油封鋼圈沖壓工藝及模具的設(shè)計【落料拉深沖孔復(fù)合?!俊菊f明書+CAD】
油封鋼圈沖壓工藝及模具的設(shè)計【落料拉深沖孔復(fù)合模】【說明書+CAD】,落料拉深沖孔復(fù)合模,說明書+CAD,油封鋼圈沖壓工藝及模具的設(shè)計【落料拉深沖孔復(fù)合?!俊菊f明書+CAD】,鋼圈,沖壓,工藝,模具,設(shè)計,落料拉深,沖孔,復(fù)合,說明書,仿單,cad
河南機電高等??茖W校
油封鋼圈沖壓成形工藝及模具設(shè)計
摘要:設(shè)計著重介紹了制件的成型工藝,及模具結(jié)構(gòu)設(shè)計。通過對制件的工藝分析,確定了工藝方案。并設(shè)計了一套倒裝復(fù)合模具。在設(shè)計同時利用參考資料,確定了各工作零件的尺寸。并較多的考慮了模具結(jié)構(gòu)的調(diào)整性、易更換性及模具成本。同時在模具設(shè)計內(nèi)容中融匯了沖壓模具的不同加工方法、加工工藝及裝配工藝,對初學沖壓模具模設(shè)計者有一定的參考價值。本設(shè)計從模具設(shè)計到零部件的加工工藝以及裝配工藝等進行詳細的闡述,并應(yīng)用CAD進行各重要零件的設(shè)計。
關(guān)鍵詞:復(fù)合模 加工工藝 模具結(jié)構(gòu)
Steel ring seal stamping process and die design
Abstract: The design introduced emphatically the workpiece takes shape the craft, and mold structural design. Through to the workpiece craft analysis, has determined the craft plan. And has designed set of true things compound molds. Uses the reference during the design, has determined each work components size. And many considerations mold structure adjustment, easy replacement and mold cost. Meanwhile has blended together the ramming mold different processing method in the mold design content, the processing craft and the assembly craft, to begins studies the ramming mold mold designer to have the certain reference value. This design designs from the mold to the spare part processing craft as well as the assembly craft and so on carries on the detailed elaboration, and carries on each important components using CAD the design.
Key words: Compound Die Processing Technology Die structure
- 2 -
河南機電高等??茖W校
目 錄
1 緒 論 1
2 制件的工藝性分析 6
2.1 油封鋼圈的工藝性分析 6
2.2 主要工藝參數(shù)的計算 6
2.2.1 毛坯尺寸的計算 7
2.2.2確定拉深次數(shù) 8
2.2.3排樣及材料的利用率 9
2.2.4計算工序沖壓力 10
2.3沖壓設(shè)備的選擇 12
3 模具的總體設(shè)計 13
3.1 模具具體結(jié)構(gòu)設(shè)計 13
3.1.1 正倒裝結(jié)構(gòu)的確定 13
3.1.2 送料方式的確定 13
3.1.3 定位裝置的確定 13
3.1.4 導(dǎo)向方式的選擇 13
3.1.5 卸料、壓料方式 13
3.1.6 出件方式 13
3.2 模具結(jié)構(gòu)零部件的設(shè)計與計算 13
3.2.1 沖裁工序 13
3.2.2 拉深工序 16
3.3 彈性元件的選用 17
3.4 定位零件的設(shè)計 17
3.5 導(dǎo)向裝置的設(shè)計 18
3.6 打料裝置的設(shè)計 18
3.7 頂料裝置的設(shè)計 18
3.8 頂件塊的設(shè)計 18
3.9 頂桿的設(shè)計 19
3.10落料、拉深、沖孔復(fù)合模的結(jié)構(gòu)設(shè)計 19
結(jié)束語 22
致謝 23
參考文獻 24
- 2 -
河南機電高等??茖W校
畢業(yè)設(shè)計(論文)評語
學生姓名: 班級: 學號:
題 目: 油封鋼圈沖壓工藝及模具的設(shè)計
綜合成績:
指導(dǎo)者評語:
1)倪志偉同學工作態(tài)度較認真,基本能完成畢業(yè)設(shè)計任務(wù);
2)倪志偉同學能正確查閱國內(nèi)有關(guān)沖壓模具設(shè)計與制造方面的大量資料,制訂出了較合理的沖壓成形工藝及模具結(jié)構(gòu);
3)倪志偉同學設(shè)計說明書內(nèi)容基本完整,計算基本正確,格式較規(guī)范;
4)倪志偉同學裝配圖、零件圖設(shè)計較合理,但圖紙中存在一定的錯誤;
5)建議該同學成績評定:中等;
6)可以提交答辯。
指導(dǎo)者(簽字):
2009 年5月10日
畢業(yè)設(shè)計(論文)評語
評閱者評語:
1)倪志偉同學工作態(tài)度較認真,基本能完成畢業(yè)設(shè)計任務(wù);
2)倪志偉同學查閱了國內(nèi)有關(guān)沖壓模具設(shè)計與制造方面的大量資料,制訂出了較合理的沖壓成形工藝及模具結(jié)構(gòu),設(shè)計中不存在創(chuàng)新;
3)倪志偉同學設(shè)計說明書內(nèi)容基本完整,計算基本正確,格式較規(guī)范;
4)倪志偉同學裝配圖、零件圖設(shè)計較合理,視圖表達存在一定的錯誤;
5)建議該同學成績評定:中等;
6)可以提交答辯。
評閱者(簽字):
2009年 5月 15日
答辯委員會(小組)評語:
答辯委員會(小組)負責人(簽字):
2009年5月 21日
河南機電高等專科學校畢業(yè)設(shè)計說明書
1 緒 論
沖壓是一種先進的少無切削加工方法,具有節(jié)能省材,效率高,產(chǎn)品質(zhì)量好,重量輕,加工成本低等一系列優(yōu)點,在汽車,航空航天,儀器儀表,家電,電子,通訊,軍工,日用品等產(chǎn)品的生產(chǎn)中得到了廣泛的應(yīng)用.據(jù)統(tǒng)計,薄板成型后,制造了相當于原材料的12倍的附加值,在國民經(jīng)濟生產(chǎn)總值中,與其相關(guān)的產(chǎn)品占四分之一,在現(xiàn)代汽車工業(yè)中,沖壓件的產(chǎn)值占總產(chǎn)值的59%.隨著我國經(jīng)濟的迅速發(fā)展,采用模具的生產(chǎn)技術(shù)得到愈來愈廣泛的應(yīng)用。1998年3月在《國務(wù)院關(guān)于當前產(chǎn)業(yè)政策要點的決定》模具被列為機械工業(yè)技術(shù)改造序列的第一位,生產(chǎn)和基本建設(shè)序列第二位,把發(fā)展模具工業(yè)擺在發(fā)展國民經(jīng)濟的重要位置.目前,我國沖壓模具在產(chǎn)值占模具總產(chǎn)值的40%以上,處于主導(dǎo)地位。
拉深是沖壓基本工序之一,它是利用拉深模在壓力機作用下,將平板坯料或空心工序件制成開口空心零件的加工方法。它不僅可以加工旋轉(zhuǎn)體零件,還可以加工盒形零件及其他形狀復(fù)雜的薄壁零件,但是,加工出來的制件的精度都很底。一般情況下,拉深件的尺寸精度應(yīng)在IT13級以下,不宜高于IT11級。
