喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),有疑問咨詢QQ:1064457796
摘 要
曲軸是汽油機(jī)最主要的部件之一。它的尺寸參數(shù)在很大程度上決定并影響著汽油機(jī)的整體尺寸和重量,汽油機(jī)的可靠性和壽命也在很大程度上取決于曲軸的強(qiáng)度。因此,設(shè)計(jì)新型汽油機(jī)或老產(chǎn)品進(jìn)行改造時必須對曲軸強(qiáng)度進(jìn)行嚴(yán)格的安全校核。
本文主要介紹了汽油機(jī)的總體設(shè)計(jì)思想的確定以及曲軸飛輪組零件的設(shè)計(jì)過程。內(nèi)容包括汽油機(jī)總體設(shè)計(jì)方案的選擇,動力性指標(biāo)的確定,曲軸飛輪零件圖的繪制時的參數(shù)選擇,包括曲軸及飛輪結(jié)構(gòu)的設(shè)計(jì),制造時所需注意的加工過程以及檢驗(yàn)產(chǎn)品時強(qiáng)度校核等內(nèi)容。
本文還運(yùn)用到了Pro/E三維軟件制圖對曲軸飛輪組所有零件進(jìn)行三維建模:包括整體式曲軸(全支承),曲軸前端的正時齒輪、皮帶輪、甩油盤等,扭轉(zhuǎn)減振器,飛輪及其齒圈等。對各組件進(jìn)行虛擬電子裝配。
關(guān)鍵詞:汽油機(jī),曲軸,飛輪,Pro/E
ABSTRACT
Gasoline engine crankshaft is one of the main components. Its dimensions and influence largely determines the overall size and gasoline weight, reliability and life of gasoline also largely depends on the strength of the crankshaft. Thus, the strength of the crankshaft must be strict security check designing new or old gasoline engine when the product transformation. This paper describes the design process to determine and set of parts crankshaft flywheel gasoline overall design ideas. Including overall design choice gasoline, determining dynamic indicators parameter selection draw when the crankshaft flywheel parts diagram, including the crankshaft and flywheel design of the structure, the required attention to the manufacturing process and the time to test the product strength check content. The article also apply to the Pro / E three-dimensional mapping software on the crankshaft flywheel group all parts for three-dimensional modeling: including the overall crankshaft (full support), the front end of the crankshaft timing gears, pulleys, dumped oil pan, etc., torsional damper, flywheel and the ring gear and the like. Each virtual electronic components for assembly.
Keywords: Gasoline engine, Crankshaft, Flywheel, Pro/ E
目錄
摘 要 1
ABSTRACT 1
第一章 緒論 4
1.1 選題背景及意義 4
1.2 國內(nèi)外研究概況 4
1.3 曲軸飛輪組概述 5
1.3.1曲軸 6
1.3.2曲軸扭轉(zhuǎn)減振器 6
1.3.3飛輪 6
第二章 總體設(shè)計(jì)方案 8
2.1汽油機(jī)設(shè)計(jì)要求 8
2.2汽油機(jī)的主要參數(shù) 8
2.2.1 參數(shù)要求 8
2.3.2 參數(shù)選定 9
第三章 曲軸設(shè)計(jì) 10
3.1 曲軸設(shè)計(jì)要求 10
3.2 曲軸結(jié)構(gòu)設(shè)計(jì) 10
3.2.1支承方式的選擇 10
3.2.2 結(jié)構(gòu)型式的選擇 10
3.2.3 曲軸的軸向定位 11
3.2.4曲軸端部結(jié)構(gòu)設(shè)計(jì) 11
3.2.5 潤滑油道布置 12
3.3 曲軸主要尺寸的確定 13
3.3.1 曲柄銷的直徑和長度 13
3.3.2 主軸頸的直徑和長度 14
3.3.3 曲柄臂 14
3.3.4 曲軸圓角 15
3.4 曲軸材料選擇及毛坯制造 15
3.5 曲軸的平衡 15
3.5.1曲軸的平衡性分析 15
3.5.1 曲軸平衡塊的布置方式 17
3.6 曲軸疲勞強(qiáng)度校核 18
3.6.1 疲勞強(qiáng)度計(jì)算 18
3.6.2 提高曲軸疲勞強(qiáng)度的結(jié)構(gòu)措施 23
3.6.3提高曲軸疲勞強(qiáng)度的工藝措施 24
第四章 飛輪設(shè)計(jì)與計(jì)算 26
4.1飛輪的作用 26
4.2飛輪的設(shè)計(jì)與計(jì)算 26
第五章 其他附件的設(shè)計(jì) 29
5.1 主軸承的設(shè)計(jì) 29
5.1.1主軸承的工作條件 29
5.1.2 軸承材料選定 30
5.1.3 軸瓦結(jié)構(gòu)設(shè)計(jì)與主要尺寸的確定 30
5.2 曲軸扭轉(zhuǎn)減振器 31
參考文獻(xiàn) 33
結(jié) 論 34
致 謝 35
第一章 緒論
1.1 選題背景及意義
近年來隨著社會的發(fā)展,農(nóng)業(yè)經(jīng)濟(jì)體制和規(guī)模發(fā)生了很大改變,交通運(yùn)輸以及城鄉(xiāng)物流業(yè)的迅速發(fā)展,使中小功率汽油機(jī)銷量持續(xù)上升。由于不受爆燃的限制以及汽油自燃的需要,汽油機(jī)壓縮比很高。熱效率和經(jīng)濟(jì)性都要好于汽油機(jī),同時在相同功率的情況下,汽油機(jī)的扭矩大,最大功率時的轉(zhuǎn)速低,因此,汽油機(jī)在配套使用中將更進(jìn)一步顯示出其優(yōu)越性。到目前為止,汽油機(jī)也已成為一種排放清潔、節(jié)省能源的動力。在歐洲,汽油車銷量已占汽車總銷量的40%多,美國市場的汽油車銷量也在逐漸增加。目前我國農(nóng)用車行業(yè)內(nèi)外環(huán)境,包括社會認(rèn)識、市場供求關(guān)系、產(chǎn)品和制造技術(shù),都發(fā)生了許多新的變化。農(nóng)用車是我國一個特色的運(yùn)輸車品種,其投資少、運(yùn)輸能力強(qiáng)、產(chǎn)出大,正好滿足建設(shè)節(jié)約型社會、提高資源使用效率的需求,從整個國家來講,具有長遠(yuǎn)的戰(zhàn)略意義。目前我國中東部地區(qū)對農(nóng)用車仍然大量需要,并且西部經(jīng)濟(jì)有待進(jìn)一步發(fā)展的地區(qū)隨著發(fā)展農(nóng)民收入的增加,潛在的市場非常大,農(nóng)村運(yùn)輸工具的不足帶動了輕型和低速載貨汽車的發(fā)展,而汽油機(jī)車的經(jīng)濟(jì)性拉動了輕型汽油汽車的迅速發(fā)展,以及在農(nóng)村經(jīng)濟(jì)發(fā)展和國家政策的調(diào)整潮流下,國內(nèi)小型農(nóng)用工程機(jī)械市場前景非常好,產(chǎn)銷量迅趨火爆,發(fā)展前景廣闊。
