對價(jià)值流優(yōu)化方法應(yīng)用的公司在建筑行業(yè)的協(xié)作網(wǎng)絡(luò)【中文4800字】【PDF+中文WORD】
對價(jià)值流優(yōu)化方法應(yīng)用的公司在建筑行業(yè)的協(xié)作網(wǎng)絡(luò)【中文4800字】【PDF+中文WORD】,中文4800字,PDF+中文WORD,價(jià)值,優(yōu)化,方法,應(yīng)用,公司,建筑行業(yè),協(xié)作,網(wǎng)絡(luò),中文,4800,PDF,WORD
2212-8271 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto Tetidoi:10.1016/j.procir.2013.09.069 Procedia CIRP 12 (2013)402 407 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering Adaptation of the value stream optimization approach to collaborative company networks in the construction industry D.T.Matta,b,D.Krausea,*,R.Raucha aInnovation Engineering Center,Fraunhofer Italia Research,Schlachthofstr.57,39100 Bozen,Ialy bFaculty of Science and Technology,Free University of Bolzano,Piazza Universit 5,39100 Bozen,Italy*Corresponding author.Tel.:+39-0471-1966914;fax:+39-0741-1966949.E-mail address:daniel.krausefraunhofer.it Abstract While in the automotive or aerospace industry the use of automation technology and processes and the application of lean manufacturing methods are common nowadays,the construction industry is lagging behind these developments.In this context,with the help of value stream design,largely known in mass production but recently also in variant intensive manufacturing,the process flows within single companies but especially amongst the partners in such a collaborative network can be designed in a highly customer-oriented and efficient way 1.Therefore,this paper describes in detail a methodology to design an integrated and customized value stream map for construction industries requirements.The approach was developed and verified based on a collaborative project of applied research with the 2012 The Authors.Published by Elsevier B.V.Selection and/or peer-review under responsibility of Professor Roberto Teti Keywords:Production;Process;Customization.1.Introduction Already in the early 60 the target of an industrialized construction value chain was followed in order to be more competitive against the growing low cost countries in Europe.Efficiency and construction costs were drastically reduced by rationalizing the construction process,pre-fabrication of construction elements and the development of innovative construction machines 2.Later,with the development of the Lean Thinking approach derived from the Toyota Production System 3,new organizational methodologies even for the construction industry were available.Despite these construction optimization activities,which were actively pushed by research as well as industry,only a few punctual projects could be realized.In this context,a significant margin of labor productivity can be detected for the construction industry.This margin amounts in Italy to about 15%from 1995 to 2007 4.Also in the fields of occupational safety and supply-chain and materials management significant deficiencies can be detected,which are compounded by the declining skills in the labor market 5.A recent study has proven potential cost and time savings trough process optimization of about 30%as realistic for the construction industry.As a consequence,it is not surprising that more than 30%of the people involved in construction business are unhappy with the processes they work with 6.Another fundamental problem of the construction industry consists in the competition for projects that is mainly cost focused:the cheapest bid wins and the very conservative industry invests little time,money or energy in innovation and thus realizes only incremental changes.The co-acting of the aforementioned factors leads to a negative spiral,which creates an increasing competitive pressure especially on small and medium sized enterprises(SME)in the construction sector and construction-related industries.Due to these problems,the cooperative and aims to develop and implement a cooperative project platform for an industrialised,integrated and intelligent 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto TetiAvailable online at ScienceDirect403 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 construction 7build4future-consortium is co-funded by the Italian province of Bolzano and is coordinated by Fraunhofer Italia(IEC Innovation Engineering Center).It involves 12 Italian SMEsa from construction and construction related industries as well as an interdisciplinary research team formed by Fraunhofer Italia,the Free University of Bolzano,the South Tirolean CasaClima Agency and the TIS Innovation Park.Tbuild4future is to rethink and redesign the entire value chain for customized construction involving a discrete number of different players,and to reach a level of efficiency and industrialization known from other industries.2.The value stream engineering approach A value stream can be defined as the sum of every specific action within the manufacturing of a certain product 8.In this context,the physical transformation of raw materials to a finished product as well as the therefore needed information management must be considered for the value stream.In order to be able to see and in particular to understand the value stream,a lean production 3 method called value stream design was developed for the description and optimization of production processes.Value steam design supports the process engineer to visualize the value stream and the like wearing lean glasses,as 9 shortly sums it up.Within this publication the authors propose guidelines to eliminate waste increasing simultaneously the value added share of a process.The concept of value stream mapping was first implemented by the automotive industry especially for series production with limited variant number 10.Later it was expanded to various industries and branches.On this basis,the Fraunhofer Institute for Industrial Engineering(IAO)adapted the value stream design methodology to the specific needs of the single-part and small batch production with high diversity of product typologies and variants.The resulting approach,called value stream engineering,uses process patterns 11,which are first developed methodically,then standardized and finally projected.Thus,in industrial enterprises implemented process patterns are frequently projected according to the operational situation.This approach makes it possible to represent every step of the workflow,even preceding indirect activities(e.g.development),from customer to customer.Furthermore,a Alpi Fenster GmbH,Studio Arch.Ralf Dejaco,Erlacher Innenausbau KG,Euroclima AG,Eurotherm AG,EXPAN GmbH,Frener&Reifer Metallbau GmbH,Glas Mller Vetri AG,Lanz Metall GmbH,Plattner Bau AG,Tecno Spot GmbH value stream engineering enables the process engineer to not just visualize and analyze the value stream for a certain