料選ZL102
模樣的尺寸=鑄件尺寸×(1+0.1)。
2、模樣壁厚及加強(qiáng)筋的確定:
查表此件模樣壁厚應(yīng)為8mm,考慮模樣較小,故壁厚減至7mm。
加強(qiáng)筋選取6mm。
3、模底板材料、結(jié)構(gòu)及其造型機(jī)的配合:
為了更換模板方便,選用快換模板,模板通過(guò)2個(gè)φ12孔用
銷釘與模板框連成一體,模板框通過(guò)螺釘與工作合連接在一起。
由于砂箱箱口主要與模板框接觸,故模板材料選用了容易加
文字說(shuō)明與設(shè)計(jì)步驟
砂型鑄造工藝工裝設(shè)計(jì)P237
表9-3
同上P239
表9-4
表9-6
參考資料
工的鋁合金ZL104。
4、模樣與底板的裝配:
通過(guò)兩對(duì)φ8定位圓銷,將模樣與底板定位,定位基準(zhǔn)是以定位銷和定位銷與導(dǎo)向銷中心連線為縱橫定位基準(zhǔn)。
模樣與底板的裝配是采用上固定法。
5、芯盒的材料、結(jié)構(gòu)及其內(nèi)腔尺寸的計(jì)算:
①1#芯盒的設(shè)計(jì):
1#芯最大,約4,形狀比較簡(jiǎn)單,采用機(jī)器制芯(Z236A制芯機(jī)),Z236A制芯機(jī)的工作臺(tái)尺寸為500×800,一盒制造4塊砂芯。
芯盒材料選用ZL102。
芯盒內(nèi)腔尺寸=(零件尺寸工藝尺寸)×
(1+零件材料收縮率)
芯盒壁厚確定為12mm。
芯盒加強(qiáng)筋厚度取與壁厚等值。筋的數(shù)量應(yīng)為4×4條,考慮裝配方便改成3×4條。
芯盒邊緣及耐磨片型式選用型,邊緣寬度取30mm。
② 2#芯盒的設(shè)計(jì):
2#芯較小,采用手工芯盒。2#芯是一不等截面,彎管加工非常困難,故采用了制造比較方便的內(nèi)貼附塑料層芯盒。由于芯盒制造困難,可以只做半個(gè)芯盒,烘干后將兩半砂芯粘合使用。但粘合、磨平都需特別胎具方可,且此件要求內(nèi)壁光滑,故此芯采用兩半芯盒整做。
2#芯盒定住選用可拆式定位銷。手柄選Ⅱ型手柄。
為提高工作效率,為2#芯的通氣道設(shè)計(jì)了專用的通氣板,為
使上下兩半芯型貼合嚴(yán)密,設(shè)計(jì)了專用密封板和專用的烘干板。
為提高鑄件質(zhì)量和工作效率,若有條件(車間具備射芯機(jī),使用樹脂砂)也可設(shè)計(jì)熱芯盒。
文字說(shuō)明及設(shè)計(jì)步驟
砂型鑄造工藝工裝設(shè)P297表11-3
同上P298
表11-4
同上P298
表11-4
同上P299
表11-5及表11-6
砂型鑄造工藝工裝設(shè)計(jì)P305表11-10及表11-11
同上P313
圖11-8
P314圖11-20
P316圖11-23
鑄鐵手冊(cè)
參考資料
2#芯熱芯盒如圖所示:
③3#芯盒的設(shè)計(jì):
3#芯較小,也采用手工芯盒。設(shè)計(jì)過(guò)程與2#芯盒同,信和形狀見(jiàn)3#芯盒總裝圖。
6、砂箱內(nèi)框尺寸、結(jié)構(gòu)特點(diǎn)及定位緊鎖方法
砂箱的內(nèi)框尺寸是根據(jù)造型機(jī)工作太尺寸而選定的,即500×400×150,材料選用QT42-10,砂壁結(jié)構(gòu)選用Ⅰ型1種。
下箱要翻箱,故設(shè)計(jì)了吊軸,并與箱耳整鑄;上箱則把吊軸與箱耳分別開來(lái)。
為合箱方便采用了座銷,為防止銷孔磨損選用了銷套。
砂箱的緊固采用楔型箱卡。
砂箱上鑄字以分類管理。
五、合金熔煉方法、成分、配料、出爐溫度:
此鑄件的化學(xué)成分可查得:C3.2-3.8 Si2.0-2.4 Mn0.5-0.8 P<0.3 S<0.15
采用2.5T沖天爐熔化鐵水,其配料單如下:
(批料以200kg計(jì))
生鐵 92kg 回爐鐵 80kg 廢鋼28kg 硅鐵(45%)1.94kg 錳鋅0.65kg 層焦25kg 石灰石7.5kg
要求鐵水出爐溫度高于1420℃
六、鑄件澆注、熱處理的要求及工藝說(shuō)明:
澆注溫度1370-1350℃。
鑄件在鑄工輸送環(huán)上冷卻時(shí)間不得少于8-12分鐘。
熱處理規(guī)范:裝爐溫度150℃,加熱溫度50-70℃/小時(shí),退
文字說(shuō)明及設(shè)計(jì)步驟
P127表5-126
砂型鑄造工藝工裝設(shè)計(jì)P1074~1101
砂型鑄造工藝工裝設(shè)計(jì)P328表12-5
P330表12-6
同上P342、P343及P356有關(guān)表格
同上P350
表12-25
鑄造合金熔煉P26表1-11
鑄鐵手冊(cè)
參考資料
火溫度500-550℃,保溫時(shí)間1.5小時(shí),冷卻速度30-40℃/小時(shí),出爐溫度150℃。
七、可能出現(xiàn)的鑄造缺陷及其預(yù)防措施:
此鑄件可能產(chǎn)生的鑄造缺陷,有夾渣、氣孔等,原因是澆注系統(tǒng)撇渣能力不夠理想。因此澆注時(shí)盡量避免渣子進(jìn)入澆注系統(tǒng)。砂芯全是油砂,發(fā)氣量較大,但在工藝、工裝設(shè)計(jì)時(shí)考慮了型腔排氣及砂芯排氣通道,氣孔發(fā)生機(jī)會(huì)較少。
同上
11
材料
重 量
材料及規(guī)格
廠名
鑄造工藝卡
產(chǎn)品
零件號(hào)
零件凈重
鑄件毛重
澆冒口重量
本廠牌號(hào)
標(biāo)準(zhǔn)牌號(hào)
硬度
3.067KG
3.4KG
0.86KG
HT15-33
HB170-241
進(jìn)氣管
每臺(tái)件數(shù)
1
造型
造型方法
砂箱
模板
合箱定位銷
零件名稱
砂型
砂型種類
造型設(shè)備
一型件數(shù)
長(zhǎng)
寬
高
重量
長(zhǎng)
寬
厚
材料
重量
圖量
名稱
規(guī)格
上型
濕型
Z145
4
500
400
150
15KG
510
410
12
ZL104
下型
濕型
Z145
4
500
400
150
15KG
510
410
12
ZL104
造型材料及其配比(重量%)、性能與重量
型砂編號(hào)
型砂類別
砂型部別
新砂
回用砂
粘土
膨潤(rùn)土
煤粉
水分
透氣性
濕壓強(qiáng)度KG/cm2
干拉強(qiáng)度KG/cm2
砂型重量
NO
單一砂
11.5
85
1
25
4.5
780
0.5-0.7
45KG
NO
制芯
制芯方法
芯砂配比(重量%)
型砂性能
干燥規(guī)范
砂型編量
芯砂類別
芯砂編號(hào)
制芯設(shè)備
芯盒材料
芯砂重量
新砂
膨潤(rùn)土
糊稿
冰
干拉強(qiáng)度KG/cm2
濕壓強(qiáng)度KG/cm2
加熱溫度
保溫時(shí)間
NO1
合脂砂
Z236A
ZL102
4KG
98
1
1
2
12-16
0,1-0.15
210°C
1.5H
NO2
合脂砂
(ZZ863)
手工
ZL102
0.48KG
98
1
1
2
12-16
0,1-0.15
210°C
1.5H
NO3
合脂砂
(ZZ863)
手工
ZL102
0.15KG
98
1
1
2
12-16
0,1-0.15
210°C
1.5H
芯骨材料
Ф10元鋼,8井鐵絲
涂料成分
酒精+鱗片鉛粉
涂料次數(shù)
干燥前1 次干燥后1次
澆冒口系統(tǒng)
名稱
澆口杯
直澆道
橫澆道
內(nèi)澆道
阻流片
冒口
截面圖形及尺寸
數(shù)量
1
1
1
各1
數(shù)值
容積132cm3
面積6.15cm3
面積共3.04cm3
面積共1.95cm3
面積cm3
重量共1KG
合箱
下芯次序
檢驗(yàn)樣板
芯撐
冷鐵
鑄型重量
62KG
按型芯編號(hào)
數(shù)總量
總數(shù)量
圖號(hào)
緊圖方法
契形長(zhǎng)