1.2 國內(nèi)外研究概況
曲軸是在不斷變化的氣體壓力、往復(fù)和旋轉(zhuǎn)慣性力以及它們的力矩(轉(zhuǎn)矩和彎矩)共同作用下工作的,使曲軸既受扭轉(zhuǎn)又受彎曲,產(chǎn)生疲勞應(yīng)力狀態(tài)。設(shè)計(jì)曲軸時,應(yīng)保證它有盡可能高的彎曲和扭轉(zhuǎn)強(qiáng)度。曲軸各軸頸在很高的比壓下以很大的相對速度在軸承中相對滑動,由于曲軸運(yùn)轉(zhuǎn)工況變化劇烈,有時不能保證液體潤滑,使曲軸壽命大大降低。所以設(shè)計(jì)曲軸時要使其摩擦表面耐磨。目前,美國、德國、日本等汽車工業(yè)發(fā)達(dá)國家都正致力于開發(fā)綠色環(huán)保高性能發(fā)動機(jī),傳統(tǒng)的曲軸材料和制造工藝已無法滿足其功能要求。這些汽車工業(yè)發(fā)達(dá)國家對曲軸加工十分重視,并不斷改進(jìn)曲軸加工工藝。而國內(nèi)目前在曲軸材料、加工技術(shù)等方面十分落后,但隨著中國加入WTO國內(nèi)一些曲軸生產(chǎn)廠家已經(jīng)意識到形勢的緊迫性,為了提高產(chǎn)品競爭力,引進(jìn)了許多先進(jìn)的設(shè)備和技術(shù),使國內(nèi)的曲軸生產(chǎn)水平有了很大的提高,但總體上仍落后于日本和西方發(fā)達(dá)國家。 1)材料 曲軸材料有三種:中碳鋼、合金鋼和球墨鑄鐵。由于球墨鑄鐵切削性能良好,可獲得較理想的結(jié)構(gòu)形狀。并且和鋼質(zhì)曲軸一樣可采用各種熱處理和表面強(qiáng)化處理來提高抗疲勞強(qiáng)度、硬度和耐磨性。球墨鑄鐵曲軸成本只有調(diào)質(zhì)鋼曲軸成本的1/3左右,因此在國內(nèi)外得到了泛的應(yīng)用。本次設(shè)計(jì)的汽油機(jī)就采用球墨鑄鐵作為曲軸的材料。 2)機(jī)械加工技術(shù) 目前國內(nèi)的曲軸生產(chǎn)廠家多采用普通機(jī)床加工,生產(chǎn)效率和自動化程度較低。國外一些發(fā)達(dá)國家早已采用專用機(jī)床組成的自動化生產(chǎn)線,生產(chǎn)效率和產(chǎn)品質(zhì)量大大提高。本次設(shè)計(jì)的汽油機(jī)曲軸將采用專用機(jī)床來提高生產(chǎn)效率和產(chǎn)品質(zhì)量。 3)熱處理和表面強(qiáng)化處理技術(shù),曲軸的熱處理關(guān)鍵技術(shù)是表面強(qiáng)化處理。球墨鑄鐵曲軸一般采用感應(yīng)淬火或氮化工藝。國外一些球墨鑄鐵曲軸采用滾壓工藝與離子氮化進(jìn)行復(fù)合強(qiáng)化,可使整個曲軸的抗疲勞強(qiáng)度提高130%以上。本次設(shè)計(jì)的汽油機(jī)曲軸將采用圓角滾壓強(qiáng)化的氮化處理來提高曲軸的抗疲勞強(qiáng)度。 飛輪的作用是調(diào)節(jié)曲軸轉(zhuǎn)速變化,穩(wěn)定轉(zhuǎn)速。飛輪的關(guān)鍵尺寸是外徑,對于灰鑄鐵飛輪,圓周速度不要超過35~50m/s否則容易造成由于離心力過大,材料的抗拉不足而使飛輪損壞及材料碎裂飛出的事故。本次設(shè)計(jì)的汽油機(jī)飛輪采用灰鑄鐵材料。
1.3 曲軸飛輪組概述
曲軸飛輪組主要由曲軸、飛輪、扭轉(zhuǎn)減振器、皮帶輪、正時齒輪(或鏈條)等組成。如圖2-42所示是曲軸飛輪組的總體結(jié)構(gòu)。
1.3.1曲軸
曲軸是承受連桿傳來的力,并將其轉(zhuǎn)變?yōu)榕ぞ兀缓笸ㄟ^飛輪輸出,另外,還用來驅(qū)動發(fā)動機(jī)的配氣機(jī)構(gòu)及其他輔助裝置(如發(fā)電機(jī)、風(fēng)扇、水泵、轉(zhuǎn)向油泵等)。
在發(fā)動機(jī)工作中,曲軸承受周期性變化的氣體壓力、旋轉(zhuǎn)質(zhì)量的離心力和往復(fù)慣性力以及它們的力矩的共同作用,使曲軸承受彎曲與扭轉(zhuǎn)載荷,產(chǎn)生疲勞應(yīng)力狀態(tài)。為了保證工作可靠,因此要求曲軸具有足夠的剛度和強(qiáng)度,各工作表面要求耐磨而且潤滑良好,還必須有很高的動平衡要求。
1.3.2曲軸扭轉(zhuǎn)減振器
在發(fā)動機(jī)工作過程中,連桿作用在曲軸上的力呈周期性變化。這樣就會使質(zhì)量較小的曲拐相對于質(zhì)量較大的飛輪有扭轉(zhuǎn)擺動(曲拐轉(zhuǎn)速較飛輪轉(zhuǎn)速忽快忽慢),這就是曲軸的扭轉(zhuǎn)振動。當(dāng)這種扭轉(zhuǎn)振動的自振率頻與連桿傳來的呈周期性變化的激振頻率成整數(shù)倍關(guān)系時,曲軸便會產(chǎn)生共振。這種現(xiàn)象既損失發(fā)動機(jī)的功率,也會破壞曲軸和裝在上面的驅(qū)動齒輪、鏈輪、鏈條等附件,嚴(yán)重時甚致將曲軸扭斷。為消除這種現(xiàn)象,曲軸前端裝有扭轉(zhuǎn)減振器
1.3.3飛輪
飛輪是一個轉(zhuǎn)動慣量很大的圓盤,其主要功用是將在作功行程中輸入于曲軸的功能的一部分貯存起來,用以在其他行程中克服阻力,帶動曲柄連桿機(jī)構(gòu)越過上、下止點(diǎn)。保證曲軸的旋轉(zhuǎn)角速度和輸出扭矩盡可能均勻,并使發(fā)動機(jī)有可能克服短時間的超載荷,此外,飛輪又往往用作摩擦式離合器的驅(qū)動件。
第二章 總體設(shè)計(jì)方案
2.1汽油機(jī)設(shè)計(jì)要求
汽油機(jī)設(shè)計(jì)是一項(xiàng)復(fù)雜的工作,它的許多零件是在經(jīng)受高溫,高應(yīng)力和劇烈磨擦的苛刻條件下工作的。因此,我們在設(shè)計(jì)的時候,首先要根據(jù)實(shí)際需要來確定設(shè)計(jì)的目的和要求。
(1)功率和轉(zhuǎn)速 作為動力機(jī)械,使用者對汽油機(jī)第一位的要求是應(yīng)該能夠在規(guī)定轉(zhuǎn)速下發(fā)出所要求的功率。轉(zhuǎn)速和功率的具體數(shù)值是根據(jù)用途來確定的,它在設(shè)計(jì)中一般會給出,要求設(shè)計(jì)者能夠按要求設(shè)計(jì)產(chǎn)品。
(2)汽油機(jī)的經(jīng)濟(jì)性 汽油機(jī)的經(jīng)濟(jì)性包括:汽油機(jī)的使用價值應(yīng)該盡量大,而為使用汽油機(jī)所必須付出的代價應(yīng)盡量小。
(3)高的工作可靠性和足夠的使用壽命。
(4)汽油機(jī)外廓尺寸的緊湊和質(zhì)量 在許多中動力裝置中,為了能有更多的有用空間,希望汽油機(jī)本身占用的空間縮至最小,即要求汽油機(jī)的設(shè)計(jì)緊湊,空間占用小,汽油機(jī)的質(zhì)量就小,質(zhì)量小是我們追求的目標(biāo)。質(zhì)量小在某種程度上表明所耗用的金屬質(zhì)量少。
(5)汽油機(jī)設(shè)計(jì)的三化問題 所謂三化,指產(chǎn)品系列化,零部件的通用化和設(shè)計(jì)的標(biāo)準(zhǔn)化。
(6)汽油機(jī)的可靠性及其它 工作可靠是汽油機(jī)應(yīng)該具有的起碼性能,否則其它性能將無從談起。
2.2汽油機(jī)的主要參數(shù)
2.2.1 參數(shù)要求
本次設(shè)計(jì)的汽油發(fā)動機(jī)參數(shù)如下:
序號
工作過程計(jì)算參數(shù)
單位
數(shù)值
1
設(shè)
計(jì)
指
標(biāo)
標(biāo)定有效功率
kW
100
2
標(biāo)定轉(zhuǎn)速
r/min
6500
3
標(biāo)定最大扭矩
Nm
165
4
設(shè)計(jì)最大扭矩轉(zhuǎn)速
r/min
5000
5
最低穩(wěn)定轉(zhuǎn)速
r/min
700
6
缸徑
m
0.085
7
沖程
m
0.088
8
壓縮比
10
9
缸數(shù)
4
10
燃料
汽油
2.3.2 參數(shù)選定
(1)氣缸數(shù)與缸徑