product group,but also for different product groups in one process map.Beside this,even different customer groups are considered.Thereby resources used by different product and/or customer groups can be identified and scheduled in an easier way.Thus,the value stream engineering approach is tailored for the single-part and small batch production with high diversity of product typologies and variants.3.Customized methodology for construction process design on the basis of value stream engineering In construction projects,a process map needs to integrate various different craft trade businesses along the value chain based on concepts optimizing the building process and organization.Such concepts may be existing lean management 12 or lean construction 13 methodologies as well as innovative contractual approaches 14,15 promoting cooperative project handling.Additionally,in contrast to other industries,the mapping of a holistic construction process has to be highly flexible and adaptable in terms of product and process as construction firms are not able to operate on basis of a fixed target process because of the changing customer requirements from one project to the next.Therefore,the ideal mapping process for cooperative construction projects is a customized integration of different lean trade processes,compounded and designed according to individual needs of a certain construction project.The value stream engineering approach for modeling and representing strongly structured business processes 16 covers mainly the gap from customized manufacturing to series production 10.As this represents a preliminary stage from the series production to the one-of-a-kind production,as we have in the building sector,the value stream engineering has been taken as a basis for the development of the new customized mapping methodology described in the following sections.3.1.Requirements definition for classified customer scenarios As various building projects can be very different(e.g.industrial buildings compared to private residential buildings),the building characteristics take a considerable influence on the individual construction process and thereby on the trades executing the processes 17.In order to make this specific characteristic of the building industry clearer,figure 1 exemplary illustrates three different customer scenarios 404 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 and their direct implication on the three main targets of project management that are quality,cost and time.Fig.1.Different customer scenarios implicate different constructionprocessesTheillustrationdemonstratesthe differentimplications of individual building projects on theconstruction process.Thesevery differentprojectconditions complicate the internal elaboration of an efficient template process for every single trade.Thus,the mostly small and medium sized craft tradebusinesses(about 90%of the European construction industry 18)collaborating simultaneously in different typologies of projects need to perform on a very highflexibility level.In order to introduce a classification of constructionprojects,the most significant characteristics havingimpact on the process and their possible specificationswere brainstormed within the-project.In order to combine thesespecifications to coherentcustomer scenarios,the morphological box 19 wasintroduced as a scientific methodology.On this basis,customer scenarios,especially for the local market were defined.As an example for such a customer scenario thetypical South Tyrolean wooden house,following a modern and individual design can be named.The requirements,distinguishing different customerscenarios,are defined on the basis of the three primary objectives in project management.According to this,primarily low costs,low project lead time and at thesame time high quality are the crucial requirements a customer demands.Beside the initial determination of those three project objectives trough planning,even thecompliance during execution is fundamental for thecustomer.Thus,three more requirements were defined:cost compliance,construction time compliance and quality compliance.Furthermore,the cost aspect is divided into investment cost and operating costs.Quality is in addition divided into ecological usage of resources,living comfort,architecture and mutability.Altogether,there are ten customer requirements.The single requirements can now be weighted according to their relevance for the investigatingcustomer scenario.Therefore,the method of paired comparison 19 is used to rank alternative solutionsregarding predefined criteria by directly comparingevery single alternative with every other alternative.After having ranked the alternatives,they can beweighted to afterwards carry out a scoring model analysis 19.The ranking and weighting of the ten identified requirements is shown for an exemplary customer scenario in figure 2.Fig.2.Weighting of the customer requirements3.2.Development and modeling of lean-optimized process patternsThe development of process patterns was done based on a problem analysis in construction industry also carried out within the build4future-project.These analyses lead to a better understanding of theprocess organization of the small-structured and highly fragmented construction industry.Thus,four main fieldsof action could be identified:1.Optimization of management and control during n nconstruction execution(organization and information technology)2.Optimization of construction site logistics(interface between production and construction site)3.Linkage of planning and execution(strengthening of 4.Intelligent Change ManagementThese fields of action were taken as a starting point for the development of process patterns.Starting there,a catalogue of measures was defined,which enables theresearch team to systematically improve the fields of action using lean principles.An example for a measureoptimizing the planning and control during construction execution(field 1),the implementation of thePlannerprocess pattern(Figure 3)can be named.TheLast Planner System20 is a control system,which405 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 promotes the implementation of execution planning and is particularly helpful forinterdisciplinary on sitemanagement and organization.An example for optimizing the construction sitelogistics(field 2)is a lean logistics process pattern for supply for the construction site could be delivered in aninnovative,building phase-related way.Another logistics measure implements a-in-pattern for a rational prefabrication of client-specificproducts inside the enterprise with a timely supply onthe construction site 7.The representation of the process