閥殼油封軸承壓裝機(jī)設(shè)計(jì)【含全套CAD圖紙】
喜歡就充值下載吧,,資源目錄下展示的全都有,,下載后全都有,dwg格式的為CAD圖紙,有疑問咨詢QQ:414951605 或1304139763
閥殼油封軸承壓裝機(jī)T H I S T E M P L A T E D E S I G N E D F O R F E I E R S H E J I答辯人:耿唯軒指導(dǎo)老師:關(guān)鐵鷹課題研究意義用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示。01課題設(shè)計(jì)要求用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示。02課題研究方案用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示。03課題有關(guān)問題及計(jì)劃用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示。04目錄課題研究意義用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示在投影儀-01-01選題背景與意義壓裝機(jī),又稱壓力裝配機(jī),屬于專用裝配設(shè)置,專門針對(duì)需要在過盈配合情況下連接的零部件之間的安裝.壓裝機(jī)作為零件裝配的重要設(shè)備,在零件的配合裝配中占有十分重要的地位,良好的控制其壓裝壓力,對(duì)壓裝零件的質(zhì)量起著關(guān)鍵性的作用.(1)培養(yǎng)我們運(yùn)用機(jī)械制造及有關(guān)課程(工程材料與熱處理、機(jī)械設(shè)計(jì)、公差技術(shù)測(cè)量、組合機(jī)床、金屬切削原理與刀具等)的知識(shí),結(jié)合生產(chǎn)實(shí)習(xí)、畢業(yè)實(shí)習(xí)中學(xué)到的實(shí)踐知識(shí),獨(dú)立的分析和解決工藝問題,具備設(shè)計(jì)一個(gè)中等復(fù)雜程度零件的工藝規(guī)程的能力。(2)能根據(jù)被加工零件的技術(shù)要求,運(yùn)用夾具設(shè)計(jì)的基本原理和方法,學(xué)會(huì)擬定夾具設(shè)計(jì)方案,完成夾具結(jié)構(gòu)設(shè)計(jì),提高夾具設(shè)計(jì)能力。(3)培養(yǎng)我們熟悉并運(yùn)用手冊(cè)、規(guī)范、圖表等技術(shù)資料的能力。(4)進(jìn)一步培養(yǎng)我們識(shí)圖、制圖、運(yùn)算和編寫技術(shù)文件等基本技術(shù)壓裝機(jī),又稱壓力裝配機(jī),屬于專用裝配設(shè)置,專門針對(duì)需要在過盈配合情況下連接的零部件之間的安裝.壓裝機(jī)作為零件裝配的重要設(shè)備,在零件的配合裝配中占有十分重要的地位,良好的控制其壓裝壓力,對(duì)壓裝零件的質(zhì)量起著關(guān)鍵性的作用.(1)培養(yǎng)我們運(yùn)用機(jī)械制造及有關(guān)課程(工程材料與熱處理、機(jī)械設(shè)計(jì)、公差技術(shù)測(cè)量、組合機(jī)床、金屬切削原理與刀具等)的知識(shí),結(jié)合生產(chǎn)實(shí)習(xí)、畢業(yè)實(shí)習(xí)中學(xué)到的實(shí)踐知識(shí),獨(dú)立的分析和解決工藝問題,具備設(shè)計(jì)一個(gè)中等復(fù)雜程度零件的工藝規(guī)程的能力。(2)能根據(jù)被加工零件的技術(shù)要求,運(yùn)用夾具設(shè)計(jì)的基本原理和方法,學(xué)會(huì)擬定夾具設(shè)計(jì)方案,完成夾具結(jié)構(gòu)設(shè)計(jì),提高夾具設(shè)計(jì)能力。(3)培養(yǎng)我們熟悉并運(yùn)用手冊(cè)、規(guī)范、圖表等技術(shù)資料的能力。(4)進(jìn)一步培養(yǎng)我們識(shí)圖、制圖、運(yùn)算和編寫技術(shù)文件等基本技術(shù)01選題背景與意義 由于當(dāng)由于當(dāng)時(shí)時(shí)技技術(shù)術(shù)水平的限制以及研制者水平的限制以及研制者對(duì)軸對(duì)軸承承壓壓裝裝過過程的程的認(rèn)識(shí)認(rèn)識(shí)不足不足,經(jīng)過經(jīng)過十多年來的生十多年來的生產(chǎn)實(shí)產(chǎn)實(shí)踐踐,軸軸承在承在壓壓裝裝過過程中程中記錄記錄的的時(shí)間時(shí)間-壓壓力關(guān)系曲力關(guān)系曲線線的不足之的不足之處處日日趨趨明明顯顯.