壓縮點(diǎn)火式汽油機(jī),由于燃燒過程的特點(diǎn),汽缸直徑不能過小,一般以不小于85mm為宜。汽油機(jī)的缸徑應(yīng)符合系列型譜的規(guī)定,其尾數(shù)應(yīng)該取整數(shù),優(yōu)先選用0和5。給定設(shè)計(jì)項(xiàng)目的汽油機(jī)氣缸數(shù)為4,缸徑為85mm。
(2)活塞平均速度
活塞平均速度Cm也是表征活塞式內(nèi)燃機(jī)強(qiáng)化程度(熱負(fù)荷和機(jī)械負(fù))的重要參數(shù)之一。它對于內(nèi)燃機(jī)的性能,工作可靠性和使用壽命有很大的影響。一般說來,Cm增大會使發(fā)動機(jī)的功率增高,但活塞組的熱負(fù)荷和曲柄連桿機(jī)構(gòu)的慣性負(fù)荷增大,磨損加劇,壽命下降。本次設(shè)計(jì)的標(biāo)定轉(zhuǎn)速為6500r/min。
(3)平均有效壓力
平均有效壓力是標(biāo)志內(nèi)燃機(jī)整個循環(huán)過程的有效性及內(nèi)燃機(jī)制造完善性的指標(biāo)之一,值的不斷提高是內(nèi)燃機(jī)技術(shù)發(fā)展的重要標(biāo)志。由于它決定了發(fā)動機(jī)的強(qiáng)化程度,反映了發(fā)動機(jī)結(jié)構(gòu)與制造要達(dá)到的質(zhì)量,故必須慎重的選擇。進(jìn)行產(chǎn)品設(shè)計(jì)時,平均有效壓力應(yīng)根據(jù)同類型發(fā)動機(jī)的實(shí)際數(shù)據(jù)來初步選定,在本次設(shè)計(jì)中,初步選定=0.5MPa。
(4)行程S
行程增加可以提高平均有效壓力但是在氣缸直徑不變的情況下,S的增加即行程缸徑比S/D增加,導(dǎo)致活塞平均速度提高,有磨損加速、壽命降低等問題。本次設(shè)計(jì)中給定行程S=88mm
(5)氣缸中心距及其與缸徑的比值
氣缸中心距及其與缸徑的比值,是表征汽油機(jī)長度的緊湊性和重量指標(biāo)的重要參數(shù),它與汽油機(jī)的強(qiáng)化程度、氣缸排列和機(jī)體一的剛度有關(guān)。缸心距的大小主要取決于氣缸蓋型式(整體式、塊狀式或單體式)、氣缸套型式(干式或濕式)、直列式還是V型、水冷還是風(fēng)冷、以曲軸的結(jié)構(gòu)型式和尺寸分配。本設(shè)計(jì)中氣缸中心距L取為96mm。
(6)壓縮比壓縮比直接影響汽油機(jī)的性能、機(jī)械負(fù)荷、超支性能,以及主要零件的結(jié)構(gòu)尺寸。在一定范圍內(nèi),汽油機(jī)的熱效率隨壓縮比的增加而提高。增大壓縮比也可使汽油機(jī)的起動性能獲得改善。但壓縮比的提高將使氣缸最高爆發(fā)壓力相應(yīng)上升,機(jī)械負(fù)荷增加對汽油機(jī)使用壽命有影響。此次設(shè)計(jì)中壓縮比ε初步定為10。
第三章 曲軸設(shè)計(jì)
3.1 曲軸設(shè)計(jì)要求
曲軸設(shè)計(jì)時應(yīng)符合以下要求:
(1)有足夠的疲勞強(qiáng)度,以保證曲軸工作可靠。設(shè)計(jì)時應(yīng)盡量減少應(yīng)力集中,加強(qiáng)薄弱環(huán)節(jié);
(2)有足夠的剛度,使曲軸變形不致過大;
(3)頸具有良好的耐磨性。應(yīng)根據(jù)軸頸比壓,選取適當(dāng)?shù)妮S承材料、軸頸硬度和加工精度,以保證曲軸和軸承有足夠的壽命;
(4)柄排列合理,以保證汽油機(jī)工作均勻;曲軸平衡性好,以減小振動和主軸承最大負(fù)荷;
(5)料選擇適當(dāng),以充分發(fā)揮材料強(qiáng)度潛力。
不難看出,上述強(qiáng)度、剛度、耐磨、輕巧的要求之間是存在矛盾的。由于曲軸受力復(fù)雜,幾何斷面形狀比較特殊,在設(shè)計(jì)曲軸時,至今還沒有一個能完全反映實(shí)際的理論公式可供通用。因此,目前曲軸的設(shè)計(jì)主要是依靠經(jīng)驗(yàn)設(shè)計(jì),即利用許多現(xiàn)有的曲軸結(jié)構(gòu)與尺寸的統(tǒng)計(jì)資料。借以初步確定曲軸的基本尺寸,然后進(jìn)行結(jié)構(gòu)細(xì)節(jié)的設(shè)計(jì)、強(qiáng)度復(fù)核、曲軸樣品試驗(yàn),最后確定曲軸的結(jié)構(gòu)、尺寸與加工工藝等。
3.2 曲軸結(jié)構(gòu)設(shè)計(jì)
3.2.1支承方式的選擇
按支承方式曲軸分為全支承曲軸和非全支承曲軸。
全支承曲軸是每兩個(V型發(fā)動機(jī)為兩排)氣缸間均設(shè)有主軸承的曲軸;而非全支承曲軸是每隔兩個(V型發(fā)動機(jī)為兩排)氣缸設(shè)有一個主軸承的曲軸。由于汽油機(jī)的爆發(fā)壓力較高,因而一般都采用全支承曲軸;僅有個別小缸徑汽油機(jī)為縮短缸心距,減少主軸承數(shù),采用非全支承曲軸。因此此次設(shè)計(jì)采用全支承曲軸。
3.2.2 結(jié)構(gòu)型式的選擇
按結(jié)構(gòu)型式曲軸分為整體曲軸和組合曲軸。
整體式曲軸的毛坯是由整根鋼料鍛造或用鑄造方法澆鑄出來的。整體式曲軸結(jié)構(gòu)簡單,重量輕,工作可靠,而且剛度和強(qiáng)度較高,加工面也比較少,在中高速汽油機(jī)上應(yīng)用非常普遍。
組合式曲軸是把曲軸分成很多便于制造的單元體,然后將各部分組合裝配而成。按劃分單元體的不同,又可分為全組合式曲軸與半組合式曲軸。大功率汽油機(jī)和小型二沖程發(fā)動機(jī)上常采用組合式曲軸。
由于此次設(shè)計(jì)的是直列四缸汽油機(jī),故選用平面(圖3-1)布置,曲柄互成空間180°夾角,靜平衡但動不平衡,該方案的不平衡系數(shù)較小,易于采取平衡措施,而且此次設(shè)計(jì)的是高速汽油機(jī),采用該布置第二階往復(fù)慣性力較小,可以不考慮。
圖3-1
綜上所述,此次設(shè)計(jì)采用整體式曲軸。
3.2.3 曲軸的軸向定位
為防止曲軸的軸向定位,保證工作正常,曲軸需設(shè)有軸向定位。中高速汽油機(jī)的曲軸通常用止推片或止推軸瓦做止推軸承。大多數(shù)汽油機(jī)把止推軸承設(shè)在輸出端,這樣當(dāng)曲軸受熱伸長時離合器的間隙可保持不變。但裝在曲軸自由端的正時齒輪會產(chǎn)生一些位移。在一些汽油機(jī)中由于中央主軸承的負(fù)荷大而增加其長度,并用它作止推軸承。
當(dāng)軸向力不是很大,又不是經(jīng)常作用時,止推軸承多采用翻邊軸瓦,或采用止推片。翻邊軸瓦的制造比較困難,所以一般汽油機(jī)中多用止推片的結(jié)構(gòu)。在軸向經(jīng)常作用或數(shù)值較大的情況下,多采用止推滾動軸承。
圖3-34
本次設(shè)計(jì)采用止推片的止推方式,并且安裝在中央主軸承上。
3.2.4曲軸端部結(jié)構(gòu)設(shè)計(jì)
曲軸兩端分別為自由端和輸出端。大多數(shù)汽油機(jī)的機(jī)油泵,水泵等輔助裝置的驅(qū)動齒輪以及曲軸的扭轉(zhuǎn)減振器均安裝在自由端。飛輪裝于輸出端,汽油機(jī)產(chǎn)生的功率經(jīng)輸出端輸出,但在某些工程機(jī)械或農(nóng)用汽油機(jī)上,曲軸自由端也可輸出部分乃至全部功率。
驅(qū)動配氣機(jī)構(gòu)和噴油泵的曲軸正時齒輪布置于自由端或輸出端。當(dāng)曲軸正時齒輪布置在輸出端時,可將正時齒輪直接制造在曲軸上。
曲軸輸出端一般借法蘭通過定位銷和螺栓來安裝飛輪。為提高曲軸的扭轉(zhuǎn)剛度,最后一道主軸承至曲軸法蘭的軸段應(yīng)盡量短粗,甚至其直徑和曲軸法蘭相同,這樣也便于套裝油封。
曲軸法蘭大小應(yīng)根據(jù)主軸承直徑及油封裝置來決定。飛輪緊固螺栓分布的圓周直徑,最好使螺栓孔位于主軸頸外,并能讓開主軸頸到法蘭過度圓角。
3.2.5 潤滑油道布置
軸承的工作能力在很大程度上取決于潤滑條件。曲軸主軸頸和曲柄銷一般采用壓力潤滑。曲軸上油道與油孔的設(shè)計(jì),對于曲軸軸承的潤滑及曲軸強(qiáng)度都有重要的影響,因此必須十分慎重地選擇油道的方案和確定油孔的位置。潤滑油通常先進(jìn)入主軸承再進(jìn)入連桿軸承。將機(jī)油輸送到曲軸軸承中去的供油方法有兩種:
(1)分路供油 多數(shù)汽油機(jī)采用這種供油方法。潤滑油由主油道直接送到各主軸承。