所屬圖號(hào)
所屬圖號(hào)
數(shù)量
壓鐵重量
KG
澆注
澆注方法
澆注溫度
澆注時(shí)間
金屬液/型
球化劑用量%
孕育劑用量%
冷卻時(shí)間
熱處理標(biāo)準(zhǔn)
人工
1370°C
4秒
17KG
鑄件檢驗(yàn)
機(jī)械性能
化學(xué)成分
金相組織
水壓試驗(yàn)
驗(yàn)收標(biāo)準(zhǔn)
C
3.2-3.8
S
<0.15
鑄坯圖
備
注
擬定
SI
2.0-2.4
P
<0.3
審核
Mn
0.5-0.5
會(huì)簽
輔助材料
材料名稱
規(guī)格
損耗量
定額
備注
材料名稱
規(guī)格
損耗量
定額
備注
批準(zhǔn)
實(shí)施日期
JMaterSciTechn01,V0124 No1,2008 Thin-Wall Aluminum Die-Casting Technology for Development of Notebook Computer Housing Chang-SeogKangt,Jae一k Cho,Chang-Yeol Jeong,SeWeon Choi and Young-Chan IGm Korea Institute of Industrial Technology,Gwangju,Korea Manuscript received September 3,2007 65 Siliconbased aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to thei r superior castlng characteristics and unique combination of mechanicaI and physicaI properties Howevermanufacturing of thinwalled aluminum diecasting components,Iess than I0 mm in thicknessis generally known to be very difficult task to achieve aIuminum casting alloys with high fluidityThereforein this studythe optimal diecasting conditions for producing 297 mm x 210 mm x 07 mm thinwalled aluminum component was examined experimentally by using 2 different gating systems,tangential and split typeand vent designFu rthermore,computational solidification simulation was also conductedThe results showed that split type gating system was preferable gating design than tangential type gat ang system at the pomt of view of soundness of casting and distortion generated after solidificationIt was also found that proper vent design was one of the most important factors for producing thinwaI|casting components because it was important for the fullment of the thinwall cavity and the minimization of the casting distortion KEY WORDS:Aluminum;Thin-wall diecasting;Notebook computer housing;Cold chamber diecasting machine 1Introduction Among the aluminum casting alloysthe A1一Si based alloy systems are one of the most widely used alloy systems because of their unique characteristics such as 10w density,moderately high strength,and good castability,etc1 3jRecently,the demand for lightweight alloys i11 electricelectronic and autoHIo bile component housings using aluminum has been greatly increased mainly because it is lightweight hav ing high damping capacity and dent resistance conl pared to plastics Howeverit is generally known that manufactur ing of thinwall aluminum component with a thick ness less than 10 mm by using high pressure die cast ing process is quite difficult due to its low fluidity This leads to the liinit,ed application of the aluminum alloy in the fields of housing of electricelectronic components such as notebook computer and cellular phone,etcTherefore,in this study,diecasting pro cess technology for the production of thinwall alu minum components based on the investigation of the optimal die design including runners and gating sys tem and casting conditions was investigatedMore over,experimental examinations of gating design el- fects on the fabrication processing of sound thinwall aluminum notebook housing with a thickness of less than 08 nlnl 2Experimental Prior to the actual diecasting experimentcasting simulation vcas conducted to set up the diecasting and melt conditionsDiecasting die made out of H13 tool steel for the thinwall notebook housing in size of 210 Himx297 nlnl07 innl was designed and fabricated for the experiment As shown in Fig1、 十 PhD,to whom co r11e8pondence should be addressed Emaih cskan97kitechrekr the 2 different types of gating system,tangential type and split type,were used for this investigation A commercial ALDCl2 aluminum diecasting alloy(A1一(9612)si一(15 35)Cu,Table 1)was melted up to 780。