為為了達(dá)到了達(dá)到軸軸承承壓壓裝曲裝曲線線具有真具有真實(shí)實(shí)反映反映壓壓裝裝質(zhì)質(zhì)量量的目的的目的,必必須須采用采用滾動(dòng)軸滾動(dòng)軸承在承在壓壓力力軸頸過軸頸過程中程中記錄記錄它的移它的移動(dòng)動(dòng)量與之量與之對(duì)應(yīng)對(duì)應(yīng)的的壓壓力力值組值組成的位移成的位移-壓壓力曲力曲線線.所以我所以我們?cè)O(shè)計(jì)們?cè)O(shè)計(jì)的的閥閥殼油封殼油封軸軸承承壓壓裝機(jī)正是裝機(jī)正是為為了適了適應(yīng)這應(yīng)這種要求而研制生種要求而研制生產(chǎn)產(chǎn)的新一代的新一代閥閥殼殼軸軸承承壓壓裝機(jī)裝機(jī)課題設(shè)計(jì)要求用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示在投影儀-02-01標(biāo)題文字添加1.工位氣液增力缸:HS04-150-152.總行程:150mm 3.力行程:15mm4.最大沖壓力:5600N/0.6Mpa5.工位氣液增力缸:HSO4-150-156.總行程:150mm7.力行程:15mm8.最大沖壓力:23000N/0.6Mpa9.作業(yè)高度 900(工作臺(tái)面高度)10.生產(chǎn)節(jié)拍:40S11.外形尺寸:1500mm800mm2309mm題文字,點(diǎn)擊添加相關(guān)標(biāo)題文字,課題研究方案用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示在投影儀-03-01標(biāo)題文字添加為了滿足以上的裝配要求,我采用立式壓裝機(jī)。壓裝機(jī)主要由升降裝置,定位裝置,壓裝裝置,控制裝置等組成。壓裝裝置采用液壓缸,可得到足夠大的壓入力,使系統(tǒng)簡單可靠。定位裝置采用、V型塊等定位元件來實(shí)現(xiàn)活塞桿的準(zhǔn)確定位。升降裝置采用三相步進(jìn)電動(dòng)機(jī)為驅(qū)動(dòng)裝置,帶動(dòng)升降機(jī)來調(diào)整定位裝置的位置,進(jìn)而裝配不同型號(hào)的減震器。壓入力檢測(cè)采用了自動(dòng)檢測(cè)報(bào)警器,可實(shí)現(xiàn)自動(dòng)監(jiān)控,控制系統(tǒng)則采用可靠和抗干擾性能較強(qiáng)的可編程序控制器。課題有關(guān)問題及計(jì)劃用戶可以在投影儀或者計(jì)算機(jī)上進(jìn)行演示在投影儀-04-01解決相關(guān)問題因需要比較精確的測(cè)量零件在壓裝過程中的壓力,并且實(shí)時(shí)監(jiān)控,所以要將傳感器固定在壓裝機(jī)的壓裝頭上,這樣可以精確的檢測(cè)到壓力過程中的壓力,在壓裝力的計(jì)算上,也需要注意不同材料對(duì)應(yīng)著不同的壓裝力,而且壓裝過程需要注意以下幾點(diǎn):(1)壓裝時(shí)不得損壞零件(2)壓入時(shí)應(yīng)平穩(wěn),被壓入件應(yīng)準(zhǔn)確到位(3)設(shè)計(jì)時(shí)要注意題目的科學(xué)性、可行性與實(shí)用性。(4)成果實(shí)用性強(qiáng),可以用于解決現(xiàn)實(shí)崗位的實(shí)際問題或滿足職業(yè)崗位的實(shí)際需求。(5)要滿足汽車變型產(chǎn)品結(jié)構(gòu)、生產(chǎn)工藝和生產(chǎn)綱領(lǐng)的要求(6)設(shè)計(jì)過程中應(yīng)考慮投入成本的可行性01進(jìn)度計(jì)劃分析、查閱資料,熟悉設(shè)備技術(shù)要求、背景,學(xué)習(xí)與畢業(yè)設(shè)計(jì)相關(guān)知識(shí),做好前期準(zhǔn)備工作,撰寫開題報(bào)告 和外文翻譯。準(zhǔn)備開題報(bào)告答辯PPT第1-2周總體方案設(shè)計(jì),并進(jìn)行壓裝機(jī)設(shè)計(jì)的有關(guān)計(jì)算,對(duì)壓裝機(jī)結(jié)構(gòu)進(jìn)行設(shè)計(jì),確定總體尺寸。繪制壓裝機(jī)結(jié)構(gòu)草圖,計(jì)算并校核有關(guān)尺寸第3-7周編寫設(shè)計(jì)說明書,交指導(dǎo)老師審定。