(2)集中供油 主軸承采用滾動軸承時需采用集中供油。集中供油多采用所謂假軸承結(jié)構(gòu)。假軸承上也澆有一層軸承合金。潤滑油從假軸承通過軸頸上的油孔進(jìn)入曲軸內(nèi)腔。
確定主軸頸和曲柄銷上油孔定位時,既要考慮到潤滑和軸瓦的冷卻,又要對軸頸強(qiáng)度削弱最小。從保證潤滑考慮,希望主軸頸油孔開在最大軸頸壓力作用線方向。曲柄銷油孔開在壓力最小的地方,以保證連桿軸承供油充足。曲柄銷最小負(fù)荷通常位于曲柄銷平面以曲柄銷軸心為中心向著曲軸旋轉(zhuǎn)方向?qū)敖堑牡胤?,角可由軸心軌跡圖求出。從強(qiáng)度觀點(diǎn)考慮,油孔不應(yīng)位于曲柄平面內(nèi)而應(yīng)在曲柄垂直平面內(nèi)。因?yàn)樵谇怪逼矫鎯?nèi),曲柄銷表面彎曲應(yīng)力和扭轉(zhuǎn)切應(yīng)力都比較小。因此應(yīng)兼顧上述兩項(xiàng)要求來確定油孔的位置,同時還應(yīng)考慮曲軸結(jié)構(gòu)和鉆孔的工藝性。
為了減小應(yīng)力集中,油孔出口應(yīng)到角,拋光。
(3)油孔直徑:d=(0.07~0.10)D=5.95~8.5mm 取d=6 mm。
圖3-2所示為本次潤滑油道的布置方案。
圖 3-2
3.3 曲軸主要尺寸的確定
在設(shè)計(jì)汽車拖拉機(jī)這一類高速汽油機(jī)的曲軸時,它的基本尺寸大多根據(jù)結(jié)構(gòu)布置上的要求來確定,再由強(qiáng)度校核修正。因?yàn)榍S與活塞連桿組件和機(jī)體有密切的聯(lián)系,曲軸的設(shè)計(jì)不能孤立進(jìn)行。各部分尺寸多以與氣缸直徑的相對值表示,而氣缸直徑又是限制曲柄銷直徑的重要因素。曲柄長度方向的尺寸基本上決定于氣缸中心距。
表3-1 曲軸主要結(jié)構(gòu)尺寸的統(tǒng)計(jì)范圍(車輛用)
機(jī)型
結(jié)構(gòu)尺寸
柴油機(jī)
汽油機(jī)
直列
V列
直列
V列
主軸徑
/D
0.70~0.80
0.75~0.85
0.75~0.85
0.85~0.95
0.65~0.70
0.60~0.70
/D
0.30~0.36
0.24~0.30
0.30~0.35
0.25~0.30
連桿軸徑
/D
0.60~0.70
0.67~0.72
0.63~0.72
0.60~0.65
0.55~0.62
/D
0.32~0.37
0.23~0.28
0.31~0.35
0.45~0.60
曲柄臂
h/D
0.22~0.28
0.20~0.25
0.18~0.25
0.18~0.22
b/D
1.05~1.3
1.0~1.3
0.75~1.2
0.75~1.2
過渡圓角
r/
0.03~0.05
0.03~0.05
平衡重
/S
0.8~0.9
0.9~1.0
0.8~0.9
1.0~1.1
3.3.1 曲柄銷的直徑和長度
在考慮曲軸軸頸的粗細(xì)時,首先是確定曲柄銷的直徑。在現(xiàn)代發(fā)動機(jī)設(shè)計(jì)中,一般趨向于采用較大的值,以降低曲柄銷的比壓,提高連桿軸承工作的可靠性,提高曲軸的剛度。但是,曲柄銷加粗伴隨著連桿大頭加大,使不平衡旋轉(zhuǎn)質(zhì)量的離心力增大,對曲軸及軸承的工作帶來不利。因?yàn)殡S曲柄銷直徑增大帶來的軸系自振頻率增加,會被旋轉(zhuǎn)質(zhì)量增加引起的自振頻率下降所抵消,可能增加扭轉(zhuǎn)振動的危害。此外,曲柄銷直徑增大也會增加軸承摩擦功率損失,導(dǎo)致軸承溫度升高,增加潤滑油熱負(fù)荷。為此,曲柄銷直徑不應(yīng)取得較大。曲柄銷的長度是再選定的基礎(chǔ)上考慮的。
根據(jù)表3-1,初步選取
曲柄銷的直徑=(0.60~0.65)D=51~55.25mm, 取=55mm;
曲柄銷的長度=(0.31~0.35)D=26.35~29.75mm, 取=28mm。
3.3.2 主軸頸的直徑和長度
從軸承負(fù)荷出發(fā),主軸頸可以比曲柄銷細(xì)些,因?yàn)橹鬏S承最大負(fù)荷小于連桿軸承。但是為了最大限度地增加曲軸的剛度,加粗主軸徑是有很大好處的。因?yàn)榈谝?,加粗主軸徑不同于加粗曲柄銷那樣有很多副作用,加粗主軸頸能增加曲柄軸頸的重疊度,從而提高曲軸剛度,但幾乎不增加曲軸的轉(zhuǎn)動慣量,故可提高自振頻率,減輕扭振危害;第二,加粗主軸頸后可以相對縮短其長度,從而給加厚曲柄臂,提高其強(qiáng)度提供可能。
根據(jù)表3-1,初步選取
主軸頸直徑=(0.65~0.70)D=55.25~59.5mm取=60mm;
主軸頸長度=(0.30~0.35)D=25.5~29.75mm 取=28mm。
3.3.3 曲柄臂
曲柄臂是曲軸中最薄弱的部分之一,它在曲柄平面內(nèi)的抗彎剛度和強(qiáng)度都較差。實(shí)踐表明:由交變彎曲應(yīng)力造成的曲柄臂斷裂是曲軸的主要損壞型式。曲柄臂應(yīng)選擇適當(dāng)?shù)暮穸?,寬度,以使曲軸有足夠的剛度和強(qiáng)度。曲柄形狀應(yīng)合理,以改善應(yīng)力分布?,F(xiàn)代高速汽油機(jī)曲柄的形狀大多采用橢圓形和圓形。試驗(yàn)證明:橢圓形曲柄具有最好的彎曲和扭轉(zhuǎn)剛度。其優(yōu)點(diǎn)是盡量去掉了受力小或不受力的部分,其重量減輕,應(yīng)力分布均勻。但加工方法較復(fù)雜,采用模鍛或鑄造的方法可以直接成型。
根據(jù)表3-1, 初步選取
曲柄臂厚度h=(0.18~0.25)D=15.3~21.25mm 取h=20mm;
曲柄臂寬度b=(0.75~1.20)D=63.75~102mm 取b=70mm。
3.3.4 曲軸圓角
曲軸主軸頸和曲柄臂連接的圓角稱為主軸頸圓角,曲柄銷和曲柄臂連接的圓角稱為曲柄銷圓角。
由于曲柄銷圓角和主軸頸圓角是曲軸應(yīng)力最大的部位,且應(yīng)力沿圓角輪廓分布也極不均勻,故圓角的輪廓設(shè)計(jì)十分重要。
曲軸圓角半徑r應(yīng)足夠大,根據(jù)表3-1, r/=0.03~0.05=2.55~4.25mm,圓角半徑過小會使應(yīng)力集中嚴(yán)重。為了增大曲軸圓角半徑,且不縮短軸頸有效工作長度,可采用沉割圓角,設(shè)計(jì)沉割圓角時應(yīng)該保證曲柄臂有足夠厚度。曲軸圓角也可由半徑不同的二圓弧和三圓弧組成。當(dāng)各段圓弧半徑選擇適當(dāng)時可提高曲軸疲勞強(qiáng)度,增加軸頸有效承載長度。
本次設(shè)計(jì)遵循以上原則,選取圓角半徑 r=3mm。
3.4 曲軸材料選擇及毛坯制造
常用的曲軸材料有可鍛鑄鐵,合金鑄鐵,球墨鑄鐵,碳素鋼和合金鋼等,相應(yīng)的毛坯也分為鑄造與鍛造。
鍛造曲軸一般采用中碳鋼或者合金鋼制造,毛坯生產(chǎn)需要大型鍛壓設(shè)備,雖然毛坯尺寸比較精確,減少了加工余量,提高了材料利用率,此外,鍛造能夠使材料的金屬纖維成方向性排列,纖維方向和曲軸形狀大致相符,這大大提高了曲軸的抗拉強(qiáng)度和彎曲疲勞強(qiáng)度。但是鍛造曲軸成本過高,大約是球鐵曲軸的3-7倍。
雖然鑄造曲軸主要是球鐵曲軸有很多缺點(diǎn),例如彎曲疲勞強(qiáng)度比較低,較容易發(fā)生斷裂,相同尺寸的球鐵曲軸與鍛造曲軸相比,剛度差。但它的優(yōu)點(diǎn)也相當(dāng)明顯,例如球墨鑄鐵曲軸經(jīng)正火處理后的機(jī)械性能已接近蔌超過一般的中碳鋼,盡管鋼的疲勞強(qiáng)度比球墨鑄鐵高,但曲軸的結(jié)構(gòu)復(fù)雜,鋼曲軸難免會有油孔、過渡圓角和材質(zhì)上留有缺陷面造成應(yīng)力集中,從面降低了曲軸的疲勞強(qiáng)度。球鐵可以鑄造出復(fù)雜的曲軸形狀,使其應(yīng)力分布均勻,且球墨鑄鐵對缺口敏感度低、變形小,使球墨鑄鐵曲軸的實(shí)際彎曲的扭轉(zhuǎn)疲勞強(qiáng)度與正火中碳鋼相近。球鐵曲軸的耐磨性好,吸振能力強(qiáng),有較好的自潤滑和抗氧化性能。
綜上分析,本次設(shè)計(jì)采用球墨鑄鐵曲軸。
3.5 曲軸的平衡
3.5.1曲軸的平衡性分析
對曲曲軸軸平衡性的分析可以采用兩種方法,矢量圖法和數(shù)學(xué)分析法,此次設(shè)計(jì)中我采用的是數(shù)學(xué)分析法:
(1)分析
因?yàn)樗?
