湘教版高考數(shù)學(xué)文一輪題庫 第5章第4節(jié)數(shù)列求和
《湘教版高考數(shù)學(xué)文一輪題庫 第5章第4節(jié)數(shù)列求和》由會員分享,可在線閱讀,更多相關(guān)《湘教版高考數(shù)學(xué)文一輪題庫 第5章第4節(jié)數(shù)列求和(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 精品資料 高考真題備選題庫 第5章 數(shù)列 第4節(jié) 數(shù)列求和 考點一 等差數(shù)列與等比數(shù)列的綜合 1.(2013江蘇,16分)設(shè){an}是首項為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項的和.記bn=,n∈N*,其中 c為實數(shù). (1)若c=0,且b1,b2,b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*); (2)若{bn}是等差數(shù)列,證明:c=0. 證明:本題考查等差、等比數(shù)列的定義,通項及前n項和,意在考查考生分析問題、解決問題的能力與推理論證能力. 由題設(shè),Sn=na+d. (1)由c=0,得bn
2、==a+d.又b1,b2,b4成等比數(shù)列,所以b=b1b4,即2=a,化簡得d2-2ad=0.因為d≠0,所以d=2a. 因此,對于所有的m∈N*,有Sm=m2a. 從而對于所有的k,n∈N*,有Snk=(nk)2a=n2k2a=n2Sk. (2)設(shè)數(shù)列{bn}的公差是d1,則bn=b1+(n-1)d1,即=b1+(n-1)d1,n∈N*,代入Sn的表達式,整理得,對于所有的n∈N*,有 n3+n2+cd1n=c(d1-b1). 令A(yù)=d1-d,B=b1-d1-a+d,D=c(d1-b1),則對于所有的n∈N*,有An3+Bn2+cd1n=D.(*) 在(*)式中分別取n=1,2,
3、3,4,得 A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1, 從而有 由②,③得A=0,cd1=-5B,代入方程①,得B=0,從而cd1=0. 即d1-d=0,b1-d1-a+d=0,cd1=0. 若d1=0,則由d1-d=0,得d=0,與題設(shè)矛盾,所以d1≠0. 又cd1=0,所以c=0. 2.(2013浙江,14分)在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列. (1)求d,an; (2) 若d<0,求|a1|+|a2|+|a3|+…+|an|. 解:本題主要考查等差數(shù)列、等比數(shù)列的概
4、念,等差數(shù)列通項公式,求和公式等基礎(chǔ)知識,同時考查運算求解能力. (1)由題意得5a3·a1=(2a2+2)2, 即d2-3d-4=0. 故d=-1或d=4. 所以an=-n+11,n∈N*或an=4n+6,n∈N*. (2)設(shè)數(shù)列{an}的前n項和為Sn.因為d<0,由(1)得d=-1,an=-n+11.則 當n≤11時,|a1|+|a2|+|a3|+…+|an|=Sn=-n2+n. 當n≥12時,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=n2-n+110. 綜上所述, |a1|+|a2|+|a3|+…+|an|= 3.(2013天津,
5、14分)已知首項為的等比數(shù)列{an}的前n項和為Sn(n∈N*), 且-2S2,S3,4S4成等差數(shù)列. (1)求數(shù)列{an}的通項公式; (2)證明Sn+≤(n∈N*). 解:本題主要考查等差數(shù)列的概念,等比數(shù)列的概念、通項公式、前n項和公式,數(shù)列的基本性質(zhì)等基礎(chǔ)知識.考查分類討論的思想,考查運算能力、分析問題和解決問題的能力. (1)設(shè)等比數(shù)列{an}的公比為q,因為-2S2,S3,4S4成等差數(shù)列,所以S3+2S2=4S4-S3,即S4-S3=S2-S4,可得2a4=-a3,于是q==-.又a1=,所以等比數(shù)列{an}的通項公式為an=×n-1=(-1)n-1
6、83;. (2)證明:Sn=1-n,Sn+=1-n+= 當n為奇數(shù)時,Sn+隨n的增大而減小,所以Sn+≤S1+=; 當n為偶數(shù)時,Sn+隨n的增大而減小,所以Sn+≤S2+=. 故對于n∈N*,有Sn+≤. 4. (2013陜西,12分)設(shè)Sn表示數(shù)列{an}的前n項和. (1)若{an}為等差數(shù)列,推導(dǎo)Sn的計算公式; (2)若a1=1,q≠0,且對所有正整數(shù)n,有Sn=.判斷{an}是否為等比數(shù)列,并證明你的結(jié)論. 解:本題主要考查等差數(shù)列前n項和公式推導(dǎo)所用的倒序相加法,考查等比數(shù)列的證明方法和一般數(shù)列切入點的技巧,深度考查考生應(yīng)用數(shù)列作工具進行邏輯推理的思維方法.