制作答辯提綱,設(shè)計(jì)定稿,打印,準(zhǔn)備畢業(yè)設(shè)計(jì)答辯。第13-15周氣動(dòng)和電控部分設(shè)計(jì)繪制壓裝機(jī)A0圖紙第8-12周01參考文獻(xiàn)1何慶機(jī)械制造專業(yè)畢業(yè)設(shè)計(jì)指導(dǎo)與范例北京:化工工業(yè)出版社,2007,102饒華球,孫偉機(jī)械制造技術(shù)基礎(chǔ)北京:電子工業(yè)出版社,2007,93徐鴻本機(jī)床夾具設(shè)計(jì)手冊(cè)遼寧科學(xué)技術(shù)出版社2004,34朱龍根簡明機(jī)械零件設(shè)計(jì)手冊(cè)北京:機(jī)械工業(yè)出版社2005,65關(guān)慧貞,馮辛安機(jī)械制造裝備設(shè)計(jì)北京:機(jī)械工業(yè)出版社2009,116陳宏鈞實(shí)用機(jī)械加工工藝手冊(cè)北京:機(jī)械工業(yè)出版社2003,17孫桓,陳作模.機(jī)械原理.北京:高等教育出版社,2001年8申永勝.機(jī)械原理教程北京:清華大學(xué)出版社,1999年9單輝祖,材料力學(xué):上冊(cè).北京:高等教育出版社.2002 年10單輝祖,材料力學(xué):下冊(cè).北京:高等教育出版社.2002 年敬 請(qǐng) 批 評(píng) 指 正!T H I S T E M P L A T E D E S I G N E D F O R F E I E R S H E J I答辯人:耿唯軒指導(dǎo)老師:關(guān)鐵鷹
CHANGCHUN INSTITUTE OF TECHNOLOGY
開題報(bào)告
設(shè)計(jì)題目: 閥殼油封軸承壓裝機(jī)
學(xué)生姓名: 耿唯軒
學(xué)院名稱: 長春工程學(xué)院國際教育學(xué)院
專業(yè)名稱: 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
班級(jí)名稱: 機(jī)制1646班
學(xué) 號(hào): 1622421610
指導(dǎo)教師: 關(guān)鐵鷹
教師職稱: 副教授
學(xué) 歷: 本科
2020 年 3 月 1 日
1、課題論證
1.1課題研究的目的與意義
壓裝機(jī),又稱壓力裝配機(jī),屬于專用裝配設(shè)置,專門針對(duì)需要在過盈配合情況下連接的零部件之間的安裝.壓裝機(jī)作為零件裝配的重要設(shè)備,在零件的配合裝配中占有十分重要的地位,良好的控制其壓裝壓力,對(duì)壓裝零件的質(zhì)量起著關(guān)鍵性的作用.
(1)培養(yǎng)我們運(yùn)用機(jī)械制造及有關(guān)課程(工程材料與熱處理、機(jī)械設(shè)計(jì)、公差技術(shù)測(cè)量、組合機(jī)床、金屬切削原理與刀具等)的知識(shí),結(jié)合生產(chǎn)實(shí)習(xí)、畢業(yè)實(shí)習(xí)中學(xué)到的實(shí)踐知識(shí),獨(dú)立的分析和解決工藝問題,具備設(shè)計(jì)一個(gè)中等復(fù)雜程度零件的工藝規(guī)程的能力。
(2)能根據(jù)被加工零件的技術(shù)要求,運(yùn)用夾具設(shè)計(jì)的基本原理和方法,學(xué)會(huì)擬定夾具設(shè)計(jì)方案,完成夾具結(jié)構(gòu)設(shè)計(jì),提高夾具設(shè)計(jì)能力。
(3)培養(yǎng)我們熟悉并運(yùn)用手冊(cè)、規(guī)范、圖表等技術(shù)資料的能力。
(4)進(jìn)一步培養(yǎng)我們識(shí)圖、制圖、運(yùn)算和編寫技術(shù)文件等基本技術(shù)
由于當(dāng)時(shí)技術(shù)水平的限制以及研制者對(duì)軸承壓裝過程的認(rèn)識(shí)不足,經(jīng)過十多年來的生產(chǎn)實(shí)踐,軸承在壓裝過程中記錄的時(shí)間-----壓力關(guān)系曲線的不足之處日趨明顯.為了達(dá)到軸承壓裝曲線具有真實(shí)反映壓裝質(zhì)量的目的,必須采用滾動(dòng)軸承在壓力軸頸過程中記錄它的移動(dòng)量與之對(duì)應(yīng)的壓力值組成的位移------壓力曲線.所以我們?cè)O(shè)計(jì)的閥殼油封軸承壓裝機(jī)正是為了適應(yīng)這種要求而研制生產(chǎn)的新一代閥殼軸承壓裝機(jī).