只有加強拉深變形基礎(chǔ)理論的研究,才能提供更加準確、實用、方便的計算方法,才能正確地確定拉深工藝參數(shù)和模具工作部分的幾何形狀與尺寸,解決拉深變形中出現(xiàn)的各種實際問題,從而,進一步提高制件質(zhì)量。目前,我國沖壓技術(shù)與工業(yè)發(fā)達國家相比還相當?shù)穆浜螅饕蚴俏覈跊_壓基礎(chǔ)理論及成形工藝、模具標準化、模具設(shè)計、模具制造工藝及設(shè)備等方面與工業(yè)發(fā)達的國家尚有相當大的差距,導(dǎo)致我國模具在壽命、效率、加工精度、生產(chǎn)周期等方面與工業(yè)發(fā)達國家的模具相比差距相當大。
1.1國內(nèi)模具的現(xiàn)狀和發(fā)展趨勢
1.1.1國內(nèi)模具的現(xiàn)狀
我國模具近年來發(fā)展很快,據(jù)不完全統(tǒng)計,2003年我國模具生產(chǎn)廠點約有2萬多家,從業(yè)人員約50多萬人,2004年模具行業(yè)的發(fā)展保持良好勢頭,模具企業(yè)總體上訂單充足,任務(wù)飽滿,2004年模具產(chǎn)值530億元。進口模具18.13億?美元,出口模具4.91億美元,分別比2003年增長18%、32.4%和45.9%。進出口之比2004年為3.69:1,進出口相抵后的進凈口達13.2億美元,為凈進口量較大的國家。
在2萬多家生產(chǎn)廠點中,有一半以上是自產(chǎn)自用的。在模具企業(yè)中,產(chǎn)值過億元的模具企業(yè)只有20多家,中型企業(yè)幾十家,其余都是小型企業(yè)。?近年來,?模具行業(yè)結(jié)構(gòu)調(diào)整和體制改革步伐加快,主要表現(xiàn)為:大型、精密、復(fù)雜、長壽命中高檔模具及模具標準件發(fā)展速度快于一般模具產(chǎn)品;專業(yè)模具廠數(shù)量增加,能力提高較快;"三資"及私營企業(yè)發(fā)展迅速;國企股份制改造步伐加快等。
雖然說我國模具業(yè)發(fā)展迅速,但遠遠不能適應(yīng)國民經(jīng)濟發(fā)展的需要。我國尚存在以下幾方面的不足:
第一,體制不順,基礎(chǔ)薄弱。 “三資”企業(yè)雖然已經(jīng)對中國模具工業(yè)的發(fā)展起了積極的推動作用,私營企業(yè)近年來發(fā)展較快,國企改革也在進行之中,但總體來看,體制和機制尚不適應(yīng)市場經(jīng)濟,再加上國內(nèi)模具工業(yè)基礎(chǔ)薄弱,因此,行業(yè)發(fā)展還不盡如人意,特別是總體水平和高新技術(shù)方面。
??? 第二,開發(fā)能力較差,經(jīng)濟效益欠佳.我國模具企業(yè)技術(shù)人員比例低,水平較低,且不重視產(chǎn)品開發(fā),在市場中經(jīng)常處于被動地位。我國每個模具職工平均年創(chuàng)造產(chǎn)值約合1萬美元,國外模具工業(yè)發(fā)達國家大多是15~20萬美元,有的高達25~30萬美元,與之相對的是我國相當一部分模具企業(yè)還沿用過去作坊式管理,真正實現(xiàn)現(xiàn)代化企業(yè)管理的企業(yè)較少。
?? 第三,工藝裝備水平低,且配套性不好,利用率低.雖然國內(nèi)許多企業(yè)采用了先進的加工設(shè)備,但總的來看裝備水平仍比國外企業(yè)落后許多,特別是設(shè)備數(shù)控化率和CAD/CAM應(yīng)用覆蓋率要比國外企業(yè)低得多。由于體制和資金等原因,引進設(shè)備不配套,設(shè)備與附配件不配套現(xiàn)象十分普遍,設(shè)備利用率低的問題長期得不到較好解決。裝備水平低,帶來中國模具企業(yè)鉗工比例過高等問題。
? 第四,專業(yè)化、標準化、商品化的程度低、協(xié)作差. 由于長期以來受“大而全”“小而全”影響,許多模具企業(yè)觀念落后,模具企業(yè)專業(yè)化生產(chǎn)水平低,專業(yè)化分工不細,商品化程度也低。目前國內(nèi)每年生產(chǎn)的模具,商品模具只占45%左右,其馀為自產(chǎn)自用。模具企業(yè)之間協(xié)作不好,難以完成較大規(guī)模的模具成套任務(wù),與國際水平相比要落后許多。模具標準化水平低,標準件使用覆蓋率低也對模具質(zhì)量、成本有較大影響,對模具制造周期影響尤甚。
第五,模具材料及模具相關(guān)技術(shù)落后.模具材料性能、質(zhì)量和品種往往會影響模具質(zhì)量、壽命及成本,國產(chǎn)模具鋼與國外進口鋼相比,無論是質(zhì)量還是品種規(guī)格,都有較大差距。塑料、板材、設(shè)備等性能差,也直接影響模具水平的提高。
1.1.2 國內(nèi)模具的發(fā)展趨勢
巨大的市場需求將推動中國模具的工業(yè)調(diào)整發(fā)展。雖然我國的模具工業(yè)和技術(shù)在過去的十多年得到了快速發(fā)展,但與國外工業(yè)發(fā)達國家相比仍存在較大差距,尚不能完全滿足國民經(jīng)濟高速發(fā)展的需求。未來的十年,中國模具工業(yè)和技術(shù)的主要發(fā)展方向包括以下幾方面:????
1) 模具日趨大型化;???
? 2)在模具設(shè)計制造中廣泛應(yīng)用CAD/CAE/CAM技術(shù);??
? 3)模具掃描及數(shù)字化系統(tǒng);???
? 4)在塑料模具中推廣應(yīng)用熱流道技術(shù)、氣輔注射成型和高壓注射成型技術(shù);?
?? 5)提高模具標準化水平和模具標準件的使用率;???
6)發(fā)展優(yōu)質(zhì)模具材料和先進的表面處理技術(shù);???
7)模具的精度將越來越高;?
? 8)模具研磨拋光將自動化、智能化;??
?? 9)研究和應(yīng)用模具的高速測量技術(shù)與逆向工程;??
10)開發(fā)新的成形工藝和模具。
1.2 國外模具的現(xiàn)狀和發(fā)展趨勢
模具是工業(yè)生產(chǎn)關(guān)鍵的工藝裝備,在電子、建材、汽車、電機、電器、儀器儀表、家電和通訊器材等產(chǎn)品中,60%-80%的零部件都要依靠模具成型。用模具生產(chǎn)制作表現(xiàn)出的高效率、低成本、高精度、高一致性和清潔環(huán)保的特性,是其他加工制造方法所無法替代的。模具生產(chǎn)技術(shù)水平的高低,已成為衡量一個國家制造業(yè)水平高低的重要標志,并在很大程度上決定著產(chǎn)品的質(zhì)量、效益和新產(chǎn)品的開發(fā)能力。近幾年,全球模具市場呈現(xiàn)供不應(yīng)求的局面,世界模具市場年交易總額為600~650億美元左右。美國、日本、法國、瑞士等國家年出口模具量約占本國模具年總產(chǎn)值的三分之一。?
國外模具總量中,大型、精密、復(fù)雜、長壽命模具的比例占到50%以上;國外模具企業(yè)的組織形式是"大而專"、"大而精"。2004年中國模協(xié)在德國訪問時,從德國工、模具行業(yè)組織--德國機械制造商聯(lián)合會(VDMA)工模具協(xié)會了解到,德國有模具企業(yè)約5000家。2003年德國模具產(chǎn)值達48億歐元。其中(VDMA)會員模具企業(yè)有90家,這90家骨干模具企業(yè)的產(chǎn)值就占德國模具產(chǎn)值的90%,可見其規(guī)模效益。
隨著時代的進步和技術(shù)的發(fā)展,國外的一些掌握和能運用新技術(shù)的人才如模具結(jié)構(gòu)設(shè)計、模具工藝設(shè)計、高級鉗工及企業(yè)管理人才,他們的技術(shù)水平比較高.故人均產(chǎn)值也較高.我國每個職工平均每年創(chuàng)造模具產(chǎn)值約合1萬美元左右,而國外模具工業(yè)發(fā)達國家大多15~20萬美元,有的達到 25~30萬美元。國外先進國家模具標準件使用覆蓋率達70%以上,而我國才達到45%.