7、(1)法一:設(shè){an}的公差為d,則 Sn=a1+a2+…+an=a1+(a1+d)+…+[a1+(n-1)d], 又Sn=an+(an-d)+…+[an-(n-1)d], ∴2Sn=n(a1+an), ∴Sn=. 法二:設(shè){an}的公差為d,則 Sn=a1+a2+…+an=a1+(a1+d)+…+[a1+(n-1)d], 又Sn=an+an-1+…+a1 =[a1+(n-1)d]+[a1+(n-2)d]+…+a1, ∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]=2na1+n(n-1)d, ∴Sn=na1+d. (2){an}
8、是等比數(shù)列.證明如下: ∵Sn=, ∴an+1=Sn+1-Sn=-==qn. ∵a1=1,q≠0,∴當n≥1時,有==q, 因此,{an}是首項為1且公比為q的等比數(shù)列. 5.(2013重慶,13分)設(shè)數(shù)列{an} 滿足:a1=1,an+1=3an,n∈N+. (1)求{an}的通項公式及前n項和Sn; (2)已知{bn}是等差數(shù)列,Tn為其前n項和,且b1=a2,b3=a1+a2+a3,求T20. 解:本題主要考查等比數(shù)列、等差數(shù)列的通項公式與前n項和等基礎(chǔ)知識,考查邏輯思維能力. (1)由題設(shè)知{an}是首項為1,公比為3的等比數(shù)列, 所以an=3n-1,Sn==(3n
9、-1). (2)b1=a2=3,b3=a1+a2+a3=1+3+9=13,b3-b1=10=2d,所以數(shù)列{bn}的公差d=5, 故T20=20×3+×5=1 010. 6.(2009·寧夏、海南,5分)等比數(shù)列{an}的前n項和為Sn,且4a1,2a2,a3成等差數(shù)列.若a1=1,則S4=( ) A.7 B.8 C.15 D.16 解析:∵4a1,2a2,a3成等差數(shù)列,∴4a2=4a1+a3. ∵{an}是等比數(shù)列,∴4a1·q=4a1+a1q2,a1=1. ∴q2-4q+4=0,q=2,∴S4==15. 答
10、案:C 7.(2011江蘇,5分)設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是________. 解析:設(shè)a2=t,則1≤t≤q≤t+1≤q2≤t+2≤q3,由于t≥1,所以q≥max{t,,},故q的最小值是. 答案: 8.(2012山東,12分)已知等差數(shù)列{an}的前5項和為105,且a10=2a5. (1)求數(shù)列{an}的通項公式; (2)對任意m∈N*,將數(shù)列{an}中不大于72m的項的個數(shù)記為bm,求數(shù)列{bm}的前m項和Sm. 解:(1)設(shè)數(shù)列{an}的公差為d,前n項和為Tn.