1.2文獻(xiàn)綜述(相關(guān)課題國內(nèi)外研究的現(xiàn)狀)
1、發(fā)展現(xiàn)狀
壓裝機(jī)隨著鐵路車輛的發(fā)展,也經(jīng)歷了更新?lián)Q代。在過去數(shù)十年中,我國最常見的轉(zhuǎn)向架軸承壓裝機(jī)是移動(dòng)小車式的,移動(dòng)小車式壓裝機(jī),優(yōu)點(diǎn)突出,移動(dòng)方便,操作過程簡單,但是隨著車軸與軸承的發(fā)展,軸承與軸承配合要求越來越高,移動(dòng)小車式壓裝機(jī)工作進(jìn)度差,失敗率高,而且工人勞動(dòng)強(qiáng)度大,逐漸被固定式壓裝機(jī)所取代。發(fā)展至今日,固定式壓裝機(jī)功能已經(jīng)非常強(qiáng)大,在壓裝開始時(shí),操作人員可將軸號(hào),軸型,軸承號(hào)及左右端分別輸入控制系統(tǒng),依照修造的工藝標(biāo)準(zhǔn),可采用軸承壓裝自動(dòng)選配系統(tǒng),利用主控機(jī)上的傳感器和測(cè)具,獲得軸承和軸頸各項(xiàng)技術(shù)參數(shù),然后經(jīng)A/D轉(zhuǎn)換后傳至單片機(jī)中經(jīng)計(jì)算,獲得壓裝機(jī)配備數(shù)據(jù)。這些資料在打印機(jī)打印曲線圖表時(shí)將于打印出,壓裝結(jié)束后,打印機(jī)將自動(dòng)打印出具有位移-----壓力曲線以及壓裝力,貼靠力和結(jié)果判斷等有關(guān)數(shù)據(jù)記錄。為達(dá)到軸承壓裝曲線具有真實(shí)反映出壓裝質(zhì)量的目的,必須采用在滾動(dòng)軸承中在壓入軸頸過程中記錄它的位移量與之對(duì)應(yīng)的壓力值組成的位移-------壓力曲線。圓錐滾動(dòng)軸承壓裝機(jī)正是為了適應(yīng)這種要求而研制生產(chǎn)的新一代滾動(dòng)軸承壓裝機(jī),不僅大大提高壓裝質(zhì)量,也減少了工作量。
2、發(fā)展趨勢(shì)
"十二五"時(shí)期,我國仍將處于重要戰(zhàn)略機(jī)遇期。機(jī)遇前所未有,挑戰(zhàn)也前所未有,機(jī)遇大于挑戰(zhàn)。因此,行業(yè)"十二五"規(guī)劃將是中國在軸承壓裝機(jī)行業(yè)應(yīng)對(duì)國內(nèi)外發(fā)展環(huán)境重大變化的五年規(guī)劃,是深入實(shí)踐科學(xué)發(fā)展觀、全面落實(shí)十七大提出的新的發(fā)展要求的五年規(guī)劃,也是實(shí)現(xiàn)軸承壓裝機(jī)行業(yè)快速發(fā)展的五年規(guī)劃??茖W(xué)制定并實(shí)施好"十二五"規(guī)劃有利于企業(yè)在軸承壓裝機(jī)行業(yè)發(fā)揮自己的產(chǎn)業(yè)優(yōu)勢(shì)和產(chǎn)品優(yōu)勢(shì),確定自己的市場競爭能力, 科學(xué)而合理的制定企業(yè)的發(fā)展策略和努力目標(biāo)。
1.3課題研究的內(nèi)容、總體方案及技術(shù)路線、進(jìn)度安排等
1、設(shè)計(jì)內(nèi)容:
壓裝機(jī),又稱壓力裝配機(jī),屬于專用裝配設(shè)備,專門針對(duì)需要在過盈配合情況下連接的零部件之間的安裝。壓裝具有極高的抗頂出力和抗扭轉(zhuǎn)力矩,其獨(dú)特的柔到位技術(shù)及增力自適應(yīng)技術(shù),能保證壓裝工件充分鑲嵌,是一種重要的裝配工藝,廣泛應(yīng)用于汽車配件、電器產(chǎn)品和通訊產(chǎn)品。扭桿壓裝機(jī)就是其中一類,為了滿足裝配要求,在總體設(shè)計(jì)上充分考慮了零件在裝配過程中對(duì)扭桿質(zhì)量的影響因素,并在機(jī)、電、氣等系統(tǒng)的設(shè)計(jì)上,作了多方案的比較,最終確定了設(shè)計(jì)方案。本
2、設(shè)備主要技術(shù)參數(shù)::
1.Ⅰ工位氣液增力缸: HS04-150-15
2.總行程: 150mm
3.力行程: 15mm
4.最大沖壓力: 5600N/0.6Mpa
5.Ⅱ工位氣液增力缸: HSO4-150-15
6.總行程: 150mm
7.力行程: 15mm
8.最大沖壓力: 23000N/0.6Mpa
9.作業(yè)高度 900 (工作臺(tái)面高度)
10.生產(chǎn)節(jié)拍: 40S
11.外形尺寸: 1500mm×800mm×2309mm
3、 總體方案設(shè)計(jì):
為了滿足以上的裝配要求,我采用立式壓裝機(jī)。壓裝機(jī)主要由升降裝置,定位裝置,壓裝裝置,控制裝置等組成。壓裝裝置采用液壓缸,可得到足夠大的壓入力,使系統(tǒng)簡單可靠。定位裝置采用、V型塊等定位元件來實(shí)現(xiàn)活塞桿的準(zhǔn)確定位。升降裝置采用三相步進(jìn)電動(dòng)機(jī)為驅(qū)動(dòng)裝置,帶動(dòng)升降機(jī)來調(diào)整定位裝置的位置,進(jìn)而裝配不同型號(hào)的減震器。壓入力檢測(cè)采用了自動(dòng)檢測(cè)報(bào)警器,可實(shí)現(xiàn)自動(dòng)監(jiān)控,控制系統(tǒng)則采用可靠和抗干擾性能較強(qiáng)的PLC可編程序控制器。
壓裝機(jī)整體結(jié)構(gòu)圖
4. 進(jìn)度計(jì)劃
時(shí)間
設(shè)計(jì)任務(wù)及要求
第1-2周
分析、查閱資料,熟悉設(shè)備技術(shù)要求、背景,學(xué)習(xí)與畢業(yè)設(shè)計(jì)相關(guān)知識(shí),做好前期準(zhǔn)備工作,撰寫開題報(bào)告 和外文翻譯。準(zhǔn)備開題報(bào)告答辯PPT
第3-4周
總體方案設(shè)計(jì),并進(jìn)行壓裝機(jī)設(shè)計(jì)的有關(guān)計(jì)算,對(duì)壓裝機(jī)結(jié)構(gòu)進(jìn)行設(shè)計(jì),確定總體尺寸。
第5周
繪制壓裝機(jī)結(jié)構(gòu)草圖,計(jì)算并校核有關(guān)尺寸。
第6-8周
壓裝機(jī)維設(shè)計(jì)
第9周
氣動(dòng)和電控部分設(shè)計(jì)
第10周
第11周
第12周
編寫設(shè)計(jì)說明書,交指導(dǎo)老師審定,
第13周
制作答辯提綱,設(shè)計(jì)定稿,打印,準(zhǔn)備畢業(yè)設(shè)計(jì)答辯。
第15周
進(jìn)行畢業(yè)設(shè)計(jì)答辯
1.4 注意存在的問題
因需要比較精確的測(cè)量零件在壓裝過程中的壓力,并且實(shí)時(shí)監(jiān)控,所以要將傳感器固定在壓裝機(jī)的壓裝頭上,這樣可以精確的檢測(cè)到壓力過程中的壓力,在壓裝力的計(jì)算上,也需要注意不同材料對(duì)應(yīng)著不同的壓裝力,而且壓裝過程需要注意以下幾點(diǎn):
(1)壓裝時(shí)不得損壞零件
(2)壓入時(shí)應(yīng)平穩(wěn),被壓入件應(yīng)準(zhǔn)確到位
(3)設(shè)計(jì)時(shí)要注意題目的科學(xué)性、可行性與實(shí)用性。
(4)成果實(shí)用性強(qiáng),可以用于解決現(xiàn)實(shí)崗位的實(shí)際問題或滿足職業(yè)崗位的實(shí)際需求。
(5)要滿足汽車變型產(chǎn)品結(jié)構(gòu)、生產(chǎn)工藝和生產(chǎn)綱領(lǐng)的要求
(6)設(shè)計(jì)過程中應(yīng)考慮投入成本的可行性
1.5 參考文獻(xiàn) [1]何慶.機(jī)械制造專業(yè)畢業(yè)設(shè)計(jì)指導(dǎo)與范例.北京:化工工業(yè)出版社 ,2007,10
[2]饒華球,孫偉.機(jī)械制造技術(shù)基礎(chǔ).北京:電子工業(yè)出版社,2007, 9
[3]徐鴻本.機(jī)床夾具設(shè)計(jì)手冊(cè).遼寧科學(xué)技術(shù)出版社.2004,3
[4]朱龍根.簡明機(jī)械零件設(shè)計(jì)手冊(cè).北京:機(jī)械工業(yè)出版社.2005, 6
[5]關(guān)慧貞,馮辛安.機(jī)械制造裝備設(shè)計(jì).北京:機(jī)械工業(yè)出版社.2009, 11
[6]陳宏鈞.實(shí)用機(jī)械加工工藝手冊(cè).北京:機(jī)械工業(yè)出版社.2003,1
[7]孫桓,陳作模.機(jī)械原理. 北京:高等教育出版社, 2001年
[8]申永勝.機(jī)械原理教程.北京:清華大學(xué)出版社, 1999年
[9]單輝祖,材料力學(xué):上冊(cè). 北京:高等教育出版社.2002 年
[10]單輝祖,材料力學(xué):下冊(cè). 北京:高等教育出版社.2002 年
2、答辯組論證結(jié)論
(1)方案可行,技術(shù)路線清晰 □ (2)方案可行,技術(shù)路線基本清晰 □
(3)方案基本可行,技術(shù)路線不很清晰 □ (4)方案和技術(shù)路線不很清晰 □
(5)方案和技術(shù)路線不清晰 □
3、指導(dǎo)教師意見: 教研室主任意見:
指導(dǎo)教師(簽名): 教研室主任(簽名):
年 月 日 年 月 日
長春工程學(xué)院
畢業(yè)設(shè)計(jì)(論文)開題報(bào)告審核表
指導(dǎo)教師姓名
關(guān)鐵鷹
所在單位
長春工程學(xué)院
指導(dǎo)教師職稱
副教授
所學(xué)專業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué) 生 姓 名
耿唯軒
班 級(jí)
機(jī)制1646
設(shè)計(jì)(論文)題目
閥殼油封軸承壓裝機(jī)設(shè)計(jì)
指導(dǎo)教師審查
意見
指導(dǎo)教師簽字:
年 月 日
教研室審查意見
教研室主任簽字:
年 月 日
學(xué)院審查意見
院長簽字:
年 月 日
