機(jī)車軸承座自動上下料專用機(jī)構(gòu)設(shè)計【含15張CAD圖紙】
喜歡就充值下載吧,,資源目錄下展示的全都有,,下載后全都有,dwg格式的為CAD圖紙,有疑問咨詢QQ:414951605 或1304139763
CHANGCHUN INSTITUTE OF TECHNOLOGY
Design of Mechanical Structure of Punch Feeding Manipulator
抽油機(jī)機(jī)械結(jié)構(gòu)設(shè)計
資料來源: Conf .Ser.1087 042031
設(shè)計題目: 機(jī)車軸承座自動上下料專用機(jī)構(gòu)
學(xué)生姓名: 郭 靖
學(xué)院名稱: 長春工程學(xué)院國際教育學(xué)院
專業(yè)名稱: 機(jī)械設(shè)計制造及其自動化
班級名稱: 機(jī)制1646班
學(xué) 號: 1622421611
指導(dǎo)教師: 于 博
教師職稱: 講 師
完成時間: 2020年6月4日
2020 年6 月 4 日
譯文標(biāo)題
抽油機(jī)機(jī)械結(jié)構(gòu)設(shè)計
原文標(biāo)題
Design of Mechanical Structure of Punch Feeding Manipulator
作 者
鄒哲祥,文凱燕,黃寶山
譯 名
國 籍
中國
原文出處
IOP Conf
譯文:
抽油機(jī)機(jī)械結(jié)構(gòu)設(shè)計
摘要:介紹了一種汽車沖壓自動送料機(jī)械手. 它可以實現(xiàn)自動抓取、裝載、下料等各種汽車零部件的工藝循環(huán),適用于大批量、小型機(jī)械零件的材料加工。 本文的主要目的是介紹機(jī)械手的結(jié)構(gòu),設(shè)計機(jī)械手的虛擬樣機(jī)。 通過運動過程和運動原理的分析,對機(jī)器人關(guān)鍵運動部件進(jìn)行了應(yīng)力應(yīng)變的計算和優(yōu)化。 與多關(guān)節(jié)機(jī)器人相比,它的制造、控制要求和成本都很低。 該機(jī)器人適用于大批量、小零件的加工。
1. 導(dǎo)言
在汽車生產(chǎn)中,許多不同的零件需要送到機(jī)床上,然后經(jīng)過精加工后才能卸貨。 但對于一些重型和大型金屬沖壓件,需要較大的工作空間、操作困難和安全性差。 機(jī)器人配合機(jī)床在數(shù)控機(jī)床上更換手動操作。 在平衡控制能力和功能要求的前提下,該設(shè)計實現(xiàn)了小型汽車零部件生產(chǎn)的抓取、加載和下料等過程。 它還適用于汽車傳動齒輪、制動盤、金屬沖壓件等大批量、小型機(jī)械零件材料生產(chǎn),降低企業(yè)投資成本,提高競爭力。
2. 喂料機(jī)械手的設(shè)計
為了增加穩(wěn)定性,滿足不規(guī)則汽車零件的要求,設(shè)計在四軸圓柱坐標(biāo)機(jī)器人上增加了一個軸。 通過對所有坐標(biāo)結(jié)構(gòu)的分析和機(jī)械手的自由度分析,五軸圓柱坐標(biāo)機(jī)械手滿足了靈活性和簡單控制器的要求。 一般情況下,三個車廂的門板金屬重量約10公斤。 并根據(jù)不同的形狀和大小,制動盤重約6kg~15kg。 但普通,汽車鈑金重量約25kg.. 根據(jù)上述日期,為了節(jié)省大部分零件的處理成本,將機(jī)器人的最大負(fù)荷設(shè)置為30kg。 其技術(shù)指標(biāo)見表1..
圖1為新型經(jīng)濟(jì)型自動送料機(jī)械手示意圖.. 其包括機(jī)架,絲杠,三伺服電機(jī),法蘭盤,減速電機(jī),齒輪同步帶傳動機(jī)構(gòu)和PLC控制裝置.. 將3臺伺服電機(jī)固定在機(jī)架上,通過螺旋驅(qū)動器和齒輪驅(qū)動器通過直線導(dǎo)軌和直線交叉導(dǎo)軌控制機(jī)械手到水平運動和垂直運動。
第一軸電機(jī);第一軸的2-直線導(dǎo)軌組件;3-第二軸電機(jī);4-第二軸減速器;5-第三軸電機(jī);6-第三軸皮帶驅(qū)動直線導(dǎo)軌
總成;7-第四軸電機(jī);8-第四軸皮帶傳動總成;9-第五軸電機(jī);10-第五軸法蘭;11-空心軸
圖1. 送料機(jī)器人的原理圖.具體工作原理為:.
