《第十章第1節(jié) 橢圓及其性質(zhì)》由會(huì)員分享,可在線閱讀,更多相關(guān)《第十章第1節(jié) 橢圓及其性質(zhì)(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第十章 圓錐曲線
第一節(jié) 橢圓及其性質(zhì)
題型115 橢圓的定義與標(biāo)準(zhǔn)方程
2013年
1.(2013廣東文9)已知中心在原點(diǎn)的橢圓的右焦點(diǎn)為,離心率等于,則的方程是
A. B. C. D.
2014年
1.(2014大綱文9)已知橢圓C:的左、右焦點(diǎn)為,,離心率為,過(guò)的直線交C于A,B兩點(diǎn),若的周長(zhǎng)為,則C的方程為( ).
A. B. C. D.
2.(2014遼寧文15)已知橢圓:,點(diǎn)與的焦點(diǎn)不重合,若關(guān)于的焦點(diǎn)的對(duì)稱點(diǎn)分別為,,線段的中點(diǎn)在上,則 .
3.(2014遼寧文20)如圖所示,圓的
2、切線與軸正半軸,軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且與直線交于,兩點(diǎn),若的面積為,求的標(biāo)準(zhǔn)方程.
4.(2014天津文18)設(shè)橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為,上頂點(diǎn)為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)點(diǎn)的直線與該圓相切于點(diǎn),.求橢圓的方程.
5. (2014新課標(biāo)Ⅱ文20) 設(shè)分別是橢圓C:的左、右焦點(diǎn),是上一點(diǎn)且與軸垂直.直線與的另一個(gè)交點(diǎn)為.
(1)若直線的斜率為,求的離心率;
(2)若直線在軸上的截距為,且,求.
3、
2015年
1.(2015廣東文8)已知橢圓()的左焦點(diǎn)為,則( ).
A. B. C. D.
1.解析 由左焦點(diǎn)為,可得. 由,即,得.
又,所以.故選B.
評(píng)注 本題考查橢圓的簡(jiǎn)單幾何性質(zhì).
2016年
1.(2016山東文21(1))已知橢圓的長(zhǎng)軸長(zhǎng)為,焦距為,求橢圓的方程.
1. 解析 設(shè)橢圓的半焦距為,由題意知,所以,
所以橢圓的方程為.
2.(2016四川文20(1))已知橢圓:的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,求橢圓的方程.
2. 解析 由已知得,
又橢圓過(guò)點(diǎn),故,解得
所以橢圓的方程是
4、3.(2016天津文19(1))設(shè)橢圓()的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中 為原點(diǎn),為橢圓的離心率,求橢圓的方程.
3.解析 (1)由,即,可得.
又,所以,因此,所以橢圓的方程為
2017年
1.(2017全國(guó)1文12)設(shè),是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),若上存在點(diǎn)滿足,則的取值范圍是( ).
A. B. C. D.
1.解析 因?yàn)樵谏洗嬖邳c(diǎn),滿足,所以.當(dāng)點(diǎn)位于短軸端點(diǎn)時(shí),取得最大值.
① 當(dāng)時(shí),如圖1所示,有,則,所以
,解得;
圖1 圖2
② 當(dāng)時(shí),如圖2示,有,
5、則,所以
,解得.
綜上可得,的取值范圍是.故選A.
評(píng)注:先研究“橢圓,是長(zhǎng)軸兩端點(diǎn),位于短軸端點(diǎn)時(shí),最大”這一結(jié)論.
圖3
如圖3所示,因?yàn)椋?
所以.
設(shè),因?yàn)椋ㄖ悬c(diǎn)弦的一個(gè)結(jié)論),所以(當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí)位于短軸端點(diǎn)處).
2.(2017山東卷文21)在平面直角坐標(biāo)系中,橢圓的離心率為,橢圓截直線所得線段的長(zhǎng)度為.
(1)求橢圓的方程;
(2)動(dòng)直線交橢圓于,兩點(diǎn),交軸于點(diǎn).點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),圓的半徑為. 設(shè)為的中點(diǎn),,與圓分別相切于點(diǎn),,求的最小值.
2.解析 (1) 由橢圓的離心率為 ,得,
又當(dāng)時(shí),,得,所以,.
6、
因此橢圓方程為.
(2) 設(shè),,聯(lián)立方程 ,
得,由,得 .
且,因此,所以,
又,所以,
因?yàn)?,所?
令,故.所以.
令 ,所以.
當(dāng) 時(shí),,從而在上單調(diào)遞增.
因此,等號(hào)當(dāng)且僅當(dāng)時(shí)成立,此時(shí),所以 ,.
設(shè),則 ,所以的最小值為.
從而的最小值為,此時(shí)直線的斜率為.
綜上所述,當(dāng),時(shí),取得最小值為.
題型116 橢圓離心率的值及取值范圍
2013年
1. (2013四川文9)從橢圓上一點(diǎn)向軸做垂線,垂足恰為左焦
點(diǎn),是橢圓與軸正半軸的交點(diǎn),是橢圓與軸正半軸的交點(diǎn),且(是坐標(biāo)原點(diǎn)),則該橢圓的離心率是( ).
A. B.
7、 C. D.
