《小學(xué)六年級(jí) 陰影部分面積 專(zhuān)題復(fù)習(xí) 典型例題(含答案)》由會(huì)員分享,可在線閱讀,更多相關(guān)《小學(xué)六年級(jí) 陰影部分面積 專(zhuān)題復(fù)習(xí) 典型例題(含答案)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精品文檔,僅供學(xué)習(xí)與交流,如有侵權(quán)請(qǐng)聯(lián)系網(wǎng)站刪除
陰影部分面積專(zhuān)題
例1.求陰影部分的面積。(單位:厘米)
解:這是最基本的方法: 圓面積減去等腰直角三角形的面積,
×-2×1=1.14(平方厘米)
例2.正方形面積是7平方厘米,求陰影部分的面積。(單位:厘米)
解:這也是一種最基本的方法用正方形的面積減去 圓的面積。
設(shè)圓的半徑為 r,因?yàn)檎叫蔚拿娣e為7平方厘米,所以 =7,
所以陰影部分的面積為:7-=7-×7=1.505平方厘米
例3.求圖中陰影部分的面積。(單位:厘米)
解:最基本的方法之一。用四個(gè) 圓組成一個(gè)圓,用正方
2、形的面積減去圓的面積,
所以陰影部分的面積:2×2-π=0.86平方厘米。
例4.求陰影部分的面積。(單位:厘米)
解:同上,正方形面積減去圓面積,
16-π()=16-4π
=3.44平方厘米
例5.求陰影部分的面積。(單位:厘米)
解:這是一個(gè)用最常用的方法解最常見(jiàn)的題,為方便起見(jiàn),
我們把陰影部分的每一個(gè)小部分稱(chēng)為“葉形”,是用兩個(gè)圓減去一個(gè)正方形,
π()×2-16=8π-16=9.12平方厘米
另外:此題還可以看成是1題中陰影部分的8倍。
例6.如圖:已知小圓半徑為2厘米,大圓半徑是小圓的3倍,問(wèn):空白部
3、分甲比乙的面積多多少厘米?
解:兩個(gè)空白部分面積之差就是兩圓面積之差(全加上陰影部分)
π-π()=100.48平方厘米
?。ㄗⅲ哼@和兩個(gè)圓是否相交、交的情況如何無(wú)關(guān))
例7.求陰影部分的面積。(單位:厘米)
解:正方形面積可用(對(duì)角線長(zhǎng)×對(duì)角線長(zhǎng)÷2,求)
正方形面積為:5×5÷2=12.5
所以陰影面積為:π÷4-12.5=7.125平方厘米
(注:以上幾個(gè)題都可以直接用圖形的差來(lái)求,無(wú)需割、補(bǔ)、增、減變形)
例8.求陰影部分的面積。(單位:厘米)
解:右面正方形上部陰影部分的面積,等于左面正方形下部空白部分面積,割補(bǔ)以后為圓,
4、 所以陰影部分面積為:π()=3.14平方厘米
例9.求陰影部分的面積。(單位:厘米)
解:把右面的正方形平移至左邊的正方形部分,則陰影部分合成一個(gè)長(zhǎng)方形,
所以陰影部分面積為:2×3=6平方厘米
例10.求陰影部分的面積。(單位:厘米)
解:同上,平移左右兩部分至中間部分,則合成一個(gè)長(zhǎng)方形,
所以陰影部分面積為2×1=2平方厘米
(注: 8、9、10三題是簡(jiǎn)單割、補(bǔ)或平移)
例11.求陰影部分的面積。(單位:厘米)
解:這種圖形稱(chēng)為環(huán)形,可以用兩個(gè)同心圓的面積差或差的一部分來(lái)求。
(π -π)×=×3.14=3.66平方厘米
5、
例12.求陰影部分的面積。(單位:厘米)
解:三個(gè)部分拼成一個(gè)半圓面積.
π()÷2=14.13平方厘米
例13.求陰影部分的面積。(單位:厘米)
解: 連對(duì)角線后將"葉形"剪開(kāi)移到右上面的空白部分,湊成正方形的一半.
所以陰影部分面積為:8×8÷2=32平方厘米
例14.求陰影部分的面積。(單位:厘米)
解:梯形面積減去圓面積,
(4+10)×4-π=28-4π=15.44平方厘米 .