HIL Simulation of Aircraft Thrust Reverser Hydraulic System in Modelica Zhao Jianjun1 Li Ziqiang1 Ding Jianwan1 Chen Liping1 Wang Qifu1 Lu Qing2 WangHongxin2 Wu Shuang2 1: CAD Centre, Mechanical School, Huazhong Univ. Sci.& Tech. Wuhan, Hubei, China, 430074 2: Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corp. of China Ltd., Shanghai, 200436 jjzhao168, willhave, jwdingwh, Abstract This article describes a solution to create a hardware-in-the-loop (HIL) simulation system of civil aircraft thrust reverser with Modelica-based simulation plat-form - MWorks in Windows system. The HIL sys-tem uses simulation platform “MWorks” to model and simulate the thrust reverser hydraulic system, and takes hardware - PLCs output signals as the inputs of the simulation. Modeling module, commu-nication module, solving module, animation module and HIL control module are included in the simula-tion platform, whose key technology and implemen-tation details are specified. The HIL system has been successfully applied to the simulation of ARJ21 air-craft thrust reverser hydraulic system. It can simulate the hydraulic system in normal status, fault status as well as other working conditions to verify control logic and evaluate key performance of the system, thereby helping to reduce the cost of experiments and to optimize the design of the system. Keywords: Aircraft thrust reverser hydraulic system, real-time simulation, HIL, Modelica 1 Introduction Thrust reverser 1 as a part of aircraft engine, is air-craft landing deceleration device, which can effec-tively shorten the distance of taxiing. Thrust reverser is a typical complex physical system, involving me-chanical, electronic, hydraulic, control and other domains. In order to verify thrust reversers control logic, we could carry out ground experiment and flight experiment with real pieces of the thrust re-verser, but this approach has high cost and poor se-curity, and it is limited to different natural conditions. Moreover, with this approach, the test for extreme condition is very difficult. Modelica-based HIL simulation system can resolve above-mentioned problems. Firstly, Modelica 2, 3 is a freely available, object-oriented language for modeling of large, complex, and heterogeneous physical systems. It is suited for multi-domain mod-eling. Models in Modelica are mathematically de-scribed by differential, algebraic and discrete equa-tions. In Modelica we can model the entire thrust reverser, which involves mechanical, electronic, hy-draulic and control domains. Secondly, HIL system uses both real logic control components and thrust reverser model to implement the simulation. This HIL system can verify the control logic in a variety of working conditions, and its cost is very low. Moreover, with this system, there is no need to con-sider the security. This article introduces a solution to create an HIL simulation system of thrust reverser with Modelica-based simulation platform MWorks 4 in common computer with Windows operating system. It use as an example the aircraft thrust reverser of Advanced Regional Jet for the 21st Century (ARJ21) which is designed and manufactured by Commercial Aircraft Corp. of China, Ltd. (COMAC). At first, it intro-duces the overall frame of the HIL simulation system, and then specifies several key modules of the simula-tion platform, which are modules of modeling, solv-ing, communication, animation and HIL control, and finally demonstrates a successful application of this system in ARJ21 thrust reverser simulation. 2 System Overview Generally, HIL simulation system is composed of host PC running on Windows operating system and target machine running on real-time operating sys-Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009178DOI: 10.3384/ecp09430040tem. This kind of system has high real-time capabil-ity, but is very expensive. ARJ21 aircraft thrust reverser is driven by a hydrau-lic system, which is mainly controlled by six elec-tromagnetic hydraulic valves, whose states all de-pend on the thrust reverser control switch. In the si-mulation, PLC as the thrust reverser controller gen-erates 6 hydraulic valve control signals according to the state of the thrust reverser control switch and feedback signal from simulation platform. And the feedback signal will be only used for fault trigger. Therefore,the simulation does not need very high real-time capability. The HIL simulation system, discussed in this article, does not need expensive true real-time system. It can run on general computer with Windows operat-ing system and the sampling frequency can achieve 50Hz, which is enough for the requirements of the thrust reverser simulation. In Figure 1 the system overview is shown. The HIL simulation system is implemented