取通過第二氣缸中心線且垂直于曲軸中心線的平面為力矩的計(jì)算基準(zhǔn)平面。
令
得即
因?yàn)楹偷墓叫螒B(tài)一樣
所以
可知,
令 得2α=30°
即,
由上得知一、二級往復(fù)慣性力矩的正、反轉(zhuǎn)矢量
(2)慣性力矩的平衡方法
一般,只采用曲軸附加偏角(或扇形)平衡塊的方法將全部平衡掉。其中,K值需要與汽油機(jī)的配套裝置一道試驗(yàn)確定。對一、二級往復(fù)慣性力,不另添置平衡軸,而讓其自行存在。由此收起的振動是許可的。為了獲得良好的外部平衡性能,應(yīng)對帶平衡塊的曲軸進(jìn)行仔細(xì)地靜、動平衡,并把活塞組、連桿組的重量嚴(yán)格控制在誤差范圍內(nèi)。
3.5.1 曲軸平衡塊的布置方式
曲軸平衡塊的作用是用來平衡曲軸不平衡的旋轉(zhuǎn)慣性力和旋轉(zhuǎn)慣性力矩,有時也可以平衡往復(fù)慣性力及其力矩,并可以減速小主軸承的負(fù)荷。隨著汽油機(jī)轉(zhuǎn)速的提高,多數(shù)離心慣性力和離心慣性力矩已自行平衡的曲軸也配置平衡塊,這主要是為了減輕主軸承的最大負(fù)荷,保證軸承有良好的潤滑條件,減小曲軸和曲軸箱所受的離心慣性力矩。但曲軸配置平衡塊后,重量增加,制造工藝復(fù)雜,曲軸系統(tǒng)扭轉(zhuǎn)振動自振頻率降低。因此,應(yīng)根據(jù)轉(zhuǎn)速,曲軸結(jié)構(gòu),曲柄排列,軸承負(fù)荷以及對平衡的要求等因素綜合考慮是否配置平衡塊。一般低速汽油機(jī)不需要配置平衡塊,高度汽油機(jī)則需要配置平衡塊。平衡方案的選擇,平衡塊重量的計(jì)算與布置,應(yīng)該仔細(xì)考慮。
平衡塊的重心應(yīng)盡量遠(yuǎn)離曲軸中心線,以提高平衡效果。但平衡塊一般不超過曲軸旋轉(zhuǎn)所掃過的范圍。平衡塊厚度一般與曲柄臂相同。
3.6 曲軸疲勞強(qiáng)度校核
3.6.1 疲勞強(qiáng)度計(jì)算
本計(jì)算采用Ricardo計(jì)算方法,該計(jì)算方法有兩點(diǎn)假設(shè)。
曲軸的每一曲拐是相互獨(dú)立的,不受曲軸其他部分受力的影響,并以
簡支梁的形式支撐在主軸承上。
曲軸所受力是以點(diǎn)負(fù)荷的形式作用在曲軸上的。如圖5-1
圖5-1 曲拐受力分析圖
(1)已知條件
缸徑D=85,行程S=88,連桿長L=150,氣缸數(shù)i=4,發(fā)動機(jī)轉(zhuǎn)=6500r/min,最大平均有效壓力Pme=0.5MPa,活塞連桿組往復(fù)質(zhì)量m1=1.6Kg,活塞連桿組旋轉(zhuǎn)質(zhì)量m2=3.1Kg。
(2)彎曲應(yīng)力計(jì)算
1)曲軸受力計(jì)算
(a)壓縮上止點(diǎn)時的曲軸作用力:
(5-2)
式中,—活塞連桿組往復(fù)質(zhì)量力;—活塞連桿組旋轉(zhuǎn)質(zhì)量力;
(b)燃?xì)庾饔昧Γ?