例15.已知直角三角形面積是12平方厘米,求陰影部分的面積。
分析: 此題比上面的題有一定難度,這是"葉形"的一個(gè)半.
解: 設(shè)三角形的直角
6、邊長(zhǎng)為r,則=12,=6
圓面積為:π÷2=3π。圓內(nèi)三角形的面積為12÷2=6,
陰影部分面積為:(3π-6)×=5.13平方厘米
例16.求陰影部分的面積。(單位:厘米)
解:[π+π-π]
=π(116-36)=40π=125.6平方厘米
例17.圖中圓的半徑為5厘米,求陰影部分的面積。(單位:厘米)
解:上面的陰影部分以AB為軸翻轉(zhuǎn)后,整個(gè)陰影部分成為梯形減去直角三角形,或兩個(gè)小直角三角形AED、BCD面積和。
所以陰影部分面積為:5×5÷2+5×10÷2=37.
7、5平方厘米
例18.如圖,在邊長(zhǎng)為6厘米的等邊三角形中挖去三個(gè)同樣的扇形,求陰影部分的周長(zhǎng)。
解:陰影部分的周長(zhǎng)為三個(gè)扇形弧,拼在一起為一個(gè)半圓弧,
所以圓弧周長(zhǎng)為:2×3.14×3÷2=9.42厘米
例19.正方形邊長(zhǎng)為2厘米,求陰影部分的面積。
解:右半部分上面部分逆時(shí)針,下面部分順時(shí)針旋轉(zhuǎn)到左半部分,組成一個(gè)矩形。
所以面積為:1×2=2平方厘米
例20.如圖,正方形ABCD的面積是36平方厘米,求陰影部分的面積。
解:設(shè)小圓半徑為r,4=36, r=3,大圓半徑為R,=2=18,
將陰影部分通過(guò)轉(zhuǎn)動(dòng)移在一起構(gòu)成半個(gè)
8、圓環(huán),
所以面積為:π(-)÷2=4.5π=14.13平方厘米
例21.圖中四個(gè)圓的半徑都是1厘米,求陰影部分的面積。
解:把中間部分分成四等分,分別放在上面圓的四個(gè)角上,補(bǔ)成一個(gè)正方形,邊長(zhǎng)為2厘米,
所以面積為:2×2=4平方厘米
例22. 如圖,正方形邊長(zhǎng)為8厘米,求陰影部分的面積。
解法一: 將左邊上面一塊移至右邊上面,補(bǔ)上空白,則左邊為一三角形,右邊一個(gè)半圓.
陰影部分為一個(gè)三角形和一個(gè)半圓面積之和. π()÷2+4×4=8π+16=41.12平方厘米
解法二: 補(bǔ)上兩個(gè)空白為一個(gè)完整的圓.
9、 所以陰影部分面積為一個(gè)圓減去一個(gè)葉形,葉形面積為:π()÷2-4×4=8π-16
所以陰影部分的面積為:π()-8π+16=41.12平方厘米
例23.圖中的4個(gè)圓的圓心是正方形的4個(gè)頂點(diǎn),,它們的公共點(diǎn)是該正方形的中心,如果每個(gè)圓的半徑都是1厘米,那么陰影部分的面積是多少?
解:面積為4個(gè)圓減去8?jìng)€(gè)葉形,葉形面積為:π-1×1=π-1
所以陰影部分的面積為:4π-8(π-1)=8平方厘米
例24.如圖,有8個(gè)半徑為1厘米的小圓,用他們的圓周的一部分連成一個(gè)花瓣圖形,圖中的黑點(diǎn)是這些圓的圓心。如果圓周π率取3.1416,那么花瓣圖形的的面積是多少平方厘
10、米?
分析:連接角上四個(gè)小圓的圓心構(gòu)成一個(gè)正方形,各個(gè)小圓被切去個(gè)圓,
這四個(gè)部分正好合成3個(gè)整圓,而正方形中的空白部分合成兩個(gè)小圓.
解:陰影部分為大正方形面積與一個(gè)小圓面積之和.
為:4×4+π=19.1416平方厘米
例25.如圖,四個(gè)扇形的半徑相等,求陰影部分的面積。(單位:厘米)
分析:四個(gè)空白部分可以拼成一個(gè)以2為半徑的圓.