一,機(jī)械手收起工件.. 然后,第一軸電機(jī)帶動滾珠絲杠轉(zhuǎn)動,使整個第二軸電機(jī),空心軸等都向上運動在另一個工件被一定高度抓取..
第三軸電機(jī)通過同步帶輪傳動帶動第三軸帶傳動直線導(dǎo)軌組件向后移動,使機(jī)械臂與工件一起收縮..
第二軸電機(jī)驅(qū)動零件上方的整個空心軸旋轉(zhuǎn)以移動工件。 第四軸電機(jī)可通過皮帶傳動轉(zhuǎn)動第五軸電機(jī).. 且第五軸電機(jī)可旋轉(zhuǎn)改變機(jī)械臂方向.. 在兩個電機(jī)的配合下,機(jī)器人可以轉(zhuǎn)動和旋轉(zhuǎn)工件,以達(dá)到預(yù)期的姿態(tài)。
第二軸到達(dá)一定位置后停止,第三軸機(jī)械臂伸出達(dá)到所需位置,第一軸向下移動,以便工件進(jìn)入機(jī)器。 放手,回到工件的起點.. 這是完成裝載一次。 并按照這個周期進(jìn)行工作.. 沖裁的原理也是如此類推..
在真空吸附機(jī)械手上安裝后,本設(shè)計可用于較小的汽車鈑金生產(chǎn)。 如白身門,頂蓋,頭蓋鈑金等.. 如果安裝在專用夾具夾持器上,則可用于生產(chǎn)線的其他汽車部件。 如齒輪,輪轂,摩擦盤等..
3. 送料機(jī)器人的原理圖
為了使結(jié)構(gòu)在整體結(jié)構(gòu)中更加緊湊,在中心軸線上安裝了第二軸電機(jī)和第三軸電機(jī),第四軸電機(jī)安裝在相反的方向上,通過皮帶傳動驅(qū)動第四軸。 同時將轉(zhuǎn)軸設(shè)置為第二轉(zhuǎn)軸.. 機(jī)器人只需要驅(qū)動旋轉(zhuǎn)部件上方的第三個軸。 到機(jī)器人具有較好的穩(wěn)定性,它將機(jī)械臂轉(zhuǎn)動時的轉(zhuǎn)動慣量降到最低,第四軸電機(jī)平衡出一小部分自由基力.. 第三軸被設(shè)置為沿直線導(dǎo)軌控制運動的電機(jī)。 它消除了液壓缸驅(qū)動第三軸的各種缺點。 動件的控制線接線中,對于電氣控制線沒有包繞的部位我們采用了罐帶式..
首先,我們選擇伺服電機(jī)型號152G1MHME高慣性三相永磁同步交流伺服電機(jī)作為第一軸電機(jī)。 其次,選擇5AZG1MHME高慣性三相永磁同步交流伺服電機(jī)作為二軸和三軸電機(jī)。 第三,選擇022G MHMD伺服電機(jī)作為四軸和五軸電機(jī).. 選用的主控制器PLC控制工程有限公司生產(chǎn)的DCCE網(wǎng)絡(luò)大連計算機(jī)可編程控制器PEC6600。 ΔASDA-B2系列伺服電機(jī)控制器的選擇是一種開放式伺服驅(qū)動器。 電源選用PMT系列平板式工業(yè)電源以及220V電源.. 觸摸屏類型選用昆侖北京國家自動化軟件技術(shù)有限公司TPC7062觸摸屏。 圖2是機(jī)械手的虛擬原型。
第一軸總成;2-第二軸總成;3-第三軸總成;4-第四軸總成;5-第五軸總成;6-控制柜
圖2. 沖床喂料機(jī)械手的虛擬樣機(jī)
4. 關(guān)鍵操作的應(yīng)力分析
圖3. 鋁合金機(jī)械手的應(yīng)變圖.
三軸機(jī)器人臂在支點處受力巨大,機(jī)械手末端可能出現(xiàn)相對較大的撓度。 當(dāng)抓斗抬起工件,甚至導(dǎo)致機(jī)械臂斷裂時,它會出現(xiàn)不必要的移位和抖動。 與2018年鋁合金和Q390低合金高強度結(jié)構(gòu)鋼相比,第三軸機(jī)械臂具有有限元分析,應(yīng)變圖如圖3所示我們嘗試使用2018年鋁合金作為機(jī)械臂材料,機(jī)械手的末端在350N的壓力下。 通過有限元分析和SIMULATION,可以直接獲得機(jī)械臂的應(yīng)力和應(yīng)變,如圖4所示的應(yīng)力圖中的鋁合金機(jī)械臂和圖3所示的應(yīng)變圖中的鋁合金機(jī)械臂。
用米塞斯等效應(yīng)力進(jìn)行校核,比用第三強度理論進(jìn)行校核更為合適。 遵循材料力學(xué)第四強度理論(形狀變化理論)..