C and the die was heated up to 230。C before the die castingThe major specifica tions of the cold chamber diecasting machine fFig2), used for this study are shown in Table 2Molten alu minum alloy was injected into the die cavity under the conditions of 035 ms in injection speed until the plunger traveled up to 370 Him in shot sleeve and then the in 1iectionspeed was accelerated inearly to the high injection speed of 20,25,303540 and 45 ms fronl 370 inm to 390 Him in shot sleeveTa ble 3 shows the summary of diecasting conditions for this investigation 3Results and Discussion The solidi蠡cation simulation was conducted for 2 different gate designs,tangential and split type prior to the diecasting experimentThe flow pattern and temperature distribution during filling of aluminum melt with the gate designs studied are shown in Fig3 It was found that both gate designs exhibited quite uniform melt flow throughout the filling of the cav ityHowever,the tangential type gate design re suited in the melt temperature dropped area f circled iil Fig3(a)at the last stage of filling while tile split type gate design allowed the melt to fill the cavity above the liquidus temperature As mentioned,actual diecasting experiments were conducted for the notebook computer housing in size of 210 miD_297 nlnlX07 toniFigure 4 shows the re sultant castings with varied high speed injection from 20 to 45 ms while 10w speed injection was fixed to 035 msAs shownboth gate designs allowed filling the casting with high speed injection of more than 30 msHowever,less than 30 ms of high speed injection failed to fill the thinwall cavityIt was 萬(wàn)方數(shù)據(jù) 66 JMaterSciTechn01,V0124 No1,2008 Table 1 Chemical compositions of ALDCl2 alloy(in wt pct) Table 2 Specification of diecasting machine 5250 490 砂70 Table 3 Diecasting experiment conditions 780 230 20,25,30,35,40,45 035 Fig1 Schematic illustration notebook housing(210 mmx297 IllIllXo8 nlm)and 2 different gate designs:(a)tan gential type,(b)split type Fig2 High speed diecasting machine 萬(wàn)方數(shù)據(jù) E E 、 C Q 芑 凸 JMaterSciTechn01,V0124 No1,2008 Fig3 Simulation results of 2 different gate designs:(a)tangential type,(b)split type Fig4 Diecasting results by varying the high speed injection:(a)tangential type,(b)split type Distance,mm Fig5 Distortion of tangential and split type gating sys tem after the removal of gates also found that the tangential type gate design was not able to 61l the overflow even at the highest injec tion speed used for this investigationMoreover,the tangential type gating system resulted in more dis tortion of the casting after the removal of the gate 67 In Fig5,the amount of distortion measured after removal of each gating system was displayedThe result clearly showed that the tangential type gat ing system could resulted in more severe distortion than split typeSince notebook housing fabricated in this research was only 07 mm in thickness,the stress build up because of the shrinkage of casting after the completion of solidification was an important factor to consider for the mass production of the notebook