沖裁是沖壓工藝的最基本工序之一,它是利用模具使板料沿著一定的輪廓形狀產(chǎn)生分離的一種沖壓工序。它包括落料、沖孔、切邊、修邊、切舌、剖切等工序,其中落料和沖孔是最常見的兩種工序。沖裁在沖壓加工中應(yīng)用極廣。它既可直接沖出成品零件,還可以對已成形的工件進行再加工。普通沖裁加工出來的制件的精度不高,一般情況下,沖裁件的尺寸精度應(yīng)在IT12級以下,不宜高于IT10級。它包括落料、沖孔、切邊、修邊、切舌、剖切等工序,其中落料和沖孔是最常見的兩種工序。沖裁在沖壓加工中應(yīng)用極廣。它既可直接沖出成品零件,還可以對已成形的工件進行再加工。普通沖裁加工出來的制件的精度不高,一般情況下,沖裁件的尺寸精度應(yīng)在IT12級以下,不宜高于IT10級。
只有加強沖裁變形基礎(chǔ)理論的研究,才能提供更加準確、實用、方便的計算方法,才能正確地確定沖裁工藝參數(shù)和模具工作部分的幾何形狀與尺寸,解決沖裁變形中出現(xiàn)的各種實際問題,從而,進一步提高制件質(zhì)量。
在完成大學三年的課程學習和課程、生產(chǎn)實習,我熟練地掌握了機械制圖、機械設(shè)計、機械原理等專業(yè)基礎(chǔ)課和專業(yè)課方面的知識,對機械制造、加工的工藝有了一個系統(tǒng)、全面的理解,達到了學習的目的。對于模具設(shè)計這個實踐性非常強的設(shè)計課題,我們進行了大量的實習。經(jīng)過在新飛電器有限公司、在洛陽中國一拖生產(chǎn)實習,我對于冷沖模具、塑料模具的設(shè)計步驟有了一個全新的認識,豐富和加深了對各種模具的結(jié)構(gòu)和動作過程方面的知識,而對于模具的制造工藝更是有了全新的理解。在指導(dǎo)老師的細心指導(dǎo)下和在工廠師傅的講解下,我們對于模具的設(shè)計和制造工藝有了系統(tǒng)而深刻的認識。同時在實習現(xiàn)場親手拆裝了一些典型而對于模具的制造工藝更是有了全新的理解。在指導(dǎo)老師的細心指導(dǎo)下和在工廠師傅的講解下,我們對于模具的設(shè)計和制造工藝有了系統(tǒng)而深刻的認識。同時在實習現(xiàn)場親手拆裝了一些典型的模具實體并查閱了很多相關(guān)資料,通過這些實踐,我們熟練掌握了模具的一般工作原理、制造、加工工藝。通過在圖書館借閱相關(guān)手冊和書籍,更系統(tǒng)而全面了細節(jié)問題。鍛煉了縝密的思維和使我們初步具備了設(shè)計工作者應(yīng)有的素質(zhì)。設(shè)計中,將充分利用和查閱各種資料,并與同學進行充分討論,盡最大努力搞好本次畢業(yè)設(shè)計。
在設(shè)計的過程中,將有一定的困難,但有指導(dǎo)老師的悉心指導(dǎo)和自己的努力,相信會完滿的完成畢業(yè)設(shè)計任務(wù)。由于學生水平有限,而且缺乏經(jīng)驗,設(shè)計中不妥之處在所難免,肯請各位老師指正。
2 制件的工藝性分析
2.1 油封鋼圈的工藝性分析
該沖壓件為底部帶孔的圓筒形拉深件,拉深高度不高。沖壓件材料為08鋼,拉深成形性能比較好,又因為是大批量生產(chǎn),工序分散的單一工序生產(chǎn)不能滿足生產(chǎn)需要,應(yīng)考慮工序集中的工藝方法。經(jīng)綜合分析論證,采用落料、拉深、沖孔復(fù)合模,既能滿足生產(chǎn)量的需要,又能保證產(chǎn)品質(zhì)量和模具的合理性。
2.2 主要工藝參數(shù)的計算
2.2.1 毛坯尺寸計算
① 計算毛坯直徑。
該工件為無凸緣圓筒形件,根據(jù)等面積原則,用解析法求毛坯直徑。如下圖所示,將工件分為三個簡單的幾何體,如圖中的1、2、3部分。
第1部分
第2部分
第3部分
圖1 計算毛坯直徑圖
按工件厚度中心層計算,h=7.6、d=23.2、r=4.9,則毛坯直徑為
D=√d×d+4dh-1.72rd-0.56r×r
=√23.2×23.2+4×23.2×7.6-1.72×4.9×23.2-0.56×4.9×4.9
=√1034.5448
≈32
②確定是否加修邊余量。
根據(jù)沖壓件相對高度:h/d=7.6÷23.2≈0.33<0.5,可不考慮加修邊余量。
③確定是否需要壓邊圈。
根據(jù)沖壓件相對厚度
t/D×100=1.8÷32×100=5.625>1.5
所以不需要壓邊圈。
2.2.2 確定拉深次數(shù)。
①根據(jù)沖壓件的相對高度(h/d)
h/d=7.6÷23.2≈0.33
查手冊可知0.33遠遠小于一次拉深時的允許拉深相對高度0.70~0.75,可以一次拉深成形。
②根據(jù)工件的拉深系數(shù)(d/D)
d/D=23.2÷32=0.725
查手冊可知0.725大于圓筒形件的極限拉深系數(shù)0.53~0.55,也可一次拉深成形。
2.2.3 排樣及材料的利用率。
根據(jù)該沖壓件的形狀特征,采用單排排樣,如下圖所示,查資料選擇搭邊值:a=a1=1.5㎜.
進料步距:s=D+a1=32+1.5=33.5(mm)
條料寬度:b=D+2a=32+2×1.5=35(mm)
式中 D----平行于送料方向的沖壓件寬度。
板料規(guī)格的選用:1.8mm×1000mm×2000mm
每張鋼板裁板條數(shù):為了操作方便,采用橫裁,即n1=2000÷35=57條,余5mm。
每條裁板上的沖壓件數(shù):
n2=B/s=1000÷33.5=29(個)
式中 B----鋼板寬度,1000mm
每張鋼板上的沖壓件總數(shù):n總= n1n2=57×29=1653(個)
板料的利用率:
=(3.14×n總DD)/(4LB×100﹪)
=3.14×1653×32×32÷4÷2000÷1000×100﹪
=66.4﹪
圖2 排樣圖
2.2.4 計算工序沖壓力。
① 落料力
P落=1.3×3.14Dζt
=1.3×3.14×32×320×1.8
=75239.424N
≈75.24kN
其中 ζ----材料的抗剪強度,08鋼為260~360MPa,取320MPa。
t----材料厚度,1.8mm。
② 卸料力
P卸 =K卸P落
=0.04×75.24
=3.01kN
其中 K卸----卸料力系數(shù),鋼為0.025~0.06,取0.04.