based on PLC and simulation platform “MWorks”, which consists of five software modules - modeling module, solving module, communication module, animation module and HIL control module. Figure 1: System overview The PLC, used as the hardware part in the HIL sys-tem, receives electrical signal of control switch as well as simulation feedback signal, and sends control signal to the simulation platform after logic opera-tion. MWorks, a Modelica-based integrated development environment, is used as modeling and simulation platform for the HIL simulation system. The thrust reverser is the simulated object, which is modeled in Modelica. According to the model, the solving mod-ule generates the solver, which is responsible for real-time calculation. The communication module is responsible for real-time data exchange between si-mulation platform and the PLC. The animation mod-ule receives the result data from the solving module and drives 3D animation. The HIL control module, whose panel is shown in Figure 2, is responsible for starting and terminating the simulation, setting simu-lation parameters, displaying key data as well as communicating with other modules. Figure 2: HIL Simulation System The simulation process is as follows: 1) After analyzing the thrust reverser system, com-ponent models and system models are created in Modelica. 2) After setting simulation parameters with the panel of the HIL control module, the simulation begins: the HIL control module translates the model, and then the solving module generates a solver, which will be called in a new process. 3) The communication module is called by the HIL control module to receive control signals from PLC. After translating, these signals will be dis-played on the panel, and sent to the solver process. 4) The solver process receives control signal and calculates in every cycle. When the calculation finishes, the solver sends the results to the HIL control module, and wait until the next cycle. Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 20091795) The HIL control module receives the results from the solver process and displays them on the panel of the HIL control module, and delivers them to the animation module to drive real-time anima-tion. At the same time, the HIL control module calls the communication module to send the re-sults as feedback signal to PLC. 6) PLC uses the feedback signals and the state of control switch as input, and after logic operation, sends the control signal to the simulation platform. 7) Repeat the cycle from Step 3 until the termination of the simulation. 3 Key Technologies 3.1 Modeling After analyzing ARJ21 aircraft thrust reverser hy-draulic systems, we developed an exclusive hydrau-lic library: Hydrau_Comac, which is based on Hy-LibLight hydraulic library. Hydrau_Comac library provides ARJ21 thrust reverser hydraulic compo-nents and auxiliary library, such as Isolation Control Valve (ICV), Cowl Lock (CL), Directional Control Valve (DCV), hydraulic actuator, pipe, loads,and characteristics of fluid. These models are constructed according to their physical equations with their pa-rameters calibrated by test results if necessary. To satisfy the requirements of the real-time capability, Hydrau_Comac library also provides simplified real-time component models. The structure of Hy-drau_Comac library is shown in Figure 3. Figure 3: Structure of Hydrau_Comac library Based on HyLibLight library and Hydrau_Comac library, we modeled ARJ21 thrust reverser hydraulic system, provided simplified system model (Figure 4) for real-time HIL simulation, as well as detailed sys-tem model (Figure 5) for off-line simulation. Figure 4: Real-Time System Model for Thrust Re-verser Figure 5: Off-line System Model with Pipes 3.2 Solving Model solving in HIL simulation is different from in off-line simulation. The solving in HIL simulation needs to not only exchange data with external hard-ware, but also guarantee the synchronicity between physical time in real world and logic time in simula-tion. In order to identify input and output data, we used “input” prefix and “output” prefix to modify input variables and output variables, thus we can ensure the order of the calculation - from the input vari-ables to output variables. Besides, according to Modelica specification, input variables and output variables are not only used for external communica-Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009180tion, therefore external exchange data needs to be recorded in configuration file. According to the records in configuration file, the solving module associates