所以陰影部分的面積為梯形面積減去圓的面積,
4×(4+7)÷2-π=22-4π=9.44平方厘米
例26.如圖,等腰直角三角形ABC和四分之一圓DEB,AB=5厘米,BE=2厘米,求圖中陰影部分的
11、面積。
解: 將三角形CEB以B為圓心,逆時(shí)針轉(zhuǎn)動(dòng)90度,到三角形ABD位置,陰影部分成為三角形ACB面積減去個(gè)小圓面積,
為: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米
例27.如圖,正方形ABCD的對(duì)角線AC=2厘米,扇形ACB是以AC為直徑的半圓,扇形DAC是以D為圓心,AD為半徑的圓的一部分,求陰影部分的面積。
解: 因?yàn)?==4,所以=2
以AC為直徑的圓面積減去三角形ABC面積加上弓形AC面積,
π-2×2÷4+[π÷4-2]
=π-1+(π-1)
=π-2=1.14平方厘米
例28.求陰影
12、部分的面積。(單位:厘米)
解法一:設(shè)AC中點(diǎn)為B,陰影面積為三角形ABD面積加弓形BD的面積,
三角形ABD的面積為:5×5÷2=12.5
弓形面積為:[π÷2-5×5]÷2=7.125
所以陰影面積為:12.5+7.125=19.625平方厘米
解法二:右上面空白部分為小正方形面積減去小圓面積,其值為:5×5-π=25-π
陰影面積為三角形ADC減去空白部分面積,為:10×5÷2-(25-π)=π=19.625平方厘米
例29.圖中直角三角形ABC的直角三角形的直角邊AB=4厘米,BC=6厘米,扇形BCD所在圓是以B為圓心,半徑為BC的圓,∠CBD=,問(wèn)
13、:陰影部分甲比乙面積小多少?
解: 甲、乙兩個(gè)部分同補(bǔ)上空白部分的三角形后合成一個(gè)扇形BCD,一個(gè)成為三角形ABC,
此兩部分差即為:π×-×4×6=5π-12=3.7平方厘米
例30.如圖,三角形ABC是直角三角形,陰影部分甲比陰影部分乙面積大28平方厘米,AB=40厘米。求BC的長(zhǎng)度。
解:兩部分同補(bǔ)上空白部分后為直角三角形ABC,一個(gè)為半圓,設(shè)BC長(zhǎng)為X,則
40X÷2-π÷2=28
所以40X-400π=56 則X=32.8厘米
例31.如圖是一個(gè)正方形和半圓所組成的圖形,其中P為半圓周的中點(diǎn),Q為正方形一邊上的中點(diǎn),求陰影部分的面積。
14、
解:連PD、PC轉(zhuǎn)換為兩個(gè)三角形和兩個(gè)弓形,
兩三角形面積為:△APD面積+△QPC面積=(5×10+5×5)=37.5
兩弓形PC、PD面積為:π-5×5
所以陰影部分的面積為:37.5+π-25=51.75平方厘米
例32.如圖,大正方形的邊長(zhǎng)為6厘米,小正方形的邊長(zhǎng)為4厘米。求陰影部分的面積。
解:三角形DCE的面積為:×4×10=20平方厘米
梯形ABCD的面積為:(4+6)×4=20平方厘米 從而知道它們面積相等,則三角形ADF面積等于三角形EBF面積,陰影部分可補(bǔ)成圓ABE的面積,其面積為:
????π÷4=9π=28.26平方厘米
15、
例33.求陰影部分的面積。(單位:厘米)
解:用大圓的面積減去長(zhǎng)方形面積再加上一個(gè)以2為半徑的圓ABE面積,為
(π+π)-6
=×13π-6
=4.205平方厘米
例34.求陰影部分的面積。(單位:厘米)
解:兩個(gè)弓形面積為:π-3×4÷2=π-6
陰影部分為兩個(gè)半圓面積減去兩個(gè)弓形面積,結(jié)果為
π+π-(π-6)=π(4+-)+6=6平方厘米
例35.如圖,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求陰影部分的面積。
解:將兩個(gè)同樣的圖形拼在一起成為圓減等腰直角三角形
[π÷4-×5×5]÷2
=(π-)÷2=3.5625平方厘米
【精品文檔】第 7 頁(yè)