③ 拉深力
P拉=3.14Kdtδb
=3.14×0.45×23.2×1.8×400
=23602.752N
≈23.61kN
其中 K----修正系數(shù),K=0.45;
t----材料厚度,1.8mm;
δb----材料的強度極限,08鋼δb=324~441,取δb=400 MPa。
④ 沖孔力
P沖=1.3×3.14D孔ζt
=1.3×3.14×9×320×1.8
=21161.088N
≈21.17kN
其中 D孔----工件孔直徑,D孔=9mm
t----材料厚度,1.8mm;
ζ----材料的抗剪強度,08鋼為260~360MPa,取320MPa。
⑤ 推件力
P推=nK推P沖
=3×0.05×21.17
=3.18kN
其中n----沖孔時卡在凹模內(nèi)的廢料數(shù),n=3;
K推----推件力系數(shù),K推=0.05
⑥ 總沖壓力
P總=P落+P卸+P拉+P沖+P推
=75.24+3.01+23.61+21.17+3.18
=126.21kN
2.3 沖壓設(shè)備的選擇。
為使壓力機能正常安全工作,取
P壓機≥(1.6~1.8)P總
=1.8×126.21
=227.178kN
故選400kN的開式壓力機。其主要技術(shù)參數(shù)如下:
型號:JH23-40
公稱壓力:400kN
滑塊行程:80mm
最大封閉高度:330mm
工作臺尺寸:460mm×700mm
墊板尺寸:65mm×Φ320mm
模柄孔尺寸:Φ50mm×70mm
立柱間距:340mm
電動機功率:5.5kW
3 模具的總體設(shè)計
3.1 模具具體結(jié)構(gòu)設(shè)計
3.1.1 正倒裝結(jié)構(gòu)的確定
根據(jù)上述分析,采用倒裝復(fù)合模具可直接利用壓力機的打桿裝置進行推件,卸料可靠,便于操作。
3.1.2 送料方式的確定
因是大批量生產(chǎn),采用手動送料方式。
3.1.3 定位裝置的確定
因該制件采用的是倒裝復(fù)合模,所以直接用擋料銷和導(dǎo)料銷即可。
3.1.4 導(dǎo)向方式的選擇
為確保零件的質(zhì)量及穩(wěn)定性,選用導(dǎo)柱、導(dǎo)套導(dǎo)向。由于該零件導(dǎo)尺寸不大,且精度要求不是太高,所以宜采用后側(cè)導(dǎo)柱模架。
3.1.5 卸料、壓料方式
本模具采用倒裝結(jié)構(gòu),卡于凸凹模上的廢料可由卸料板推出,而沖孔廢料則可以在下模座中開設(shè)通槽,使廢料從孔洞中落下。頂件壓邊裝置安裝在下模妨礙了沖孔廢料的排出。
3.1.6 出件方式
本模具采用倒裝結(jié)構(gòu),工件留在落料凹??锥粗?,應(yīng)在凹模孔設(shè)置推件塊推出。
3.2 模具的結(jié)構(gòu)零部件的設(shè)計與計算
3.2.1 沖裁工序
工件尺寸精度查公差表均為IT14級,零件尺寸及公差如下:
查設(shè)計手冊可得:磨損系數(shù)x=0.5 , Zmax=0.330 , Zmin=0.230 , 工件公差Δ=0.2;
凸模制造精度采用IT6級,凹模制造精度采用IT7級。
① 落料部分(Φ32)
圖3 落料凹模
查公差表得:δ凹=0.030mm δ凸=0.020mm
δ凹 +δ凸=0.050mm
D凹=(D-xΔ)
=(32-0.5×0.2) =31.9(mm)
D凸=(D凹-Zmin)
=(31.9-0.230) =31.67(mm)
由于δ凸+δ凹 =0.05mm<Zmax-Zmin=0.10mm,滿足間隙公差條件,為降低制造成本,可按間隙差重新分配制造公差。
δ凸=0.4(Zmax-Zmin)=0.04
δ凹=0.6(Zmax-Zmin)=0.06
故 D凸=31.67mm D凹=31.9mm
②沖孔部分(Φ9)
圖4 沖孔凸模
查公差表得δ凸=0.020 δ凹=0.020
δ凸+δ凹 =0.040
d凸 =(d+xΔ)
=(9+0.5×0.2)
=9.1mm
d凹 =(d凸+Zmin)
=(9.1+0.230)
=9.33mm
由于δ凸+δ凹 =0.04mm<Zmax-Zmin=0.10mm,滿足間隙公差條件,為降低制造成本,可按間隙差重新分配制造公差。
δ凸=0.4(Zmax-Zmin)=0.04
δ凹=0.6(Zmax-Zmin)=0.06
故 d凸 =9.1mm d凹 =9.33mm
3.2.2 拉深工序(Φ25)
圖5 凸凹模①
圖6 凸凹模②
工件未注公差按IT14級,凸、凹模制造精度采用IT9級,拉深單邊間隙Z/2=1.1t。(t為材料厚度)
凸、凹模的制造公差,查表得
δ凸=δ凹=0.5
D凹=(D-0.75Δ)
=(25-0.75×0.2)
=24.85mm
D凸=(D凹-Z)
=(24.85-2×1.1×1.8)
=20.89mm
3.3 彈性元件的選用
為了得到較平整的工件,此模具采用彈壓式卸料結(jié)構(gòu),使條料在落料、拉深過程中始終在一個穩(wěn)定的壓力之下,從而改善了毛坯的穩(wěn)定性,避免材料在切向壓力的作用下產(chǎn)生起皺的可能。上、下卸料均采用橡膠作為彈性元件,其高度和斷面面積在模具裝配時按模具空間大小確定。
3.4 定位零件的設(shè)計
在本模具中采用的是條料,所以選用導(dǎo)料銷和擋料銷來實現(xiàn)對沖裁條料的定位。導(dǎo)料銷一般設(shè)兩個,并位于條料的同一側(cè)。從左向右送料時,導(dǎo)料銷裝在右側(cè),從前先后送料時導(dǎo)料銷裝在左側(cè)。導(dǎo)料銷在本模具中直接 安裝在凹模板上。在裝配圖中很容易看到。
擋料銷同樣起定位的作用,用它擋住搭邊或沖件輪廓,以限定條料的送進距離。在本模具中試用固定擋料銷,其結(jié)構(gòu)簡單、制造容易,在中銷模具中廣泛應(yīng)用作定距;但其存在著缺點:銷孔距離凹模刃壁較近,削弱了凹模的強度。所以在本模具中選用鉤型擋料銷。這種擋料銷銷孔距離凹模刃壁較遠不會削弱凹模的強度。但為了防止鉤頭在使用的過程中發(fā)生轉(zhuǎn)動,需考慮防轉(zhuǎn)。
3.5 導(dǎo)向裝置的設(shè)計
導(dǎo)向裝置用來保證上模相對于下模正確的運動,對于生產(chǎn)批量較大,零件的要求較高,壽命要求較長的模具,一般都需要采用導(dǎo)向裝置,本模具中應(yīng)用導(dǎo)柱導(dǎo)套裝置來完成導(dǎo)向.
3.6 打料裝置的設(shè)計
在本模具中采用打桿推動連接推桿來完成打料動作,打桿穿過模柄凸露在模具的外面,當完成一次沖裁時壓力機滑塊回程,打桿與壓力機的打料橫桿相碰,打桿推動連接推桿將卡在凸凹模的凹??變?nèi)的圓形廢料打下,當注意的是:
第一:需要保證打桿在模柄內(nèi)的順利滑動,須間隙配合。
第二:需要保證連接推桿在凸凹模內(nèi)的順利滑動,須間隙配合。
3.7 頂件裝置的設(shè)計
頂件裝置一般是彈性的,在本模具中是由頂桿、頂件塊和裝在下模座下面的彈頂器組成,這種結(jié)構(gòu)的頂件力容易調(diào)節(jié),工作可靠。
3.8 頂件塊的設(shè)計
本模具采用頂件塊將制件從卡在凹模內(nèi)小凸模上刮下,頂件塊在沖裁的過程中實在凹模中運動的零件,對它有如下的要求:模具處于閉合狀態(tài)時其背后有一定的空間,以備修磨和調(diào)整的需要;模具處于開啟狀態(tài)時,必須順利復(fù)位,工作面高出凹模平面,以便繼續(xù)沖裁;它與凹模和凸模的配合應(yīng)保證順利滑動,不發(fā)生干涉。為此頂件塊與凹模為間隙配合,其外形尺寸一般按公差與配合國家標準h8制造。頂件塊與凸模的配合一般呈較松的間隙配合。
3.9 頂桿的設(shè)計
在本模具中選用四個頂桿與彈頂器上的托板相配合,四個頂桿均勻分布,傳送的橡皮的推件力較為平穩(wěn),在此需要注意的是:頂桿、的直徑不能太小,以免在克服橡皮彈力時發(fā)生撓曲。還有頂桿與下模上的孔相配合,必需保證其在孔內(nèi)順利的滑動,所以頂件塊與凹模為間隙配合,其外形尺寸一般按公差與配合國家標準h8制造。
3.10 落料、拉深、沖孔復(fù)合模的結(jié)構(gòu)設(shè)計
3.10.1 模具總裝圖
1、22 橡膠 2 限位釘 3 下模座 4、19 頂桿 5 凸凹模①
6 落料凹模 7 卸料板 8 推料板 9 鑲塊 10凸凹模②
11上固定板 12上墊板 13 上模座 14 模柄 15 打桿
16、17、27 螺釘 18 打板 20 蓋板 1 導(dǎo)套 23 導(dǎo)柱
24 下固定板 25 下墊板 26 下模座
圖7 模具總裝圖
3.10.2 模具各個零件材料的選用
該工件的模具結(jié)構(gòu)如圖,主要由上?下模座,落料凹模、凸凹模、沖孔凸模、沖孔凹模、頂塊,卸料板等零件組成。
根據(jù)主要工作部分尺寸結(jié)構(gòu)參照有關(guān)資料,可選取I級精度的后側(cè)導(dǎo)柱模架,
即:
上模座:; ()
下模座:; ()
導(dǎo)柱: ; ()
導(dǎo)套: 。 ()
導(dǎo)柱、導(dǎo)套滲碳深度為0.8~1.2mm.硬度為 。
落料凹模、凸凹模、凹模材料均采用MoV,熱處理硬度為。
卸料板、頂塊、墊板、固定板材料均采用45鋼。
該模具將成形部分作成中間帶鑲塊的結(jié)構(gòu),這樣當沖裁刃口變鈍后,只要將刃口部分按常規(guī)重新修磨一下,然后將鑲拼件旋轉(zhuǎn)一個角度后,將反面磨去刃磨量即可裝入在使用。
凸凹模還能起到壓邊的作用,另外當工件拉深到下頂塊觸到下固定板時,凸凹模又起到限位的作用,當上?;爻虝r,拉深有了一個校正的過程。