則
(c)排氣上止點(diǎn)時的曲軸作用力:
2)單個曲拐危險(xiǎn)截面上的彎矩
(a)圓角處
(b)連桿軸頸中央油孔處
式中,、、、分別為曲拐危險(xiǎn)截面的最大和最小彎矩。
3)名義彎曲應(yīng)力
,
式中,—為彎矩,。、為截面的最大、最小名義彎曲應(yīng)力。
(a)圓角處
(b)連桿軸頸中央油孔處
4)名義彎曲平均應(yīng)力及名義應(yīng)力幅為
,
(a)圓角處
(b)連桿軸頸中央油孔處
5)彎曲應(yīng)力
,;
式中,—應(yīng)力集中系數(shù),
、—為彎曲平均應(yīng)力及彎曲應(yīng)力幅;
根據(jù)理論應(yīng)力集中系數(shù)由式(5-3)計(jì)算。
(5-3)
式中, ;
式中,—連桿軸徑,—曲柄臂厚度。
式中,—主軸頸直徑。
則
(5-4)
,則。
=
圓角處
=
桿軸頸中央油孔處
取連桿軸頸中央油孔處的應(yīng)力集中系數(shù),帶入(5-4)得,則
(3)切應(yīng)力計(jì)算
1)扭矩計(jì)算
(5-5)
式中,—為發(fā)動機(jī)平均扭矩;
將已知條件代入得;最大扭矩
式中為系數(shù),兩缸機(jī)取=10。最小扭矩
2)名義應(yīng)力
連桿軸頸的抗彎截面系數(shù)
, =63,則
式中,,—分別為名義最大,最小切應(yīng)力。
名義平均切應(yīng)力及名義切應(yīng)力幅分別為
3)切應(yīng)力
(a)圓角處
理論應(yīng)力集中系數(shù)
式中,為圓角半徑,為重疊度,連桿軸頸直徑。將代入式(5-4)中得,,則切應(yīng)力集中系數(shù)
則
式中,、—為平均切應(yīng)力及切應(yīng)力幅。
(b)連桿軸頸中央油孔處
理論應(yīng)力集中系數(shù),將其代入式(5-4)中得,,
切應(yīng)力集中系數(shù) 則
根據(jù)以上計(jì)算數(shù)值參考經(jīng)驗(yàn)數(shù)值[14] 此次設(shè)計(jì)的曲軸可采用材料40Cr此材料的強(qiáng)度完全滿足以上要求。
3.6.2 提高曲軸疲勞強(qiáng)度的結(jié)構(gòu)措施
在載荷不變的條件下,要降低最大彎曲應(yīng)力,提高曲軸的彎曲強(qiáng)度就應(yīng)設(shè)法降低曲軸圓角處的應(yīng)力集中效應(yīng);適當(dāng)減小單拐中間部分的彎曲剛度,使應(yīng)力分布較為均勻,即用結(jié)構(gòu)措施使彎曲形狀系數(shù)最大限度下降。
(1)加大軸頸重疊度
采用短行程是增加重疊度的有效措施,它比通過增大主軸頸來增加重疊度的作用大。為了使重疊度A變成無量綱參數(shù),以便對不同發(fā)動機(jī)進(jìn)行比較,引用重疊度
(5-1)
(2)加大過渡圓角
過渡圓角的尺寸、形狀、材料組織、表面加工質(zhì)量和光潔度等對曲軸應(yīng)力的影響十分明顯。前面已論述為了減小圓角部位的應(yīng)力集中效應(yīng),必須增大圓角半徑R。但隨R的增大軸頸有效承壓長度縮短。為解決這一矛盾,設(shè)計(jì)了曲率過渡曲線。但是這種過渡曲線要求對精磨圓角的砂輪進(jìn)行專門的修整,工藝復(fù)雜。如果修整的不準(zhǔn),可能會弄巧成拙,所以應(yīng)用不廣。
為了能增大半徑R同時保證軸頸的有效承壓長度,可采用曲軸沉割圓角。它把過渡圓角移到曲柄上,形成組合內(nèi)凹圓角,這時最大應(yīng)力點(diǎn)移向曲柄里端,因此要注意內(nèi)凹圓角不能太深,否則會過多的削弱曲柄的強(qiáng)度,反而使曲柄強(qiáng)度降低。一般R/D=0.05-0.07,當(dāng)R 〉0.07D時,隨R的增加,使應(yīng)力集中減少已不明顯。由于工藝上的考慮,在任何情況下R的絕對值不應(yīng)小于2mm。為了使曲軸工作可靠,圓角表面光潔度不應(yīng)小于8 ,不允許存在材料組織的缺陷。
(3)采用空心軸頸
若以提高曲軸彎曲強(qiáng)度為主要目標(biāo),采用主軸頸為空心的半空心結(jié)構(gòu)就行了。若同時要減輕曲軸的重量和減小曲柄銷的離心力,從而降低主軸承負(fù)荷,則宜用全空心結(jié)構(gòu),且將曲柄銷內(nèi)孔向外側(cè)偏離。一般以d/D=-0.4左右效果最好 。此外,軸頸空心孔德縮口厚度度圓角彎曲應(yīng)力有一定影響,當(dāng)T/h=0.2-0.4時,彎曲應(yīng)力下降較多。
3.6.3提高曲軸疲勞強(qiáng)度的工藝措施
工藝措施就是采用局部強(qiáng)化的方法來充分發(fā)揮材料強(qiáng)度的潛力,解決載荷與抗力這一主要矛盾,以使曲軸趨向等強(qiáng)度。它提供拉在曲軸結(jié)構(gòu)不變的條件下,強(qiáng)化發(fā)動機(jī)的可能性。
(1)圓角滾壓硬化
曲軸圓角滾壓強(qiáng)化是近年來應(yīng)用越來越廣的圓角強(qiáng)化方法。曲軸圓角滾壓能提高疲勞強(qiáng)度的原因 ,在于金屬表面在滾輪機(jī)械力的作用下應(yīng)力超過了材料屈服極限時,產(chǎn)生塑性變形,產(chǎn)生冷作硬化,硬度提高,金屬表層直到某一深度出現(xiàn)殘余應(yīng)力,在深處則產(chǎn)生低值的補(bǔ)償拉應(yīng)力。去除滾輪機(jī)械力后,表層塑性變形后略有恢復(fù),然后取得穩(wěn)定。壓縮應(yīng)力由于永久變形的存在殘留了下來。表層的殘余應(yīng)力抵消了部分工作拉伸應(yīng)力,使零件疲勞強(qiáng)度大大提高。因?yàn)槠趶?qiáng)度通常是由拉伸應(yīng)力反復(fù)作用的結(jié)果,并始于金屬表面。所以滾壓強(qiáng)度實(shí)質(zhì)上是一個預(yù)應(yīng)力強(qiáng)化方法。此外,表面滾壓后可以提高圓角表面光潔度,消除顯微裂紋和針孔、氣孔等鑄造缺陷。因此,珠光體球墨鑄鐵曲軸圓角滾壓效果最明顯。
(2)軸頸和圓角表面同時進(jìn)行淬火
為了提高曲軸軸頸表面的耐磨度,一般都用高頻電流感應(yīng)加熱的方法進(jìn)行表面淬火。它是用熱處理的方法使金屬發(fā)生組織相變,從而使軸頸耐磨性提高。淬火層深一般為3-7毫米,硬度HRC55-63。限于工藝上的原因,一般兩端圓角部分不淬硬。這樣,在軸頸表面淬硬部分因產(chǎn)生殘余壓縮應(yīng)力而得到強(qiáng)化。反之,未被淬硬的圓角部分因形成回火區(qū),出現(xiàn)殘余應(yīng)力被削弱。因此,為了改善軸頸耐磨性而采用的表面淬火措施,對疲勞強(qiáng)度起拉反作用,因?yàn)樗訌?qiáng)了本來比較弱的部分。為此,采用專門的工藝措施,把圓角部分一起淬硬。
(3)噴丸強(qiáng)化
它與滾壓強(qiáng)化一樣,亦屬于利用冷卻變形,在金屬表面上留下了拉應(yīng)力,而且使表面硬度增加,從而提高曲軸疲勞強(qiáng)度的方法。噴丸處理時,公稱粒度0.5mm左右的噴丸,從高速旋轉(zhuǎn)的噴射槍中以高速噴射到緩慢旋轉(zhuǎn)的曲軸表面上,使曲軸表面產(chǎn)生殘余壓應(yīng)力,起強(qiáng)化作用。噴丸比滾壓優(yōu)越的地方在于使曲軸整個表面都能得到強(qiáng)化,甚至包括未加工的高壓力區(qū),同時適于大批生產(chǎn),軸頸摩擦表面不需噴丸。
(4)氮化處理
氮化處理是一種化學(xué)熱處理強(qiáng)化金屬表面的方法。氮化處理后,由于氮的擴(kuò)散作用,在曲軸表面產(chǎn)生一層由氮化鐵及碳化鐵組成的化合物層,它有極高的耐磨性,而且抗膠合、耐磨蝕?;蠈觾?nèi)部為氮的擴(kuò)散層,由于氮不斷向內(nèi)部擴(kuò)散,使得金屬體積增大,因而產(chǎn)生擠壓應(yīng)力。一般曲軸精磨后進(jìn)行氮化,氮化后不應(yīng)再進(jìn)行機(jī)械加工,否則曲軸的疲勞強(qiáng)度又將下降。氮化處理不僅適用于鋼曲軸,也同樣適用于球鐵曲軸。