從分析圖3中可以得出一些結(jié)論。 機(jī)械手的最大撓度在2018年鋁合金為4.498毫米。 這對機(jī)械臂確實是有害的,由于位移過大造成了起點定位,會出現(xiàn)振動問題。 因此,2018年鋁合金不符合該機(jī)械手的剛度要求。
圖4. 結(jié)構(gòu)鋼機(jī)械手的應(yīng)變圖.
重新計算后,采用Q390低合金結(jié)構(gòu)鋼作為機(jī)械臂材料. 鋼的等效屈服應(yīng)力大于鋁合金,滿足強度要求。
應(yīng)變分析如圖4所示為結(jié)構(gòu)鋼機(jī)械臂應(yīng)變圖.. 如圖所示,最大撓度為1.58mm,在可接受范圍內(nèi)比以前小兩倍。 因此三軸機(jī)械臂決定由Q390低合金結(jié)構(gòu)鋼制造.
圖5. 機(jī)器人手臂的連接圖.
通過有限元方法,對機(jī)械手和螺桿滑塊強度進(jìn)行了標(biāo)定,機(jī)械臂的位置如圖5所示,用六個螺釘固定。 安裝螺釘后,我們得到了圖6中機(jī)械手螺栓的應(yīng)力圖。
如圖6所示,在最大應(yīng)力下,內(nèi)六角螺釘M6為117.581mpa,
安全系數(shù)為2,使用抗拉強度大于235.16mpa的材料。 所以我們用了No.. 正火后的15根鋼螺桿,其抗拉強度為355MPa,足以作為機(jī)械臂連接件。 有鑒于此,用六個螺釘固定機(jī)械手,機(jī)械手應(yīng)力350N壓力結(jié)束,安全系數(shù)為2倍。 使用M6六角螺釘從編號。 45鋼固定可以滿足要求。
圖6機(jī)械手螺桿孔的應(yīng)力圖
5. 結(jié)論
通過分析,實驗結(jié)果表明,用于裝料和下料機(jī)械手的五軸汽車沖壓機(jī)床各部件均能滿足設(shè)計要求.. 它采用PLC控制系統(tǒng),在物料臺和機(jī)床之間精確地移動了大部分輕型汽車零件和進(jìn)、出物料。 同時,它允許調(diào)整零件的形式,以及滿足生產(chǎn)中的各種翻轉(zhuǎn)和旋轉(zhuǎn)要求。
外文原文
Design of Mechanical Structure of Punch Feeding Manipulator
Zhexiang Zou, Kaiyan Wen, Baoshan Huang
Zhuhai College of Beijing Institute of Technology, Guangdong, China, Zhu’hai,
Guangdong 519085, China zouzhexiang_1020@126.com
Abstract. In this paper an automatic feed manipulator for automobile stamping is introduced. It can achieve the process cycle for various cars parts manufactured such as automatic grab, loading and blanking, which is suitable for the large quantities and small mechanical parts material process. The primary purpose of this article is to present the manipulator structure and to design the virtual prototype of the manipulator. The calculation and optimization of stress and strain are carried out for the robot key moving parts by the analysis of the movement process and sport principle.Compared with the multi-joint robot, its manufacture, control re-quirements and the cost are low. The robot is suitable for large quantities and small parts process.
1. Introduction
In cars production, many different parts need to be sent to the machine tools and then to be offloaded after finishing processing. But it needs large work-ing space, operating difficulties and poor security for some heavy and huge metal stamping parts. The ro-bot cooperates with the machine tool on the numeri-cal control machine tool replacing manual operation. Under the premise of balance control ability and function requirement, the design realizes all the pro-cess for small auto parts production like grabbing, loading and blanking. It also applies to the large quantities and small mechanical parts material pro-cess such as automobile transmission gear, brake disc, metal stamping parts etc, making for reducing enterprise investment cost and improve competitive-ness.
2. Design of Feeding Manipulator
In order to increase the stability and fulfill the irregular auto parts requirement, the design added an axis on the four axis cylindrical coordinate robot. From the analysis of all the coordinates’ structure and the manipulator’s freedom analysis, the five axis cylindrical coordinate manipulator met the requirements of flexibility and simple controller. In general, three compartment car’s door sheet metal weight about 10kg. And according to the different shape and size, the brake disc weight about 6kg to 15kg. But ordinary, the car sheet metal weight about 25kg. According to the above date, the maximum load of the robot was set to 30kg in order to the cost savings of handling most parts. Its technical indicators are shown in table 1.