housingTherefore,it was concluded that the split type gate design was better than the tangential type because of the aforementioned matters Howevereven with split type gate design there were casting defects such as flow line and misrun dur ing diecastingTherefore,two major modifications were introducedOne was the increase of the over flow and vent sizesThe volume of the overflow was increased about 70ffrom 4400 mm3 to 7500 mm3) and the overflow ingate length was also increased frOln 135 mm to 30 mm in total length for the better flow of air in the die cavityMoreover,upper part of sleeve was machined to have inclined slope as shown in Fig6 萬(wàn)方數(shù)據(jù) 68 JMaterSciTechn01,V0124 No1,2008 Fig6 Schematic illustration of the inclined slope sleeve Fig7 Thinwall notebook housing with a thickness of O7 mill Gate system Location Fig8 The thickness of thinwall notebook housing to minimize the turbulence and air entrapment inside of the sleeve during in iection Because the sleeve WaS filled with aluminum less than 30fminimum of 40 of sleeve filling is recommended in die,casting pro cess in fieldl resulting large amount of entrapped air and high turbulence during injection L4JAs the Fig6 shows,the machined slope would help air inside of the sleeve to flow out more easily during in tha土iectionSO the air entrapment in the melt would be minimized With-two modifications mentioned earlier,sound thin wall notebook housing casting with less defect WaS successfiflly fabricated(Fig71There found to be less flow line,crack and misrun defects in the castingThe thickness of the casting was measured fFig81In left figure,the locations of the thickness measured and are shown and the right figure shows the nleasured thick EE、o亡芏。I uI 萬(wàn)方數(shù)據(jù) JMaterSciTechn01,V0124 No1,2008 ness of the castingThe thickness was found to be quite uniform and average thickness of 067 nlnl was obtained Because the casting was so thin,less than 07 innl, the e 一iection fronl the die afterl the solidification becanlevery important Tbin wal casting could be bent or even cracked during the ejection;therefore,the number of ejector pin and its 1ay out were very critical in die designMoreover,the use of die temperature controller WaS also an important factor for fulfillment of die cavity for thinwall diecastingIt was foIund that without the die temperature controllerthe die WaS not heated up SOfficiently even with more than 20 times of injectionWhen the die did not be heated up to appropriate temperature,the melt would be rapidly cooled down when it injected inside of the cold die cavityAs a resultsevere casting defects in eluding misrun and cracks were exhibited without die temperature contr01 4Conclusion (1)Between tangential and split,type gate designs, split type gating system WaS found to be better for thinwall diecasting because the melt flows more uni formly inside the die cavity (2)As the melt reached the ingate,the high speed injection needed to be higher than 30 mSprefer ably 45 msfor sound thinwall diecasting in size of 69 notebook computer housing (3)The thickness was uniform throughout the casting and average thickness of 067 nUll was ob tained (4)For thinwall aluminum diecasting,the loca tion and the size of air vent and overflow were impor tant factors for minimizing the flow line and inisrun defects in the casting (5)Inclined slope sleeve design WaS helpful for air entrapped inside of sleeve to flow out during injection (6)Because the casting volume WaS quite small,it is important to COntrol the die temperature 38 high 38 possible Acknowledgement This work was supported by Korea Institute of Indus trial Technology and Cwangju Metropolitan City through “The Advanced Materials and Components Industry De velopment Program” 【2 3 【4 REFERENCES Microstructure and Properties of Aluminum Allqys The Japan Instof Light Metals,1991233 GKSigworth:AFS TraIIS198391。