11、由T5=105,a10=2a5, 得到 解得a1=7,d=7. 因此an=a1+(n-1)d=7+7(n-1)=7n(n∈N*). (2)對m∈N*,若an=7n≤72m,則n≤72m-1. 因此bm=72m-1, 所以數(shù)列{bm}是首項為7公比為49的等比數(shù)列. 故Sm====. 9.(2012浙江,14分)已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N*,數(shù)列{bn}滿足an=4log2bn+3,n∈N*. (1)求an,bn; (2)求數(shù)列{an·bn}的前n項和Tn. 解:(1)由Sn=2n2+n,得當n=1時,a1=S1=3; 當n≥2
12、時,an=Sn-Sn-1=4n-1,易知當n=1時也滿足通式an=4n-1, 所以an=4n-1,n∈N*. 由4n-1=an=4log2bn+3,得bn=2n-1,n∈N*. (2)由(1)知an·bn=(4n-1)·2n-1,n∈N*, 所以Tn=3+7×2+11×22+…+(4n-1)·2n-1,2Tn=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n, 所以2Tn-Tn=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5. 故Tn=(4n-5)
13、2n+5,n∈N*. 10.(2010天津,14分)在數(shù)列{an}中,a1=0,且對任意k∈N*,a2k-1,a2k,a2k+1成等差數(shù)列,其公差為2k. (1)證明:a4,a5,a6成等比數(shù)列; (2)求數(shù)列{an}的通項公式; (3)記Tn=++…+,證明:<2n-Tn≤2(n≥2). 解:(1)證明:由題設(shè)可知,a2=a1+2=2,a3=a2+2=4,a4=a3+4=8,a5=a4+4=12,a6=a5+6=18. 從而==.所以a4,a5,a6成等比數(shù)列. (2)由題設(shè),可得a2k+1-a2k-1=4k,k∈N*. 所以a2k+1-a1=(a2k+1-a2k-1)+(a
14、2k-1-a2k-3)+…+(a3-a1)=4k+4(k-1)+…+4×1=2k(k+1),k∈N*. 由a1=0,得a2k+1=2k(k+1),從而a2k=a2k+1-2k=2k2. 所以數(shù)列{an}的通項公式為an= 或?qū)憺閍n=+,n∈N*. (3)證明:由(2)可知a2k+1=2k(k+1),a2k=2k2. 以下分兩種情況進行討論: ①當n為偶數(shù)時,設(shè)n=2m(m∈N*). 若m=1,則2n-=2. 若m≥2,則 =+= +=2m++]=2m+2+(-)]=2m+2(m-1)+(1-)=2n--. 所以2n-=+,從而<2n-Tn<2,n=4,6,8,
15、…, ②當n為奇數(shù)時,設(shè)n=2m+1(m∈N*) =+=4m--+=4m+-=2n--, 所以2n-=+,從而<2n-Tn<2,n=3,5,7,…. 綜合①和②可知,對任意n≥2,n∈N*,有<2n-Tn≤2. 11.(2010北京,13分)已知{an}為等差數(shù)列,且a3=-6,a6=0. (1)求{an}的通項公式; (2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式. 解:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a3=-6,a6=0, 所以 解得a1=-10,d=2. 所以an=-10+(n-1)·2=2n-12.
16、 (2)設(shè)等比數(shù)列{bn}的公比為q. 因為b2=a1+a2+a3=-24,b1=-8, 所以-8q=-24,即q=3. 所以{bn}的前n項和公式為Sn==4(1-3n). 考點二 遞推數(shù)列及其應(yīng)用 1.(2013湖南,13分)設(shè)Sn為數(shù)列{an}的前n項和,已知a1≠0,2an-a1=S1·Sn,n∈N*. (1)求a1,a2,并求數(shù)列{an}的通項公式; (2)求數(shù)列{nan}的前n項和. 解:本題主要考查數(shù)列的通項公式和數(shù)列求和,結(jié)合轉(zhuǎn)化思想,意在考查考生的運算求解能力. (1)令n=1,得2a1-a1=a,即a1=a. 因為a1≠0,所以a1=1.
17、令n=2,得2a2-1=S2=1+a2,解得a2=2. 當n≥2時,由2an-1=Sn,2an-1-1=Sn-1兩式相減得2an-2an-1=an, 即an=2an-1. 于是數(shù)列{an}是首項為1,公比為2的等比數(shù)列.因此,an=2n-1. 所以數(shù)列{an}的通項公式為an=2n-1. (2)由(1)知,nan=n·2n-1. 記數(shù)列{n·2n-1}的前n項和為Bn,于是 Bn=1+2×2+3×22+…+n×2n-1,① 2Bn=1×2+2×22+3×23+…+n×2n.② ①-②得