Table 1. Table of main technical parameters Project Parameter
J1 axis Ball Screw+ Linear Guide, Travel of 400mm, Rated Running Speed of 0.7m/s
J2 axis Servo Motor + Reducer, Rotating Range
of ±135°, Rated Speed of 30r/min
J3 axis Servo Motor + Linear Slide, Stroke of
800mm, Rated Speed of 0.7m/s
J4 axis Belt Drive + Reducer, Rotating Range of
±135°, Rated Speed of 30r/min
J5 axis Servo Motor + Reducer, Rotation Range
of 360°, Rated Speed of 30r/min
Biggest negative heavy Repeat precision
35kg
±0.2mm
Figure 1 is Schematic diagram of the new economic type automatic feeding manipulator. Its include frame, lead screw, three servo motor, flange plate, speed reducing motor, gear synchronous belt transmission mechanism and PLC control device. Three servo motors were fixed on the machine frame to control the manipulator to horizontal movement and vertical movement by linear guide rail and straight line cross guide rail through screw driver and gear wheel driver.
1-The first shaft motor; 2-Linear guide rail assembly of the first shaft; 3-The second shaft motor; 4-The second shaft reducer; 5-The third shaft motor; 6-The third shaft belt drive linear guide rail
assembly; 7-The fourth shaft motor; 8-The fourth shaft belt drive assembly; 9-The fifth shaft motor; 10-The fifth shaft flange; 11-Hollow shaft
Figure 1. Schematic drawing of the feeding robot Specific working principle is:
First, the manipulator puts up the work piece. Then, the first shaft motor drives the ball screw to rotate, so that the entire second shaft motor, the hollow shaft and the like are upward moving in other that the work piece is grabbed by a certain height.
The third shaft motor drives the third shaft belt drive linear guide rail assembly backward movement through synchronous belt wheel drives, so that the mechanical arm together with the work piece to shrink.
The second shaft motor drive the whole hollow shaft above the parts rotate to move the work piece. The fourth shaft motor can rotate the fifth shaft motor through the belt drive. And the fifth shaft motor can rotate to change the direction of mechanical arm. With the cooperation of the two motors, the robot can turn and rotate the work piece in order to achieve the desired attitude.
The second shaft stop after reaching a certain position, the third shaft manipulator arm out reached the desired position and the first shaft moves downwards in order that the work piece into the machine. Let it go and return to the starting point of work piece. This is finished the loading once. And follow this cycle to work. The principle of the blanking is also so analogy.
After mounting on a manipulator of vacuum adsorption, this design can be used for the smaller car sheet metal production. Such as white body door, roof cover, head cover sheet metal, etc. If mounted on a special fixture gripper, it can be used for other auto parts of the production line. Such as gear wheel, hub, friction disc, etc.
3. schematic drawing of the feeding robot
In order to make the structure more compact in the overall structure, the second shaft motor and the third shaft motor were installed in the center axis, the fourth shaft motor was installed in the opposite direction to drive the fourth shaft by belt drive. At the same time, the rotation shaft was set as second shaft. The robots just needed to drive the third shaft above the rotating component. To the robot have a better stability, it reduced the moment of inertia to the lowest when the mechanical arm is rotated and the fourth shaft motor balance out a small part of the radical force. The third shaft was set as motor controlling motion along a linear guide rail. It eliminated all kind of disadvantage about driving the third shaft by hydraulic cylinder. In the control line wiring of the moving parts, for the electrical control line did not wrap around the parts we adopted the tank belt type.
Firstly, we chose servo motor model 152G1 MHME high inertia three-phase permanent magnet synchronous AC servomotor as first shaft motor. Secondly we chose 5AZG1 MHME high inertia three-phase permanent magnet synchronous AC servomotor as the second and three-shaft motor. Thirdly we chose 022G MHMD servomotor as the fourth and five-axis motor. The selection of the main controller PLC Control Engineering Co. Ltd. produced DCCE network Dalian computerized programmable controller PEC6600. The selection of servo motor controller for the delta ASDA-B2 series was an open type servo driver. Power supply selected the PMT series tablet type industrial power supply as well as 220V power supply. Touch screen type selected Kunlun Beijing state automation software technology Co., Ltd. TPC7062 touch screen. Figure 2 is the manipulator’s virtual prototype.