7 JEGruzleski and Bernard MClosset:AFS199013 WGhlkington:Die Casting DefectsNADCA 1997 萬(wàn)方數(shù)據(jù) Thin-Wall Aluminum Die-Casting Technology for Development of Notebook Computer Housing 作者: Chang-Seog Kang, Jae-Ik Cho, Chang-Yeol Jeong, Se-Weon Choi, Young-Chan Kim 作者單位: Korea Institute of Industrial Technology, Gwangju, Korea 刊名: 材料科學(xué)技術(shù)學(xué)報(bào)(英文版) 英文刊名: JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 年,卷(期): 2008,24(1) 引用次數(shù): 0次 參考文獻(xiàn)(4條) 1.Microstructure and Properties of Aluminum Alloys 1991 2.G K Sigworth 查看詳情 1983 3.J E Gruzleski.Bernard M Closset 查看詳情 1990 4.W G Walkington Die Casting Defects 1997 相似文獻(xiàn)(3條) 1.期刊論文 Young-Chan Kim.Chang-Seog Kang.Jae-Ik Cho.Chang-Yeol Jeong.Se-Weon Choi.Sung-Kil Hong Die Casting Mold Design of the Thin-walled Aluminum Case by Computational Solidification Simulation -材料科學(xué)技術(shù)學(xué)報(bào)(英文版)2008,24(3) Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1 mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion. 2.外文期刊 Chang-Seog Kang.Jae-Ik Cho.Chang-Yeol Jeong Thin-Wall Aluminum Die-Casting Technology for Development of Notebook Computer Housing Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties.However,manufacturing of thin-walled aluminum die-casting components,less than 1.0 mm in thickness,is generally known to be very difficult task to achieve aluminum casting alloys with high fluidity.Therefore,in this study,the optimal die-casting conditions for producing 297 mm210 mm0.7 mm thin-walled aluminum component was examined experimentally by using 2 different gating systems,tangential and split type,and vent design.Furthermore,computational solidification simulation was also conducted.The results showed that split type gating system was preferable gating design than tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.It was also found that proper vent design was one of the most important factors for producing thin-wall casting components because it was important for the fulfillment of the thin-wall cavity and the minimization of the casting distortion. 3.外文期刊 Young-Chan Kim.Chang-Seog Kang.Jae-Ik Cho Die Casting Mold Design of the Thin-walled Aluminum Case by Computational Solidification Simulation Recently,demand for the lightweight alloy in electric/electronic housings has been greatly increased.However,among the lightweight alloys,aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1 mm.Therefore,in this study,thin-walled die casting of aluminum(Al-Si-Cu alloy:ALDC 12)in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation(MAGMA soft)and actual casting experiment(Buhler Evolution B 53D).Three different types of gating design,finger,tangential and split type with 6 vertical runners,were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.Also,the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion. 本文鏈接:http:/ 下載時(shí)間:2010年5月23日
收藏