18、 -Bn=1+2+22+…+2n-1-n·2n =2n-1-n·2n. 從而Bn=1+(n-1)·2n. 2.(2013廣東,14分)設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足4Sn=a-4n-1,n∈N*,且a2,a5,a14構(gòu)成等比數(shù)列. (1)證明:a2= ; (2)求數(shù)列{an}的通項公式; (3)證明:對一切正整數(shù)n,有++…+<. 解:本題主要考查通過“an與Sn法”將遞推數(shù)列轉(zhuǎn)化為等差數(shù)列及裂項求和法,意在考查考生運用化歸與轉(zhuǎn)化思想解決問題的能力. (1)證明:∵an>0,令n=1,有4S1=a-4-1,即4a1=a-4-1,
19、∴a2=. (2)當n≥2時,4Sn=a-4n-1,4Sn-1=a-4(n-1)-1,兩式相減得4an=a-a-4,有a=(an+2)2,即an+1=an+2, ∴{an}從第2項起,是公差為2的等差數(shù)列, ∴a5=a2+3×2=a2+6,a14=a2+12×2=a2+24, 又a2,a5,a14構(gòu)成等比數(shù)列,有a=a2·a14, 則(a2+6)2=a2(a2+24),解得a2=3, 由(1)得a1=1,又an+1=an+2(n≥2). ∴{an}是首項為1,公差為2的等差數(shù)列, 即an=1+(n-1)×2=2n-1. (3)證明:由(
20、2)得++…+ =++…+ = =<. 3.(2012新課標全國,5分)數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項和為( ) A.3 690 B.3 660 C.1 845 D.1 830 解析:不妨令a1=1,根據(jù)題意,得a2=2,a3=a5=a7=…=1,a4=6,a6=10,…,所以當n為奇數(shù)時,an=1,當n為偶數(shù)時構(gòu)成以a2=2為首項,以4為公差的等差數(shù)列.所以前60項和為 S60=30+2×30+×4=1 830. 答案:D 4.(2009·福建,4分)五位同學(xué)圍成一圈依序循環(huán)報
21、數(shù),規(guī)定: ①第一位同學(xué)首次報出的數(shù)為1,第二位同學(xué)首次報出的數(shù)也為1,之后每位同學(xué)所報出的數(shù)都是前兩位同學(xué)所報出的數(shù)之和; ②若報出的數(shù)為3的倍數(shù),則報該數(shù)的同學(xué)需拍一次. 已知甲同學(xué)第一個報數(shù),當五位同學(xué)依序循環(huán)報到第100個數(shù)時,甲同學(xué)拍手的總次數(shù)為________. 解析:五位同學(xué)報數(shù)所構(gòu)成的數(shù)列為1,1,2,3,5,8,13,21,…該數(shù)列被3除所得的余數(shù)構(gòu)成的數(shù)列為1,1,2,0,2,2,1,0,…所得新數(shù)列中每4個數(shù)出現(xiàn)一個0,而又有5名同學(xué),因而甲同學(xué)報的數(shù)為3的倍數(shù)的間隔為20,所以甲同學(xué)報的數(shù)為3的倍數(shù)的數(shù)依次是第16,36,56,76,96,共5個數(shù). 答案:5
22、 5.(2011廣東,14分)設(shè)b>0,數(shù)列{an}滿足a1=b,an=(n≥2). (1)求數(shù)列{an}的通項公式; (2)證明:對于一切正整數(shù)n,2an≤bn+1+1. (1)由an=聯(lián)想到取倒數(shù)得=+·,令cn=,有cn=+cn-1,當b=1時,{cn}為等差數(shù)列,當b≠1時,設(shè)cn+k=(cn-1+k),展開對比得k=,構(gòu)造等比數(shù)列{cn+},求得cn后再求an;(2)當b=1時,易驗證,當b≠1時,先用分析法將2an≤bn+1+1轉(zhuǎn)化為≤bn+1+1,利用公式an-bn=(a-b)(an-1+an-2b+…+bn-1),再轉(zhuǎn)化為2nbn≤(bn+1+1)(1+b+b
23、2+…+bn-1),然后將右邊乘開,再利用基本不等式即可得證. 解:(1)∵a1=b>0,an=, ∴=+·, 令cn=,則cn=+cn-1, ①當b=1時,cn=1+cn-1,且c1===1 ∴{cn}是首項為1,公差為1的等差數(shù)列, ∴cn=1+(n-1)×1=n,于是cn==n,這時an=1; ②當b≠1時,cn+=(cn-1+),且c1+=+=, {cn+}是首項為,公比為的等比數(shù)列, ∴cn+=·()n-1,由+=得an=, ∴an=. (2)證明:由(1)得,當b=1時,an=1,2an≤bn+1+1?2≤2成立, 當b≠1時,an=,2an≤bn+1+1?≤bn+1+1, 而1-bn=(1-b)(1+b+b2+…+bn-1), 又b>0, 故只需證:2nbn≤(bn+1+1)(1+b+b2+…+bn-1),(※) 而(bn+1+1)(1+b+b2+…+bn-2+bn-1)=(b2n+b2n-1+…+bn+1)+(bn-1+bn-2+…b+1)=(b2n+1)+(b2n-1+b)+…+(bn+1+bn-1)≥2bn+2bn+…+2bn=2nbn,∴(※)式成立,原不等式成立.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。