由于受400kN開式壓力機工作臺孔的限制,該模具的頂件壓邊裝置安裝在下模妨礙了沖孔廢料的排出。為了保證沖孔凹模與落料凹模的同心度要求,將沖孔凸模與落料凹模用螺栓連接在一起,并與固定板成的過度配合,這樣給拆卸、裝配帶來了方便。
結(jié) 束 語
油封鋼圈屬于不太復(fù)雜的零件,分析其工藝性,并確定工藝方案。根據(jù)計算確定該制件的沖裁力及模具刃口尺寸,然后選取相應(yīng)的壓力機。本設(shè)計主要是沖孔凸、凹模以及拉深工藝的設(shè)計,需要計算凸凹模的間隙、工作零件的尺寸和公差。此外,還需要確定模具工藝零件和結(jié)構(gòu)零件以及模具的總體尺寸,然后根據(jù)上面的設(shè)計繪出模具的總裝圖。
由于在零件制造前進行了預(yù)測,分析了制件在生產(chǎn)過程中可能出現(xiàn)的缺陷,采取了相應(yīng)的工藝措施。因此,模具在生產(chǎn)零件的時候才可以減少廢品的產(chǎn)生。
油封鋼圈的形狀結(jié)構(gòu)一般,但是其尺寸相對較大不適合選用標準模架。要保證零件的順利加工和取件,模具必須有足夠的長度,因此需要改變上、下模座的長度,以達到要求。模具工作零件的結(jié)構(gòu)也較為簡單,它可以相應(yīng)的簡化模具結(jié)構(gòu)。便于以后的操作、調(diào)整和維護。
油封鋼圈沖壓成形工藝及模具的設(shè)計,是理論知識與實踐有機的結(jié)合,更加系統(tǒng)地對理論知識做了更深切貼實的闡述。也使我認識到,要想做為一名合格的模具設(shè)計人員,必須要有扎實的專業(yè)基礎(chǔ),并不斷學習新知識新技術(shù),樹立終身學習的觀念,把理論知識應(yīng)用到實踐中去,并堅持科學、嚴謹、求實的精神,大膽創(chuàng)新,突破新技術(shù),為國民經(jīng)濟的騰飛做出應(yīng)有的貢獻。
致 謝
時光如電,歲月如梭,三年的大學生活即將結(jié)束,而我也即將離開可敬的老師和熟悉的同學踏入不是很熟悉的社會中去。在這畢業(yè)之際,作為一名工科院校的學生,做畢業(yè)設(shè)計是一件必不可少的事情。
畢業(yè)設(shè)計是一項非常繁雜的工作,它涉及的知識非常廣泛,很多都是書上沒有的東西,這就要靠自己去圖書館查找自己所需要的資料;還有很多設(shè)計計算,這些都要靠自己運用自己的思維能力去解決,可以說,沒有一定的毅力和耐心是很難完成這樣復(fù)雜的工作。
在學校中,我主要學的是理論性的知識,而實踐性很欠缺,而畢業(yè)設(shè)計就相當于實戰(zhàn)前的一次總演練。畢業(yè)設(shè)計不但把我以前學的專業(yè)知識系統(tǒng)的連貫起來,也使我在溫習舊知識的同時也可以學習到很多新的知識;這不但提高了我們解決問題的能力,開闊了我們的視野,在一定程度上彌補我們實踐經(jīng)驗的不足,為以后的工作打下堅實的基礎(chǔ)。
由于本人資質(zhì)有限,很多知識掌握的不是很牢固,因此在設(shè)計中難免要遇到很多難題,在有課程設(shè)計的經(jīng)驗及老師的不時指導(dǎo)和同學的熱心幫助下,克服了一個又一個的困難,使我的畢業(yè)設(shè)計日趨完善。畢業(yè)設(shè)計雖然很辛苦,但是在設(shè)計中不斷思考問題、研究問題、咨詢問題、解決問題。一步步提高自己,一步步完善自己。同時也樹立了更完整的專業(yè)知識,鍛煉了自己獨立設(shè)計的能力,使我受益匪淺,我相信這些經(jīng)驗對我以后的工作一定有很大的幫助,而且也鍛煉我的吃苦耐勞的精神,讓我在這個競爭的社會里有立足之地。
最后,我衷心感謝各位老師特別是我的指導(dǎo)老師原紅玲老師在這一段時間給予我無私的幫助和指導(dǎo),并向你們致意崇高的敬意,以后到社會上我一定努力工作,不辜負你們給予我的知識和對我寄予的厚望!
參考文獻
【1】、 王孝培主編 沖壓手冊, 機械工業(yè)出版社
【2】 李學鋒主編 模具設(shè)計與制造實訓(xùn)教程 化學工業(yè)出版社
【3】 原紅玲主編 沖壓工藝語模具設(shè)計 機械工業(yè)出版社
【4】 楊占堯主編 沖壓模具圖冊 高等教育出版社
【5】 翟德梅主編 模具制造技術(shù) 化學工業(yè)出版社
【6】 高為國主編 模具材料 機械工業(yè)出版社
【7】 孫鳳琴主編 沖壓語塑壓成形設(shè)備 高等教育出版社
【8】 王芳主編 冷沖壓模具設(shè)計指導(dǎo) 機械工業(yè)出版社
【9】、 夏巨諶、李志剛主編 中國模具設(shè)計大典
- 25 -
注塑成型中顆粒填充物聚丙烯的冷卻情況
摘要:聚丙烯復(fù)合材料的冷卻情況被用于在同一注塑成型過程中,對影響散熱性能的各種填料(磁鐵礦,重晶石,銅,滑石,玻璃纖維和鍶鐵氧體)于不同比例下的調(diào)查。注塑成型期間,分別對室溫和高溫時熱電偶在型腔模具表面的測量記錄和對斜坡冷卻曲線的熱擴散分析中發(fā)現(xiàn):該注射成型的工藝和該模具的填充材料使冷卻曲線顯示出不同的合并路段。所以說熱擴散系數(shù)是個暫時性的系數(shù)。熱擴散表明,最高值為30%的滑石粉填充聚丙烯,在最短的冷卻時間可以發(fā)現(xiàn)35%銅填充聚丙烯。系統(tǒng)性變化的具有熱傳遞性能的復(fù)合材料,在不同的填充材料和填充比例中使注塑過程優(yōu)化,并以此來定制熱流性能。此外,滑石粉填充聚丙烯使設(shè)計的復(fù)合材料與預(yù)定的最高熱流相附,是熱傳遞的首選方向。
關(guān)鍵詞:聚丙烯 ;熱性能;注塑成型;微粒填料
1 .導(dǎo)言
常用的塑料,如聚丙烯和聚酰胺都有一個低導(dǎo)熱系數(shù)。不過在汽車行業(yè),如傳感器或執(zhí)行器,需要新的材料或具有高導(dǎo)熱性。通過增加合適的填料,比如塑料,其熱行為聚合物是可以改變的。系統(tǒng)的熱擴散大于1.2/秒,從0.2/秒多為補聚丙烯。這種填充聚合物具有較高的熱導(dǎo)率,由于廣泛的應(yīng)用在電子封裝上而成為一個越來越重要的研究領(lǐng)域。較高的熱導(dǎo)率可以通過使用一個合適的填料達到,如鋁,碳纖維和石墨,鋁氮化物或磁鐵礦顆粒。此外,在注塑機上模具的冷卻反應(yīng),是受聚合物填料的熱性能影響。然而,填充材料比較能體現(xiàn)出熱導(dǎo)率的價值觀。大幅比較不同的材料,是很困難的,甚至可以說是不可能的。 因此,聚丙烯樣品不同的填充劑(四氧化三鐵,硫酸鋇,銅,玻璃纖維, 滑石粉)的擠出和注射成型用各種體積分數(shù)( 0-50 % )來表示 。
磁鐵礦重晶石一般是用來增加重量的聚丙烯,如:為一瓶措施,鍶鐵氧體是用聚合物粘結(jié)磁鐵,玻璃纖維是用于加固新材料,滑石粉是一種反阻斷劑。然而, 銅被選為額外灌裝機,因為它具有高度的熱導(dǎo)率相對于其他材料。 熱性能,這些注射成型樣品和注塑成型行為人調(diào)查和相關(guān)的金額和種填充材料。
2 .理論思考
傅立葉法的熱量傳遞,在一維給出
與溫度T ,時間t ,位置x和熱擴散在一個均質(zhì)體,熱擴散率A和熱導(dǎo)率L是相互關(guān)聯(lián)的,由具體密度r 和具體的熱容量Cp根據(jù)
假設(shè)一名注射成型工藝與恒溫灌漿期為聚合物的溫度TP和相對恒定的溫度Tm及作為溫度獨立的熱擴散,解析解決式( 1 )結(jié)果
在式( 3 ) ,S是指壁厚注射模壓部分和T的溫度zai 時間t后注射。忽略高階計算,式( 3 ) 可以減少為
式( 4 )給出的關(guān)系冷卻速度和熱擴散率,在注射成型過程中,凡高熱擴散導(dǎo)致更高的冷卻速度和短周期的過程。
3 .實驗
3.1 材料
試驗材料供應(yīng)合作編寫RTP的有限公司(法國)幾種聚丙烯( PP )化合物與各種填料(四氧化三鐵,硫酸鋇,銅,玻璃纖維,滑石粉)在擠出過程中講到的類似在式 [ 2 ] 。填充物材料是常用材料在工業(yè)產(chǎn)品。填料粒子不具備表面涂層可以影響熱性能。一些選定的性能灌裝材料列在表1
圖1.模具注塑成型實驗。
圖 2 .模具與腔準備測試樣本,在一個注塑機。立場與熱電偶溫度測量標志是一個箭頭。
3.2 熱擴散率測量
熱擴散的高分子材料,是衡量一個瞬態(tài)法,與雷射閃光實驗有密切的關(guān)系。溫度信號由熱電偶轉(zhuǎn)移到上側(cè)的抽樣檢驗和注冊,被轉(zhuǎn)讓溫度信號啟動一個熱平衡過程該標本,記錄由熱電偶作為區(qū)別樣品的背面和恒定溫度,用來為評價的熱擴散率。最小二乘算法是用來確定熱擴散率,而變系統(tǒng)地熱擴散值在一個特別設(shè)計差分計劃。精確的測量多于總量的3 % 。 為熱擴散率測量,小缸10毫米直徑5-6毫米的身高,剪下的注射成型棒(參見圖1 ) 。
3.3 注塑成型
與注塑機標準樣品測量拉伸性能連同一棒熱測量10毫米直徑和130毫米的長度分別準備在一模(參見圖1 ) 。在腔的拉伸試驗棒鉻( K型)熱電偶中的應(yīng)用。 在注塑成型實驗溫度記錄每0.5秒一個數(shù)字萬用表和儲存在一臺個人電腦。熱電偶s大約0.2毫米成空腔。因此,一個良好的熱之間的接觸聚合物和熱電偶,甚至后縮的成型,是為了保證錄得更好的溫度時間。用過的注射液成型參數(shù)列于表2 。由此時代特征的注塑成型周期提交見表3 。
4 結(jié)果與討論
圖 3 比較冷卻曲線填補聚丙烯與聚丙烯復(fù)合材料的各種填料組分的四氧化三鐵。