input/output variables with shared memory. The solver module reads input data from shared memory, and writes output data into there. The HIL control module writes input data coming from PLC into sharing memory, and reads output data from there. The flow chart of real-time solving is shown in fig-ure 6. In every sampling cycle, the solving module gets the input variables from sharing memory, and checks if their value changes, if changes, it means that there is changes in the outside world, which re-sults in an event, so that the solving module need to do event iteration. Then the solving module calcu-lates, and writes required output data into shared memory. Figure 6: Flow Chart of Real-time Solving We use timer to implement the synchronicity. By calling QueryPerformanceFrequency() function, we can obtain machine internal timers clock frequency, and by calling QueryPerformanceCounter() function at two time points, we can get a count. With the fre-quency and the count, we can know the precise time between that two time points. With this method, we can know the time spent in one cycle, and the time is called physical cycle time, which is a variable. The next cycle begins when the physical cycle time is longer than sampling period. The timing error of this method is less than 1ms. In every cycle, the solving module checks whether the time spent on calculating is longer than the sam-pling period. If the calculation overruns the sampling period, but not more than the acceptable time, the module will report a warning. And if the calculation overruns the acceptable time, the module will report an error and quit. Therefore, in order to achieve high real-time capability, the simulation system needs to run on high-performance computer to ensure the speed of solving. 3.3 Communication In HIL simulation, how to communicate between simulation platform and PLC and how to guarantee the precise communication frequency are key factor to real-time capability. By using the communication module, simulation platform communicates with PLC through RS232 serial port . Communication parameters are as fol-lows: 57.6kbps transmission rate, 8-bit data bit, 1-bit stop bit, no parity, and fixed word length data frame. The data transmitted from simulation platform to PLC will be converted to standard data frame ac-cording to the protocol. After receiving, the PLC will translate those data frames to retrieve the content. The communication module calls Windows API function to carry out serial port communication: call-ing CreateFile() function to open the serial port, Wri-teFile() function to write data to the serial port, ReadFile() function to read data from serial port. PLC uses high-speed serial port communication module CP341 to implement communication. FB7 function block of CP341 are responsible for receiv-ing data from simulation platform, and FB8 function block of CP341 are responsible for sending data to simulation platform. Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009181By using timer, the frequency of serial port commu-nication can be controlled. Serial port communica-tion frequency is the same as the sampling frequency. PLC uses its internal timer, whose minimum timing interval can be 10ms. Since the PLC is circuit work-ing, so the precision of timing depends on the opera-tional cycle of PLC control program. Under normal circumstances, the operational cycle of PLC control program can be less than 1ms, and the precision can achieve 1ms. The communication module, based on Windows operating system, uses multimedia timer “timeSetEvent()” for timing control, and implements serial port reading and writing operation in callback function, the precision can also achieve 1ms. 3.4 Animation Generally, the implementation of Modelica multi-body animation has 3 steps: firstly, the solver calcu-lates the model to generate result data, which then will be used to form animation data; secondly, geo-metric models are created; thirdly, the geometric models are driven by the animation data and dis-played on the screen. For the real-time simulation, we need to fresh the animation data in every cycle, but it takes so long to fresh the data that the animation cannot satisfy real-time requirements. Fortunately, the thrust reverser has only one motion freedom, that is, the actuation can move back and forth. Therefore, we can create off-line animation at first, and then use the variable of actuator deployed length to control the display of that off-line animation, thus the synchronicity of the animation can be guaranteed. Specific process is as follows: Firstly, establish the multi-body kinematic model of the thrust reverser, and execute off-line simulation to generate simula-tion results document; secondly, read the simulation results document to create 3D animation; thirdly, establish one to one mapping relationship between the variable of actuator deployed length and the off-line animation frames; finally, carry out the real-time simulation, obtain the value of that variable, and use it to drive the animation. 