1-The first shaft assembly; 2-The second shaft assembly; 3-The third shaft assembly; 4-The fourth shaft assembly; 5-The fifth shaft assembly; 6-Control cabinet
Figure 2. Virtual Prototype of Punch Feeding Manipulator
4. Stress Analysis of Key Operating
Figure 3. Strain diagram of aluminum alloy manipulator
Third axis robot arm had huge force in the fulcrum, end of manipulator may appear relatively large deflection. It would appear unnecessarily shift and jitter when the grab lifted work piece and even leaded to the mechanical arms breaking off. Compared with 2018 aluminum alloy and Q390 low alloy high strength structural steel,the third axis mechanical arms had finite element analysis with the strain diagram shown in Figure 3. We made a tentative to use 2018 aluminum alloy for mechanical arm material and end of manipulator was under 350N pressure. By using finite element analysis with SIMULATION, the stress and strain for the mechanical arms could be obtained directly, such as the aluminum alloy’s mechanical arm of the stress diagram shown in Figure 4 and aluminum alloy’s mechanical arms of the strain diagram shown in Figure 3.
Using Mises equivalent stress to check was suitable basin than using the third strength theory. It followed the fourth strength theory of material mechanics (shape change theory).
Some conclusions can be drawn from analysis graph 3. End of manipulator’s maximum deflection by 2018 Aluminum Alloy was 4.498 mm. It was really detrimental for mechanical arms, due to excessive displacement caused the starting point positioning, there would be shaking problem. So the 2018 Aluminum Alloy did not meet the stiffness requirement of this manipulator.
Figure 4. Strain diagram of structural steel manipulator
After recalculating, used Q390 low - alloy structural steels as material of mechanical arms. Equivalent yield stress of the steel was larger than the aluminum alloy and satisfied the strength requirement.
Strain analysis was shown in figure 4 for structural steel mechanical arm strain diagram. As the figure shown, the maximum deflection was 1.58 mm, two times smaller than before in the acceptable range. So three axis mechanical arms decided to make from Q390 low - alloy structural steels.
Figure 5. The connection diagram of the robot arm
By the finite element method, the manipulator and the slider strength of screw had been calibrated, the position of mechanical arm was fixed like Figure 5,and it was fixed with six screws. After installing screws, we got the stress diagram of bolt of manipulator in figure 6.
As shown in picture 6, inner six angle screw called M6 under the maximum stress was 117.581mpa,
the safety factor was 2 and the materials needed to use tensile strength greater than 235.16mpa. So we used No. 15 steel screw after normalizing, of which tensile strength was 355MPa and enough to connect piece as a mechanical arm. In light of this, the manipulator was fixed with six screws, the end of manipulator stress 350N pressure and the safety factor was 2 times. Using M6 six angle screws making from No.45 steel fixated could meet the requirements.
Figure 6 Stress Diagram of Screw Hole of Manipulator
5. Conclusion
According to analysis, the experimental results indicate that various parts of the five - axis automobile stamping machine tool for loading and blanking manipulator can meet the design requirements. It use PLC control system, move most of the lightweight car parts as well and the feed - in and feed - out materials precisely between material table and machine tool. At the same time, it’s allowed to adjust the form of parts as well as fulfilling all kinds of flip and rotation requirements in production.
References
[1] Fu qixian & Zhang Gui cheng. 2010. A new type of automatic handing production line with multimachine connection. Forging equipment and manufacturing technology 26(1) : 42-44.
[2] Wang xiaoqiang. & Huo yin. 2010. Press production line speed bar. Ordnance Industry Automation 18 (1): 35-37.
[3] Zhao zijing. 2008. Development of motor switch machine. Gansu: Gansu Agricultural University.
[4] Rauch Matthieu, Aguioniei Raphael & Hasscoet Jeanyves. An advanced STEP-NC controller for intelligent machining processes. Robotics and Computer Integrated Manufacturing 28(3): 375-384.
[5] Chen Yu, Quan W W, Zhu L. Automatic punching feeding-and-unloading device based on Manipulator [P]. China Patent Network, 2014.
[6] Cong H Y, Mao C Z, Liu B Y. Design of the key structure of feeding-and-unloading manipulator [J]. Machine Building and Automation, 2008, (3): 76-78.
[7] Zhu X R, Shen H P. Optimal design of the link lengths for a planar parallel manipulator [J]. Computer Aided Drafting, Design and Manufacturing, 2012, (2): 74-80.
[8] ZhangS,WangWB,JinAM,etal.Designofan automatic loading-and-unloading manipulator [J]. Computer Aided Drafting, Design and Manufacturing, 2014, (4): 56-59.
收藏