在圖 3 中,聚丙烯的冷卻過程在一個時間在溫度測量所熱電偶達到最高值約。 隨著越來越多的時間觀測到溫度下降。 經(jīng)過在模具打開,冷卻行為記錄與熱電偶變化,因為它是無較長的接觸與注射成型的材料。由于以大直徑的棒,這個時間() ,直到模具是打開及注射成型零件跳傘選擇相對較高,以確保該部分肯定凝固。 可以看出,在圖 3斜率曲線變化顯著后,這對應(yīng)于時間那里后,壓力是拆除。此外,圖。三指出這種復(fù)合材料在腔降溫快隨著越來越多的磁鐵礦分。要達到的溫度條-溫度遠遠低于凝固的采樣聚丙烯需求,在描述實驗的時候,,而冷卻時間聚丙烯的Fe3O4減至(參看表四) 。減少冷卻時間,是在好的協(xié)議所增加的熱擴散的磁鐵礦填充復(fù)合材料由于高的熱擴散粒子(參見附表一) ,其中的線索,就式( 4 ) ,以一個增加冷卻速度。溫度時間依賴性圖。 3條不遵循一個簡單的線性行為預(yù)期溫度-時間曲線由式( 4 )在對數(shù)計。 只為填補聚丙烯實測值可安裝一個單一的直線之間大約15 和第54秒的這條路線通往一個擴散(參見式( 4 ) ) 。其他測量冷卻曲線的聚丙烯復(fù)合材料的磁鐵礦裝有在每個個案,兩直線,為高溫第和低溫的地區(qū)。熱擴散估計從斜坡上的回歸直線
計算熱擴散系數(shù)的的溫度較高部分的冷卻曲線有一點點低于擴散系數(shù)測量暫態(tài)技術(shù),而計算熱擴散酶的溫度越低,部分地區(qū)的冷卻曲線滿足實測值擴散圖 3 比較冷卻曲線填補聚丙烯與聚丙烯復(fù)合材料的各種填料組分的四氧化三鐵。該符號字里行間都回歸直線(參見文) 。
圖 4顯示測得的熱擴散率數(shù)據(jù)的調(diào)查樣本中可以看出, 該熱擴散的磁鐵礦-聚丙烯復(fù)合材料是由為填補聚丙烯截至 增加磁鐵礦負荷。因此,冷卻時間變短為高磁鐵礦填料餾分(圖三) 。 原因之一,為改變在邊坡的冷卻曲線顯示圖3是改變熱擴散率隨溫度的,其中就表現(xiàn)在是圖 5 磁鐵礦和重晶石聚丙烯復(fù)合材料隨著溫度的升高熱擴散率降低。因此,價值觀來自模實驗應(yīng)小于測值的復(fù)合材料在室溫。 熱擴散的PP基體中,主要是所造成的聲子,是關(guān)系到等于無害速度v和平均自由程長度L聲據(jù)上述凝固溫度的影響PP基體(約條,測量的DSC ) ,熱擴散的基質(zhì)減少,以致降低了體積彈性模量k ,因而減少了聲子速度 ,并降低平均自由程的長短 。此外,上述凝固溫度日Ts無晶在聚丙烯矩陣是在低于Ts結(jié)晶下在聚丙烯基體中出現(xiàn)的。存在或缺乏微晶影響體積彈性模量K和聲子自由的道路。其原因是不同實驗都是非等壓條件在注塑成型過程和非等溫條件樣品的厚度的冷靜過程,磁鐵礦,重晶石,玻璃纖維, 滑石,永磁鐵氧體和銅填料比較空聚丙烯圖 6 冷卻的過程與銅填充聚丙烯存在差異。
圖 4 在室溫下熱擴散價值觀注射成型聚丙烯樣品中不同填料和各種填料的比重來衡量暫態(tài)技術(shù)(參見文)
圖 5 溫度依賴性的熱擴散的磁鐵礦和重晶石填充聚丙烯的填料含量
圖 6聚丙烯復(fù)合材料的填料在30vol%后
銅填充復(fù)合降溫速度遠遠超過其他調(diào)查材料。該溫度的影響剩余聚丙烯是,在整個注射液成型工藝高于氣溫其他調(diào)查材料。冷靜的過程與其他復(fù)合材料沒有顯示有較大的差別。該氣溫的磁鐵礦裝聚丙烯是一種比溫度低一點的重晶石填充聚丙烯。氣溫的鍶鐵氧體聚丙烯復(fù)合材料,再次是低于那些該磁鐵礦填充聚合物。 而測得的熱擴散率的滑石粉填充聚丙烯是遠高于熱擴散其他調(diào)查材料,甚至遠高于這對銅填充聚丙烯,冷卻行為滑石粉是較小較其他調(diào)查材料。魏登費勒等人研究出該滑石粉沿著自己的方向填充復(fù)合一個對齊的滑石粉。測量的熱擴散率是平行于這個主軸的最高熱導(dǎo)率,而溫度測量在注塑成型過程中揭示擴散垂直流方向發(fā)展。這意味著,該滑石粉填充聚丙烯樣品中有強烈各向異性最高并在流動方向低垂直于水流。盡管出現(xiàn)了高導(dǎo)熱的銅(參看表1 )相對于其他用于填充材料, 冷靜是相對的測氣溫的。結(jié)果表明:這是一個相對的措施,一個最理想的互聯(lián)網(wǎng)絡(luò)的高導(dǎo)電粒子在聚丙烯基體,低于1 % 和極差相比,互聯(lián)磁鐵礦55 %或互聯(lián)的重晶石46 %。 作者還討論了影響顆粒大小和形狀的聚丙烯矩陣[ 2,3 ] 。
圖 7 各種聚丙烯復(fù)合材料的冷卻時間(從200下降到60度)
冷卻時間是線性依賴于填料量分數(shù)在聚丙烯基體中,數(shù)據(jù)計算回歸系列于表6 。它可以清楚看出,銅填充聚丙烯降溫下降速度,遠遠超過其他調(diào)查材料。冷卻的情況,聚丙烯重晶石, 鍶氧體和磁鐵礦是相似的,而磁鐵礦降溫一點點速度比所有其他材料。
5 結(jié)論
冷靜的過程中聚丙烯在注塑成型工藝可以減少所使用的磁鐵礦重晶石,鍶鐵氧體,玻璃纖維,滑石粉和銅填料。 冷卻過程中,由于的依賴了傳熱和潛熱凝固溫度,所以不能完全解釋由簡單指數(shù)律來自傅立葉的法熱傳導(dǎo)。此外,在注射成型周期,的注射液成型周期和熱擴散的聚丙烯矩陣周期,冷卻曲線顯示不同的合并路段。 此外,各向異性的熱傳導(dǎo)性,例如: 為滑石粉填充物,或低互聯(lián)的粒子影響冷卻行為,如銅。 為使用的材料和在調(diào)查范圍填料冷卻時間冷卻下來注射成型復(fù)合材料,從溫度200 降至60是線性依賴于填料。銅在聚丙烯基體中的冷卻時間可縮短從50.5 至20,9秒。在這個過程循環(huán)中,具有較高熱傳遞性能的一些復(fù)合材料,可以用來優(yōu)化模具進程提高冷卻速度。
文獻:
[1] Ba¨ck E. Magnetite gives new recyclable dense polymers for the automotive industry Plastics Reborn in 21st Century Vehicles, Conference Proceedings. Rapra Technical Ltd; May 1999.
[2] Weidenfeller B, Ho¨fer M, Schilling F. Thermal and electrical properties of magnetite filled polymers. Composites: Part A 2002;33:1041–53.
[3] Weidenfeller B, Ho¨fer M, Schilling F. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites: Part A 2004;35:423–9.
[4] Wong CP, Bollampally RS. Thermally conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 1999;74:3396–403.
[5] Lu X, Xu GJ. Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci 1997;65:2733–8.
[6] Xu Y, Chung DDL, Mroz C. Thermally conducting aluminium nitride polymer-matrix composites. Composites: Part A 2001;32:1749–57.
[7] King JA, Tucker KW, Vogt BD, Weber EH, Quan C. Electrically and thermally conductive nylon 6.6. Polym Compos 1999;20(5):643–54.
[8] Yu S, Hing P, Hu X. Thermal conductivity of polystyrene-aluminum nitride composite. Composites: Part A 2002;33:289–92.
[9] Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Oxford University Press; 1986.
[10] Duifhuis P, Weidenfeller B, Ziegmann G. Funct Compd, Plast Eur 2001;11:42–4.
[11] Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 1961;32:1679–83.
[12] Schilling FR. A transient technique to measure thermal diffusivity at elevated temperatures. Eur J Miner 1999;11:1115–24.
[13] Clauser C, Huenges E. Thermal conductivity of rocks and minerals. In: Ahrens TJ, editor. Rock physics and phase relations, a handbook of physical constants. American Geophysical Union Reference; 1995.
[14] Landolt-Bo¨rnstein. In: Madelung O, White GK, editors. Numerical data and functional relationships in science and technology, new series, group III: crystal and solid state physics, vol. 15. Metals: electronic transport phenomena, subvolume c: thermal conductivity of pure metals and alloys. Berlin: Springer; 1991.