pattern is doneaccording to the standardized value stream engineeringnotation.However,adapting the valuestream engineering approach to construction,several notation standards needed to be changed or added in order to beable to describe the construction processes in a suitableway.A further adaption to the construction industry willbe worked out when necessary,considering project-,product-and contract-related framework conditions.pFig.3Last Planner process pattern with timeline visualizationUntil the actual stage of the research,the followingfour functional clusters of process patterns have beendetermined:Table 1.Functional clusters and developed process patternsFunctional clusterProcess patternOrder fulfillmentEngineer-to-OrderConfigure-to-OrderOrganizational form of productionConstruction site productionWorkshop productionFlow productionProject controlCentral push-project control trough the siteforemanDecentralized pull-project control with Last PlannerProcurement logisticsReorder point controlled direct deliveryPlanning controlled direct deliveryProject plan determined direct deliveryPre-assembly and final-assembly by thesupplierCommissioning and final-assembly trough the supplier-construction sitesIn order to be able to select the right process pattern of a functional cluster,the process patterns need to beevaluated regarding their field of application.In thiscontext,for cluster 2 needs to be evaluated theapplicability for pre-fabrication or pre-assembly and construction site fabrication orconstruction site assembly.For cluster 4 the applicability of the process pattern for different types of material(building materials,building elements,indirect materials andoperating materials)21 and means for work need to beevaluated.After having developed lean process patterns deriving from the catalogue of measures,their applicability forthe investigating customer scenario(see 3.2)needs to beevaluated.Therefore,the following four-staged scaleevaluation is applied for the ten customer requirements introduced in section 3.1:Table 2.Description of the four-staged scale evaluationEvaluationDescriptionSuitableThe requirement is fulfilled by the process patternwithout any significant restrictionPartial suitableThe requirement cannot be fulfilled by the processpattern without any significant restrictionNot suitableThe requirement cannot be fulfilled by the processpattern;the process pattern is contradictory to theprocess patternNot relevantThe requirement is not influenced by the process pattern and is thus not relevant3.3.Selection of process patterns according to thecustomer requirementsIn this section,the matching of the requirementsderived from individual customer scenarios with the lean-optimized process patterns will be described.The selection approach uses the scoring model 19 toselect the appropriate process pattern from the four functional clusters to afterwards design the investigating construction process map.The scoring model determines first the single values of benefit based on the weighted paired comparison of the project requirements and the evaluated processpatterns.The ideal process pattern results from thehighest value of benefit reached and is thus suitable to beused for mapping the construction process.Using thisapproach for every cluster of process patterns,an individual value stream according to the lean thinkingprinciples can be designed.406 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 Selecting a process pattern from functional cluster 2and 4,also their field of application is decisive.Thus,only the process patterns applicable for the investigating case are considered.4.Case StudyThe applicability of the customized methodology was verified on a first prototype value stream for thecustomer scenario of wooden houses in the medium price segment.4.1.Introduction of the customer scenarioiddle class wooden houseThe investigating customer scenario represents a pre-fabricated residential wooden house with post-and-beam construction technique.The customer type sets a high value on turn-key order handling(general contractor),price guarantee and ecological construction 22.n nThe building technique enables an individual pre-fabrication of the various construction elements,whichare subsequently assembled on the construction site.Thepre-fabricated elements are thereby customized based on standardized construction configurations.The project handling process for the given customer scenario starts at the entrance of a customer order and precedes with the conceptual design and the sampling trough the constructor.Afterwards,the production drawings for the various construction elements aredesigned and sent to the internal and externalfabrications.After the final assembly of the construction elements on the construction site,the project is accepted by the constructor and ready to be occupied.In order to get a better understanding of theprocesses,expert interviews and on-site analysis of thepre-fabrication and the construction site assembly havebeen carried out at Rubner Haus AG,an internationally well known Italian wooden house manufacturer.4.2.Selection of suitable process patterns and design of the value stream mapBased on the weighted requirements for the customere values of benefit for the single process patterns are calculated.For every functional cluster of process patterns,the processpattern showing the highest value of benefit has to bechosen to design the value stream.This selection isshown for the four functional clusters of process patternsin the following:Table 3.Selected process patternsFunctional clusterProcess patternOrder fulfillmentConfigure-to-OrderOrganizationalform of productionPre-fabrication:flow productionFinal-assembly:construction site productionProject controlDecentralized pull-project control with Last PlannerProcurement logisticsBuilding materials:-Run with supermarketBuilding elements:Planning controlled direct delivery(Just-in-Time)Means for work:Commissioning and final-assembly trough the supplierIndirect and operating materials:Reorder point controlled direct delivery combined with-The integration of the above selected process patternsinto a customized prototype process map is illustrated in figure 4.This step has to be done manually,to really be able to customize the interface between the processpatterns.In order to keep the mapping simple and understandable it is done on a maximum A3 page sizeusing MS Power Point templates.Fig.4.Prototype value streaBeginning on the right on top of the map,the constructor places an order and the planning phase begins.According to the selected Configure-to-Order project handling,the drawings are distributed from the technical offic
收藏