第四章 飛輪設(shè)計(jì)與計(jì)算
4.1飛輪的作用
由于曲軸所發(fā)出的扭矩是個周期變化的量,當(dāng)它大于有效阻力矩時,曲軸就加速,反之就減速,造成曲軸轉(zhuǎn)速的波動,減小這種波動的措施有兩種:一是增加汽油機(jī)的氣缸數(shù),另一措施是在曲軸上加裝飛輪。在本次設(shè)計(jì)中,任務(wù)給定是兩缸,所以我們在曲軸上加裝了飛輪。
對任何往復(fù)式汽油機(jī),其輸出扭矩即使在穩(wěn)定工況下也是不斷周期性變化的。通常用扭短工 不均勻系數(shù)來判斷發(fā)動機(jī)合成扭矩的均勻程度。但發(fā)動機(jī)所帶動的聳動裝置的有效阻力矩一般是定值。因此,當(dāng)曲拐在某一位置時,發(fā)動機(jī)的輸出扭矩有可能大于或小于由其所帶動的阻力矩。當(dāng)發(fā)動機(jī)的輸出扭矩大于有效阻力矩時,曲軸就加速,反之則減速,造成曲軸轉(zhuǎn)速的波動。我們把曲軸轉(zhuǎn)速忽快忽慢的這種現(xiàn)象稱之為曲軸回轉(zhuǎn)不均勻性。發(fā)動機(jī)轉(zhuǎn)速波動會產(chǎn)生一系列不良后果。如發(fā)動機(jī)驅(qū)動件與被它帶動運(yùn)轉(zhuǎn)的從動件之間產(chǎn)生沖擊,影響工作可靠性,降低使用壽命,產(chǎn)生噪音;同時使測試儀器的工作不穩(wěn)定;曲軸回轉(zhuǎn)的不均勻還會引起曲軸的振動。所以曲軸回轉(zhuǎn)的不均勻生應(yīng)控制在允許范圍內(nèi)。
要想提高發(fā)動機(jī)的運(yùn)轉(zhuǎn)的穩(wěn)定性,降低曲軸角速度波動的措施有:
(1)增加氣缸數(shù),點(diǎn)火均勻,使由于氣缸間歇性工作帶來的沖擊減少。
(2)增加發(fā)動機(jī)轉(zhuǎn)動慣量,使角速度波動率減小。最有效的方法就是安裝飛輪。
由于氣缸數(shù)已經(jīng)確定,只能通過安裝飛輪來提高發(fā)動機(jī)的運(yùn)轉(zhuǎn)穩(wěn)定。當(dāng)輸出扭矩大于阻力矩時,飛輪就將多余的功吸收而使轉(zhuǎn)速略增;當(dāng)阻力矩大于輸出扭矩時,飛輪則將其儲存的能量放出,此時飛輪的動能減小,而發(fā)動機(jī)轉(zhuǎn)速略減??梢婏w輪是一種動能儲存器,它起著調(diào)節(jié)曲軸轉(zhuǎn)速變化穩(wěn)定轉(zhuǎn)速的作用。
4.2飛輪的設(shè)計(jì)與計(jì)算
在飛輪的設(shè)計(jì)中,我們先根據(jù)經(jīng)驗(yàn)定出其外徑、內(nèi)徑和厚度b,然后在根據(jù)經(jīng)驗(yàn)公式對其進(jìn)行校核。
圖4-1(《汽油機(jī)設(shè)計(jì)》 楊連生圖5-45)
尺寸的初步確定:
飛輪外徑=(2.5~3.5)S=220~308 mm 取=260mm;
輪緣厚度h=()=13~26mm取h=15mm
=-2h=230mm;
取 b=40mm;
飛輪的圓周速度:
v===68m/s
由于v50~80 m/s 因此選取的合格。
表4-1 不同缸數(shù)i四沖程發(fā)動機(jī)的扭矩不均勻系數(shù)和盈虧功系數(shù)
(《汽油機(jī)設(shè)計(jì)》 袁兆成 表6-1)
i
1
10~20
1.1~1.8
2
8~15
0.5~0.8
3~4
5~10
0.2~0.4
6
1.5~3.5
0.06~0.1
8
0.6~1.2
0.01~0.03
12
0.2~0.4
0.005~0.01
由任務(wù)給定的數(shù)據(jù),選取各種相關(guān)系數(shù):
運(yùn)轉(zhuǎn)不均勻系數(shù)=;
飛輪轉(zhuǎn)動慣量占汽油機(jī)總轉(zhuǎn)動慣量的分?jǐn)?shù)=0.85;
盈虧功系數(shù)=0.6;
飛輪的轉(zhuǎn)動慣量:
(4-2)
=
=0.5172802404(kg)
由初步確定的尺寸按5-2式可計(jì)算出飛輪的重量:
(4-3)
HT250的密度,取7.34
=154.3510272(N)
再由式5-3可計(jì)算出假設(shè)飛輪的轉(zhuǎn)動慣量:
(4-4)
=0.342663218(kg)
由于,所以,此飛輪合格。
第五章 其他附件的設(shè)計(jì)
5.1 主軸承的設(shè)計(jì)
5.1.1主軸承的工作條件
汽油機(jī)曲軸的主軸承在工作中受到?jīng)_擊性的氣體爆發(fā)壓力和活塞連桿組慣性力的動負(fù)荷作用,由動力計(jì)算可知,其最高平均壓力達(dá)20~30MPa,面實(shí)際上從潤滑理論分析可知,潤滑油膜中局部最高油膜壓力可達(dá)平均壓力的6~10倍。由于負(fù)荷是交變的,會在合金層內(nèi)形成疲勞應(yīng)力狀態(tài),易使合金層產(chǎn)生微小裂縫,當(dāng)裂紋發(fā)展并與其裂縫相匯時,合金層就會疲勞剝落。
其次,高速汽油機(jī)中,軸承與軸頸之間的相對滑動摩擦速度可高達(dá)10m/s以上。在如此高速下運(yùn)動,即使是液體摩擦,也會產(chǎn)生大量摩擦熱,使軸瓦工作表面溫度升高到150℃。如有足夠潤滑油通過摩擦表面,則除了可以冷卻軸承外,還有可能使軸承牌完全的液體摩擦狀態(tài),即軸承和軸頸兩摩擦表面完全為一層油膜所隔開面不直接接觸,但是這種理想的液體摩擦狀態(tài)在實(shí)際汽油機(jī)工作過程中并不能完全等到保證。因?yàn)槠蜋C(jī),尤其是汽車拖拉機(jī)類型的運(yùn)輸式汽油機(jī),使用工況經(jīng)常變動,起動和制動頻繁,容易發(fā)生所謂的邊界摩擦,這時兩個摩擦面依靠分子間的引力,各自吸附一層幾個分子厚的潤滑油膜,金屬表面完全被這一層邊界油膜所隔開。一旦邊界油膜破裂,金屬材料就可能相接接觸,發(fā)生固體摩擦,造成強(qiáng)烈磨損,甚至表面熔化,互相括號在一起,這是軸承損壞的根源,必須避免。
隨著汽油機(jī)工作時間的增加,呈泡沫狀和霧化狀的發(fā)動機(jī)機(jī)油,在100℃左右的高溫作用下不斷被氧化變質(zhì),形成有機(jī)酸,對軸承表面產(chǎn)生腐蝕作用。油中機(jī)械雜質(zhì)也逐漸積累,使軸承和軸頸表面遭受損傷。
此外,曲軸以及曲軸箱等制造有誤差,在工作中還可能發(fā)生變形,使軸頸與軸承之間產(chǎn)生局部的負(fù)荷集中,影響軸承的正常工作。
根據(jù)這些具體的工作情況,在汽油機(jī)中一般都應(yīng)用由多層金屬或合金構(gòu)成的軸承。因?yàn)橐话憔哂休^高力學(xué)性能的材料,其表面摩擦性能就不好;反之,具有良好表面摩擦性能的材料機(jī)械強(qiáng)度一般較差,單金屬軸瓦不能滿足調(diào)整重負(fù)荷曲軸軸承的要求。曲軸軸瓦一般由鋼瓦背與減摩層組合而成,瓦背保證整個軸瓦的機(jī)械強(qiáng)度,而薄的減摩層保證良好的摩擦性能。具體來說,軸瓦的工作條件是:
(1)很高的動負(fù)荷作用。容易形成疲勞應(yīng)力狀態(tài),造成金屬層剝落。
(2)相對滑動速度高。由于摩擦,軸頸表面產(chǎn)生高溫,達(dá)到150℃以上,導(dǎo)致機(jī)油粘度下降,承載能力下降。
(3)機(jī)油在長期高溫下被氧化變質(zhì),形成有機(jī)酸,腐蝕金屬表面。
(4)有時形成干摩擦,使金屬表面熔化、粘合、撕裂。
(5)由于制造誤差和機(jī)械變形,造成邊緣負(fù)荷。
5.1.2 軸承材料選定
(1)材料要求
1)有很高的機(jī)構(gòu)攻耐熱性。
2)有足夠的減摩性能,抗咬粘性、順應(yīng)性、嵌藏性。
3)有較好的耐蝕性。
4)瓦背與減摩層有足夠的結(jié)合強(qiáng)度,不因剪切力和熱應(yīng)力而分層。
(2)常用軸承材料
白合金(巴氏合金)