[15] Gardon R. Thermal conductivity at low and moderated temperatures. In: Blazek A, editor. Review of thermal conductivity data in glass. International Commission on Glass; 1983.
[16] Weidenfeller B, Riehemann W, Lei Q. Mechanical spectroscopy of polymer-magnetite composites. Mater Sci Eng A 2004;370:
Cooling behaviour of particle filled polypropylene during injection moulding process
Abstract
The effects of thermal properties of various fillers (magnetite, barite, copper, talc, glass fibres and strontium ferrite) in various proportions on the cooling behaviour of polypropylene matrix composites are investigated in an injection moulding process. A thermocouple in the cavity of the mould records the temperatures at the surface of the composite during injection moulding. From the slope of the cooling curves the thermal diffusivities of the composites are estimated and compared with thermal diffusivities at room temperature and elevated temperatures measured with a transient technique. The cooling curves show different merging sections affected by the after pressure, the diffusivity of the composite and the diffusivity of polypropylene matrix. The cooling behaviour depends on the anisotropic thermal diffusivity of the used composite, which is caused by the alignment of filler material due to the injection moulding process and the interconnectivity of the filler particles. The thermal diffusivity shows the highest value for 30 vol% talc filled polypropylene, whereas the shortest cooling time was found for 35 vol% copper filled polypropylene. The knowledge of the systematic variation of thermal transport properties of composites due to different filler material andfiller proportionsallows to optimizethe mould process and tocustomize the heat flow properties. Furthermore,the strongly anisotropic thermal transport properties of talc filled polypropylene allow the design of composites with a predefined maximum heat flow capability to transport heat in a preferred direction.
Keywords: A. Polymer–matrix composites (PMCs); B. Thermal properties; E. Injection moulding; Particulate filler
1. Introduction
Commonly used plastics, such as polypropylene and polyamide, have a low thermal conductivity. However, new applications, mainly in automotive industries, e.g. for sensors or actuators, require new materials with an enhanced or high thermal conductivity [1]. By the addition of suitable fillers to plastics, the thermal behaviour of polymers can be changed systematically up to significant higher thermal diffusivity of O1.2 mm2/s from 0.2 mm2/s for unfilled polypropylene [2,3]. Such filled polymers with higher thermal conductivities than unfilled ones become more and more an important area of study because of the wide range of applications, e.g. in electronic packaging [4–6]. The higher thermal conductivity can be achieved by the use of a suitable filler such as aluminium [1], carbon fibres and graphite [7], aluminium nitrides [6,8] or magnetite particles [2]. Also, the cooling behaviour in the mould of the injection moulding machine is influenced by the thermal properties of the polymer-filler composite. However, published values of thermal conductivities of the same filler materials in different polymer matrices vary drastically and a comparison of different materials is difficult or at least impossible [2]. Therefore, polypropylene samples with different com- mercially available fillers (Fe3O4, BaSO4, Cu, glass fibres, talcandSrFe12O19)werepreparedbyextrusionandinjection moulding using various volume fractions (0–50%). Magne- tite and barite are generally used to increase the weight of
polypropylene, e.g. for bottle closures (cosmetics industry,cf. Ref. [10]), strontium ferrite is used in polymer bonded magnets, glass fibres are used for the reinforcement of materials, and talc is an anti-blocking agent. However,copper was chosen as additional filler because of its high thermal conductivity compared to the other materials.The thermal properties of these injection moulded
samples and the injection moulding behaviour were investigated and correlated to the amount and the kind of filler material.