2.(2013江蘇12)在平面直角坐標(biāo)系中,橢圓的標(biāo)準(zhǔn)方程為,
右焦點(diǎn)為,右準(zhǔn)線為,短軸的一個(gè)端點(diǎn)為,設(shè)原點(diǎn)到直線的距離為,到的
距離為,若,則橢圓的離心率為 .
2. (2013福建文15)橢圓的左、右焦點(diǎn)分別為
若直線 與橢圓的一個(gè)交點(diǎn)滿足則該橢圓的離心率等于 .
3.(2014北京文19)已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)O為原點(diǎn),若點(diǎn)A在直線上,點(diǎn)B在橢圓C上,且,求線段AB長(zhǎng)度的最小值.
F1
F2
O
x
y
B
C
A
4.(2014江蘇17)如圖所示,在平面直角坐
8、標(biāo)系中,,,分別是橢圓的左、右焦點(diǎn),頂點(diǎn)的坐標(biāo)為,連接并延長(zhǎng)交橢圓于點(diǎn),過(guò)點(diǎn)作軸的垂線交橢圓于另一點(diǎn),連接.
(1)若點(diǎn)的坐標(biāo)為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.
2014年
1.(2014江西文14)設(shè)橢圓的左、右焦點(diǎn)為,過(guò)作軸的垂線與相交于兩點(diǎn),與軸相交于點(diǎn),若,則橢圓的離心率等于 .
2. (2014安徽文21)設(shè),分別是橢圓:的左、右焦點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),.
(1)若的周長(zhǎng)為16,求;
(2)若,求橢圓的離心率.
2015年
1.(2015福建文11)已知橢圓:的右焦點(diǎn)為.短軸的一個(gè)端
點(diǎn)為,直線交橢圓于兩點(diǎn).
9、若,點(diǎn)到直線的
距離不小于,則橢圓的離心率的取值范圍是( ).
A. B. C. D.
1. 解析 設(shè)左焦點(diǎn)為,連接,,則四邊形是平行四邊形,故,
所以,所以.設(shè),則,故.
所以,,,所以橢圓的離心率的取值范圍為.
故選A.
評(píng)注 1. 橢圓的定義和簡(jiǎn)單幾何性質(zhì);2. 點(diǎn)到直線距離公式.
2.(2015浙江文15)橢圓()的右焦點(diǎn)關(guān)于直線的
對(duì)稱點(diǎn)在橢圓上,則橢圓的離心率是 .
2. 解析 解法一:設(shè),則,所以,又,
所以 ,所以,所以,
不妨取,所以中點(diǎn),代入,
得,化簡(jiǎn)得或,所以.
解法二:取左焦點(diǎn),則:,所以原點(diǎn)到的距離.
10、
又到的距離,由題意知,,所以,所以.
3.(2015重慶文21)如圖所示,橢圓的左、右焦點(diǎn)分別為,,
過(guò)的直線交橢圓于,兩點(diǎn),且.
(1)若,,求橢圓的標(biāo)準(zhǔn)方程.
(2)若,且,
試確定橢圓離心率的取值范圍.
3. 解析 (1)由橢圓的定義,,故.
設(shè)橢圓的半焦距為,由已知,
因此,
即,從而. 故所求橢圓的標(biāo)準(zhǔn)方程為.
(2)由,,得.
由橢圓的定義,,,
進(jìn)而.于是,
解得,故.
由勾股定理得,
從而,
兩邊除以,得.
若記,則上式變?yōu)?
由,并注意到關(guān)于的單調(diào)性,得,
即.進(jìn)而,即.
2016年
1.(2016全國(guó)乙文5)直線經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)
11、和一個(gè)焦點(diǎn),若橢圓中心到的距離為其短軸長(zhǎng)的,則該橢圓的離心率為( ).
A. B. C. D.
1. B 解析 由等面積法可得,故,從而.故選B.
2.(2016江蘇10)如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于兩點(diǎn),且,則該橢圓的離心率是 .
2. 解析 由題意得,直線與橢圓方程聯(lián)立,可得,.
由,可得,,,
則,由,可得,則.
2017年
1.(2017全國(guó)3文11)已知橢圓的左、右頂點(diǎn)分別為,,且以線段為直徑的圓與直線相切,則的離心率為( ).
A. B. C.
12、 D.
1.解析 因?yàn)橹本€與圓相切,即,整理得.令,則有,,,.故選A.
評(píng)注 本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,以及圓錐曲線的離心率公式和圓的方程,考查的知識(shí)點(diǎn)比較多,但總的難度不大,屬于跨板塊的綜合類問(wèn)題,基礎(chǔ)中偏上的學(xué)生一般都能搞定.
2.(2017浙江卷2)橢圓的離心率是( ).
A. B. C. D.
2.解析 由橢圓方程可得,,所以,所以,,
.故選B.
題型117 橢圓的焦點(diǎn)三角形
2014年
1.(2014重慶文21)如圖所示,設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,,
,的面積為.
(1) 求該橢圓的標(biāo)準(zhǔn)方程;
(2) 是否存在圓心在軸上的圓,使圓在軸的上方與橢圓有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過(guò)不同的焦點(diǎn)?若存在,求出圓的方程,若不存在,請(qǐng)說(shuō)明理由.
歡迎訪問(wèn)“高中試卷網(wǎng)”——http://sj.fjjy.org