4 Application This HIL simulation system has been successfully applied to the simulation of ARJ21 aircraft thrust reverser hydraulic system. The simulation platform UI is shown in Figure 7. Logic control hardware part is implemented with Siemens S7-300 series PLC, which includes power supply module, CPU module, discrete input module, discrete output module, analog input module, analog output module, serial port communication module and touch panel. PLC control program is developed with STEP7, and touch screen interface (Figure 7) is developed with Flexcible2005. PLC takes the thrust reverser control switch or the data from the touch screen as input signal, after some logic operation, it sends the output data as control signal to simulation platform. Figure 7: Touch Panel of PLC MWorks runs on general computer with Windows operating system. our computer with simulation plat-form MWorks is a Dell desktop with Intel Core2 2.8G CPU, 2G RAM, ATI 3450HD graphics card and 19-inch liquid crystal display. In this configura-tion, the real-time simulation cycle of ARJ21 thrust reverser hydraulic system can achieve 20ms. The result data and curves generated by this HIL si-mulation system are basically in agreement with the tests, the difference is acceptable. (Table 1, Figure 8, Figure 9). Table 1: Deploying Time and Stowing Time of Ac-tuator Deploying Time (s) Stowing Time(s) Experiment 1.08 2.68 Simulation 1.04 2.66 Error 3.7% 0.7% Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009182 Figure 8: Experimental Curves of Pressure of The Actuator Figure 9: Simulation Curves of Pressure of The Ac-tuator This HIL simulation system has simple structure and low cost. Through the simulation of ARJ21 aircraft thrust reverser hydraulic system, we can verify the control logic in various working conditions, evaluate key performance of the system, so that the number and cost of the tests can be reduced, and the optimi-zation of the design of ARJ21 aircraft hydraulic sys-tem and tests can be provided with basis. 5 Conclusions This article demonstrates a Modelica-based HIL si-mulation solution exclusively developed for aircraft thrust reverser hydraulic system. The HIL simulation system, running on general computer with Windows operating system, communicates with external hard-ware through serial port. The cost of this HIL simu-lation system is very low, and its sampling period can be up to 20ms, so its especially useful for those situations where very high real-time capability is not required. The prototype application of the simulation of ARJ21 thrust reverser shows that this HIL simulation system, which uses Modelica language to model air-craft thrust reverser hydraulic system and connects with PLC control system, can greatly increase the efficiency of tests, and reduce the number and the cost of tests. The future work is to enhance the real-time capabil-ity of the simulation with general Windows com-puter, as well as to use MWorks to generate target code, which can be used in real-time system. Acknowledgments This work was supported by the National Natural Science Foundation of China (Grant No.60704019 and Grant No.60874064). Special thanks to Medelon Corporation for author-ized use of HyLibLight library. Acronyms ARJ21: Advanced Regional Jet for the 21st Century COMAC: Commercial Aircraft Corp. of China, Ltd. CL: Cowl Lock ICV: Isolation Control Valve DCV: Directional Control Valve PLC: Programmable Logic Controller HIL: Hardware-in-the-Loop References 1 Robert A Jones, Thrust reverser. US4373328, 1983,2. 2 Peter Fritzson, Engelson Vadim. Modelica a unified object oriented language for system modeling and simulationA. Proceedings of the 12th European Conference on Object ori-ented ProgrammingC. 1998, 67 - 90. 3 Peter Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Piscataway, NJ: IEEE Press, 2004. 4 FAN-LI Zhou, LI-PING Chen, YI-ZHONG Wu, JIAN-WAN Ding, JIAN-JUN Zhao, YUN-QING Zhang, MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems Based on Modelica, Proceedings of the 5th International Mode-lica Conference, Volume 2, 725-732, 2006. Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009183
收藏