8、析 r==.
當(dāng)k=0時(shí),r最大,此時(shí)圓面積最大,圓的方程可化為x2+y2+2y=0,
即x2+(y+1)2=1,圓心坐標(biāo)為(0,-1).
8.-2
解析 由題意知圓心應(yīng)在直線l:x-y+2=0上,即-1++2=0,解得
a=-2.
9.20
解析 點(diǎn)(3,5)在圓內(nèi),最長(zhǎng)弦|AC|即為該圓直徑,
∴|AC|=10,最短弦BD⊥AC,∴|BD|=4,S四邊形ABCD=|AC||BD|=20.
10.解 設(shè)過(guò)A、B、C三點(diǎn)的圓的方程為x2+y2+Dx+Ey+F=0,
則,解得.
所以過(guò)A、B、C三點(diǎn)的圓的方程為x2+y2-4x-2y-20=0.
將點(diǎn)D(-2,-1)代入上
9、述方程等式不成立.
故A、B、C、D四點(diǎn)不能在同一個(gè)圓上.
11.解 (1)方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一個(gè)圓必須有:
D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)>0,
即:7t2-6t-1<0,
∴-
10、+Ey+F=0,所以圓在y軸上的截距之和為y1+y2=-E;
由題設(shè),x1+x2+y1+y2=-(D+E)=2,
所以D+E=-2. ①
又A(4,2)、B(-1,3)兩點(diǎn)在圓上,
所以16+4+4D+2E+F=0, ②
1+9-D+3E+F=0, ③
由①②③可得D=-2,E=0,F(xiàn)=-12,
故所求圓的方程為x2+y2-2x-12=0.
13.解 設(shè)點(diǎn)M的坐標(biāo)是(x,y),點(diǎn)P的坐標(biāo)是(x0,y0).由于點(diǎn)A的坐標(biāo)為(3,0)且M是線段AP的中點(diǎn),所以x=,y=于是有x0=2x-3,y0=2y.
因?yàn)辄c(diǎn)P在圓x2+y2=1上移動(dòng),所以點(diǎn)P的坐標(biāo)滿足方程x+y=1,
則(2x-3)2+4y2=1,整理得2+y2=.
所以點(diǎn)M的軌跡方程為2+y2=.