2. Theoretical considerations
The Fourier law of heat transport in one dimension is given by
withtemperatureT,timet,positionxandthermaldiffusivitya.In an homogeneous body, thermal diffusivity a and thermal conductivity l are interrelated by specific density r and specific heat capacity cpaccording to
Assuming an injection moulding process with an isothermal filling stage for a polymer with a temperature TPand a constant temperature of the mould TMas well as a temperature independent thermal diffusivity a, an analytical solution of Eq. (1) results in [9]
In Eq. (3), s denotes the wall thickness of the injection moulded part and T the temperature of the moulding after time t after injection. Neglecting higher order terms, Eq. (3) can be reduced for the position xZs/2 to
Eq. (4) gives a relation between cooling rate and thermal diffusivity in an injection moulding process, where high thermal diffusivities result in a higher cooling rate and shorter process cycles.
3. Experimental
3.1. Materials
Test materials were supplied by Minelco B.V. (The Netherlands). Minelco B.V. prepared in cooperation with RTP s.a.r.l (France) several polypropylene (PP) compounds with various fillers (Fe3O4, BaSO4, Cu, glass fibres, talc and SrFe12O19) in an extrusion process similar to that described in Ref. [2]. The filler materials are commonly used materials in industrial products. The filler particles do not have a surface coating which can affect thermal properties. Some selected properties of the filler materials are listed in Table 1.
Fig. 1. Photograph of the used mould for the injection moulding experiments. The mould consists of a standard tensile test sample and a test bar for the measurement of thermal diffusivity.
Fig. 2. Mold with cavity for preparing test samples in an injection moulding machine. The position of the thermocouple for temperature measurements is marked by an arrow.
3.2. Thermal diffusivity measurements
The thermal diffusivity of the polymers is measured by a transient method [12], closely related to laser-flash experi-ments [11]. The used transient technique is especially optimized for measurements of polyphase aggregates. A temperature signal is transferred to the upper side of the
sample and registered by a thermocouple. The transferred temperature signal starts a thermal equilibration process in the specimen, which is recorded by a thermocouple as the difference between sample’s rear surface and a constant temperature in a furnace and which is used for the evaluation of thermal diffusivity. A least squares algorithm is used to determine the thermal diffusivity, while varying systematically the thermal diffusivity value in an especially designed finite-difference scheme. A detailed description of the apparatus is given by Schilling [12]. The accuracy of the measurements of the polyphase aggregates is 3%. For thermal diffusivity measurements, small cylinders of 10 mm diameter and 5–6 mm height were cut out of the injection-moulded rods (cf. Fig. 1).
3.3. Injection moulding
With an injection moulding machine (Allrounder 320C 600-250, Arburg, Germany) standard samples for measuring tensile properties together with a rod for thermal measure-ments of 10 mm diameter and 130 mm length were prepared in one mould (cf. Fig. 1). Inthe cavity of the tensile test bar a chromel alumel (Type K) thermocouple was applied.During injection moulding experiments the temperature was recorded every 0.5 s by a digital multimeter and stored in a personal computer. The position of the thermocouple at the sample surface and its position in the cavity of the ejector are shown in Figs. 1 and 2, respectively. The thermocouple submerges approximately 0.2 mm intothe cavity. Therefore, a good thermal contact between polymer and thermocouple even after shrinkage [10] of the moulding is ensured. For a better comparison of the recorded temperature–time curves the same injection moulding parameters for all composite materials were chosen. The used injection moulding parameters are listed in Table 2. The resultant
characteristic times of the injection moulding cycle are tabled in Table 3.
4. Results and discussion
In Fig. 3, the cooling behaviour of polypropylene without and with various fractions of magnetite filler are presented.
Fig. 3. Comparisonof coolingcurves ofunfilledpolypropylene with polypropylene compositeswith variousfillerfractionsof Fe3O4. The symbolsare measured values; the lines are regression lines (cf. text).
At a time the temperature measured by the thermocouple reaches a maximum value around .With increasing time the observed temperature decreases.After the mould opens and the cooling behaviour recorded with the thermocouple changes because it is no longer in contact with the injection moulded material. Due to the large diameter of the rod, the time (54 s) until the mould is opened and the injection moulded parts are ejected is chosen relatively high to ensure that the parts are surely solidified.It can be seen in Fig. 3 that the slope of the curve changes significantly after , which corresponds to the time where the after pressure is removed. Additionally, Fig. 3 points out that the composite in the cavity cools down faster
withincreasingmagnetitefraction.Toreachatemperatureof —a temperature far below the solidification of the sample—the polypropylene needs in the described exper-iment a time of , whereas cooling time of polypropylene with Fe3O4is reduced to (cf. Table 4). The reduced cooling time is in good agreement with the increased thermal diffusivity of magnetite filled composites due to the high thermal diffusivity of
theparticles(cf.Table1)whichleads,regardingEq.(4),toan increased cooling rate. The temperature time dependence in Fig. 3 doesnotfollow asimplelinear behaviour expected for temperature–time curves by Eq. (4) in a logarithmic plot. Only for the unfilled polypropylene the measured values can befittedwithasinglestraightlinebetweenapproximately15 and 54 s. The slope of this line leads to a diffusivity of (cf. Eq. (4)). The other measured cooling curves of the polypropylene-magnetite composites are fitted in each case with two straight lines, for the high temperature and low temperature () region. The thermal diffusiv-ities estimated from the slopes of the regression lines are
It is remarkable that the calculated thermal diffusivities of the higher temperature parts of the cooling curves are a little bit lower than the diffusivities measured with the transient technique, while the calculated thermal diffusivities of the lower temperature parts of the cooling curves meet the measured diffusivity values
The temperature values in parenthesis give the temperature region of the regression lines and the ambient temperature during the measurement with the transient technique.of unfilled polypropylene quite well (cf. Table 5 and Fig. 4).Fig. 4 shows the measured thermal diffusivity data of the investigated samples at ambient conditions. It can be seen that the thermal diffusivity of the magnetite-polypropylene composite is increased from for unfilled poly-propylene up towith increasing magnetite loading. Therefore, the cooling time becomes shorter for higher magnetite filler fractions(Fig. 3).One reason for the change in the slope of the cooling curves shown in Fig. 3 is a change of the thermal diffusivity with temperature which is shown in Fig. 5 for magnetite and barite polypropylene composites with filler fraction. With increasing temperature thermal diffusivity decreases. Therefore, the values derived from mould experiments should be smaller than the measured values of the composites at room tempera-tures. Thermal diffusivity of the PP matrix is mainly caused by phonons and is related to the mean sound velocity v and mean free path length l of phonons according to
Fig. 4. Thermal diffusivity values of injection moulded polypropylene samples with different fillers and various filler proportions measured by a transient technique at room temperature (cf. text). Solid lines are plotted to guide eyes. Above the solidification temperature of the PP matrix (around,DSC measurements)the thermal diffusivity of the matrix is reduced due to the lowered bulk modulus K which results in a reduced phonon velocity and reduced mean free path length of phonons in a liquid (Einstein approximation). Furthermore, above solidification temperature TSno crystallites in the poly-propylene matrix are present, but below TSa crystallization in the polypropylene matrix appears, and the degree of crystallization as well as the bulk modulus of the composite is dependent on the amount of filler [16]. The presence or absence of crystallites affects the bulk modulus K and the phonon free path. Other reasons for the discrepancy between diffusivity values of the different experiments are the non-isobaric conditions in the injection moulding process and the non-isothermal conditions along the sample’s thickness.
The cooling behaviour of magnetite, barite, glass fibre,talc, hard ferrite and copper fillers in comparison with the unfilled polypropylene are plotted in Fig. 6. Only the cooling behaviour of the unfilled and the copper filled polypropylene show significant differences
收藏