1) 錫基白合金 該合金含銅3%~5%,含銻7%~12%,其余是錫。錫的主要目的是提高硬度,加銅是為了防止錫偏析。錫基白合金具有優(yōu)異的減摩性能和嵌藏性,而且工藝性好;缺點(diǎn)是疲勞強(qiáng)度低和高溫硬度和強(qiáng)度明顯降低。
2)鉛基白合金 該合金含錫5.5%~6.5%,含銻5.5%~6.5%,其余是鉛。這種合金成本低,耐疲勞性、減摩性高,高溫硬度下降少;缺點(diǎn)是耐摩性稍差。主要用于負(fù)荷不太高的汽油機(jī)。
銅基合金
隨著發(fā)動機(jī)的不斷強(qiáng)化,對減摩材料疲勞強(qiáng)度要求大大提高。因此在中高速汽油機(jī)和車用汽油機(jī)上,高強(qiáng)度減摩合金的銅鉛合金軸瓦的鉛青銅合金軸瓦被大量采用。銅鉛合金中含鉛25%~35%,其余為銅;鉛青銅中含鉛5%~25%,含錫3%~10%,其余為銅??紤]到銅和鉛的熔點(diǎn)和密度相關(guān)懸殊,在結(jié)晶過程中容易出現(xiàn)偏析,會使性能惡化,還可加入少量的其他元素如硫、鎳、銻等,以減輕以上現(xiàn)象。
鋁基合金
鋁基合金的基本成分為鋁、錫、銅。比較起來,鋁基合金的耐疲勞性、減摩性、耐蝕性最好,其中含錫6%的低錫鋁合金性能更好。銅鉛合金次之,白合金最差。鋁基合金軸承目前主要用于高速大功率、中速汽油機(jī)和車用汽油機(jī)上,有廣泛應(yīng)用的趨勢;缺點(diǎn)是線膨脹系數(shù)較高。
(3)軸瓦的瓦背材料
汽油機(jī)的工作條件對瓦背所提出的要求如下:
1)瓦背與合金 層的粘結(jié)性能良好,即應(yīng)該有足夠的粘結(jié)強(qiáng)度。
2)軸瓦與軸承座必須是過盈配合,因此瓦背應(yīng)具有足夠的屈服強(qiáng)度。
5.1.3 軸瓦結(jié)構(gòu)設(shè)計(jì)與主要尺寸的確定
(1)主軸瓦厚度t
已知主軸頸直徑=80 mm,由于薄壁軸瓦結(jié)構(gòu)輕巧,制造精度高,互換性好,適于大量生產(chǎn)的特點(diǎn),本次設(shè)計(jì)采用薄壁軸瓦。初步選取
主軸承厚度t:t/D=(0.02~0.05)D=2.2~5.5mm 取t=2.5mm;
主軸承內(nèi)徑d:d=60mm
外徑:=d+2t=65mm
(2)軸承寬度B和油槽
1)寬度B
汽油機(jī)曲軸各軸承的寬度一般取決于發(fā)動機(jī)的總體布置。現(xiàn)代高速汽油機(jī)為了獲得緊湊的外形尺寸,總是盡量縮短氣缸中心距,以致主軸承的寬度與內(nèi)徑之比縮短到B/ d=0.35~0.4,初步選取
B=(0.35~0.4)d=21~24 mm。
2)油槽
試驗(yàn)證明,在其他條件不變的情況下,油膜壓力與軸承寬度的三次方成正比,所以當(dāng)軸承面積相同時,開油槽軸承的承載能力僅為無油槽軸承的1/4。由于主軸承下軸瓦為主要承壓面,因此本次設(shè)計(jì)將油槽開在上軸瓦上。
5.2 曲軸扭轉(zhuǎn)減振器
在發(fā)動機(jī)工作過程中,連桿作用在曲軸上的力呈周期性變化。這樣就會使質(zhì)量較小的曲拐相對于質(zhì)量較大的飛輪有扭轉(zhuǎn)擺動(曲拐轉(zhuǎn)速較飛輪轉(zhuǎn)速忽快忽慢),這就是曲軸的扭轉(zhuǎn)振動。當(dāng)這種扭轉(zhuǎn)振動的自振率頻與連桿傳來的呈周期性變化的激振頻率成整數(shù)倍關(guān)系時,曲軸便會產(chǎn)生共振。這種現(xiàn)象既損失發(fā)動機(jī)的功率,也會破壞曲軸和裝在上面的驅(qū)動齒輪、鏈輪、鏈條等附件,嚴(yán)重時甚致將曲軸扭斷。為消除這種現(xiàn)象,曲軸前端裝有扭轉(zhuǎn)減振器,如圖2-56所示。
汽車發(fā)動機(jī)最常用的曲軸扭轉(zhuǎn)減振器是摩擦式扭轉(zhuǎn)減振器,其可分為橡膠式扭轉(zhuǎn)減振器及硅油式扭轉(zhuǎn)減振器兩類。
在橡膠摩擦式扭轉(zhuǎn)減振器中如圖2-57所示,轉(zhuǎn)動慣量較大的慣性盤5用一層橡膠墊和由薄鋼片沖壓制成的盤3相連。盤3和慣性盤5都同橡膠墊4硫化粘接。盤3的轂部用螺釘固定在裝于曲軸前端的風(fēng)扇皮帶輪上。當(dāng)曲軸發(fā)生扭轉(zhuǎn)振動時,曲軸前端的角振幅最大,而且通過皮帶輪轂帶動圓盤3一起振動。慣性盤5則因轉(zhuǎn)動慣量較大而實(shí)際上相當(dāng)于一個小型的飛輪,其轉(zhuǎn)動瞬時角速度也就比圓盤3均勻得多。這樣,慣性盤5就同盤3有了相對角振動,而使橡膠墊4產(chǎn)生正反方向交替變化的扭轉(zhuǎn)變形。這時由于橡膠墊變形而產(chǎn)生的橡膠內(nèi)部的分子摩擦,消耗扭轉(zhuǎn)振動能量,整個曲軸的扭轉(zhuǎn)振幅將減小,把曲軸共振轉(zhuǎn)速移向更高的轉(zhuǎn)速區(qū)域內(nèi),從而避免在常用轉(zhuǎn)速內(nèi)出現(xiàn)共振。上海桑塔納轎車發(fā)動機(jī)的曲軸上采用了橡膠扭轉(zhuǎn)減振器。
橡膠減振器結(jié)構(gòu)簡單,工作可靠,可選擇獲得最大減振效果的固有頻率.也可系列化。此外,還有干摩擦式扭轉(zhuǎn)減振器和粘液式減振器。扭振減振器常放在扭振振幅最大的曲軸自由端。為節(jié)省空間或傳動上的方便.很多小轎車汽油機(jī)上常利用皮帶輪作為減振體。在一些高級轎車汽油機(jī)上,還采用雙重減振器,它是在皮帶輪的外圓柱面和內(nèi)側(cè)端面分別用橡膠與一個扭振減振體和一個彎曲減振體硫化成整體。它可抑制曲軸的扭轉(zhuǎn)振動和彎曲振動。
本設(shè)計(jì)選用橡膠式扭轉(zhuǎn)減振器。
參考文獻(xiàn)
[1]汽油機(jī)科技叢書_高速汽油機(jī)概念設(shè)計(jì)與實(shí)踐_許道延_2003
[2]汽車發(fā)動機(jī)現(xiàn)代設(shè)計(jì)_徐兀_1995
[3]姜洪宇,黃春元.國內(nèi)外曲軸加工技術(shù)的現(xiàn)狀及發(fā)展.黑龍江科技信息,2008
[4]汽油機(jī)學(xué)_周龍保_2000
[5]邵立新,段立霞.汽油機(jī)曲軸結(jié)構(gòu)設(shè)計(jì)的方法.農(nóng)機(jī)使用維修,2008
[6]陳家瑞.汽車構(gòu)造.北京:機(jī)械工業(yè)出版社,1994:62-88
[7]閆蔭裳.幾何精度學(xué).北京:機(jī)械工業(yè)出版社,1996:22-35
[8]姚建明.汽油機(jī)的一般設(shè)計(jì)方法.上海:上海汽油機(jī)研究所:325-362
[9]徐灝.機(jī)械設(shè)計(jì)手冊.北京:機(jī)械工業(yè)出版社,1991:268-341
[10]趙士林.九十年代汽油機(jī).北京:機(jī)械工業(yè)出版社:18-65
[11]蔣德明.汽油機(jī)原理.北京:機(jī)械工業(yè)出版社,1988:12-65
[12]符錫候,楊杰民.車輛用汽油機(jī)總體設(shè)計(jì).上海:上海交通大學(xué)出版社:268-351
[13]楊可楨.機(jī)械設(shè)計(jì)基礎(chǔ).北京:高等教育出版社,1998:135-221
[14]楊杰民.現(xiàn)代汽車發(fā)動機(jī)技術(shù).上海:上海交通大學(xué)出版社 ,1999:134-168
[15]H李斯特A皮辛格.汽油機(jī)設(shè)計(jì)總論.機(jī)械工業(yè)出版社,1975:165-214
結(jié) 論
這次設(shè)計(jì)的三個月時間里,我從不了解到深刻的理解汽油機(jī)曲軸飛輪組的設(shè)計(jì)課題,,對我們大學(xué)四年所學(xué)到的知識,特別是對機(jī)械設(shè)計(jì)、機(jī)械原理、汽車構(gòu)造、發(fā)動機(jī)原理,發(fā)動機(jī)設(shè)計(jì)以及機(jī)械制圖方面的知識有了更深的理解和提高。并且從中培養(yǎng)了自己對問題的獨(dú)立思考能力以