《人教A版高中數(shù)學(xué)必修五第一章《正余弦定理的應(yīng)用》課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教A版高中數(shù)學(xué)必修五第一章《正余弦定理的應(yīng)用》課件(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、解三角形復(fù)習(xí)正余弦定理的應(yīng)用1、角的關(guān)系、角的關(guān)系2、邊的關(guān)系、邊的關(guān)系3、邊角關(guān)系、邊角關(guān)系180CBAcbacba , 大角對(duì)大邊大角對(duì)大邊 大邊對(duì)大角大邊對(duì)大角知識(shí)構(gòu)建知識(shí)構(gòu)建:(三角形中的邊角關(guān)系)三角形中的邊角關(guān)系)RCcBbAa2sinsinsin CabbacBaccabAbccbacos2cos2cos2222222222 .sinCsinBsinAcbaCB在ABC中,A09安徽題:09江西題:09全國(guó):【解析】本小題考查正弦定理、余弦定理。典例:的值)(的大小求成等比數(shù)列,且已知的對(duì)邊長(zhǎng),分別是中,:在例cBbAbcaccacbaCBAcbaABCsin2) 1 (,122
2、解解(1)數(shù)列數(shù)列成等成等比比cba,bcacca22又又在ABC中,由余弦定理得acb 2bcacb22232122222cosAAbcbcbcacb的值)的大?。ㄇ蟪傻缺葦?shù)列,且已知的對(duì)邊長(zhǎng),分別是中,:在例cBbAbcaccacbaCBAcbaABCsin2) 1 (,122在在ABC中,由正弦定理得中,由正弦定理得aAbBsinsin233sinsin32sin,32acbcBbAacb解解(2)解解(1)數(shù)列數(shù)列成等成等比比cba,bcacca22又又在在ABC中,由余弦定理得中,由余弦定理得acb 2bcacb22232122222cosAAbcbcbcacb的值)的大?。ㄇ蟪傻缺?/p>
3、數(shù)列,且已知的對(duì)邊長(zhǎng),分別是中,:在例cBbAbcaccacbaCBAcbaABCsin2) 1 (,122在在ABC中,由正弦定理得中,由正弦定理得aAbBsinsin233sinsin32sin,32acbcBbAacb解解(2)法一:法一:b basinBasinBc cbsinBbsinBc成等比數(shù)列c成等比數(shù)列b,b,a,a,cbba法二:法二:2 23 33 3sinsinsinAsinA的值)的大小(求成等比數(shù)列,且已知的對(duì)邊長(zhǎng),分別是中,:在例cBbAbcaccacbaCBAcbaABCsin2) 1 (,122例例2.在在ABC中,中, (a2+b2)sin(A-B)=(a2
4、-b2)sin(A+B) 判斷判斷ABC的形狀的形狀 析:析:cosAsinBcosAsinBa asinAcosBsinAcosBb b2 22 2例例2.在在ABC中,中, (a2+b2)sin(A-B)=(a2-b2)sin(A+B) 判斷判斷ABC的形狀的形狀 分析:分析:c co os sA As si in nB Ba as si in nA Ac co os sB Bb b2 22 2A Ac co os sA As si in nB Bs si in nB Bs si in nA Ac co os sB Bs si in n2 22 20 0s si in nA As si i
5、n nB B s si in nA Ac co os sA As si in nB Bc co os sB B s si in n2 2A As si in n2 2B B2 2B BB或AB或AA A即為即為ABC等腰三角形或直角三角形等腰三角形或直角三角形分析:分析:c co os sA As si in nB Ba as si in nA Ac co os sB Bb b2 22 22bc2bca ac cb b2 22ac2acb bc ca a2 22 22 22 22 22 22 2b ba aa ab b) )a ac c(b(ba a) )b bc c(a(ab b2 22 2
6、2 22 22 22 22 22 24 42 22 24 42 22 2a ac ca ab bc cb b0 0) )(a)(ab b(a(a2 22 22 22 22 2cb2 22 22 2c cb bb或ab或aa a思路一:思路一:思路二:思路二:AaBbAaBbcoscossinsinAaBbcoscos思路三:思路三:A Ac co os sA As si in nB Bs si in nB Bs si in nA Ac co os sB Bs si in n2 22 20 0s si in nA As si in nB B s si in nA Ac co os sA As si in nB Bc co os sB B s si in n2 2A As si in n2 2B B2 2B BB或AB或AA A即為即為ABC等腰三角形或直角三角形等腰三角形或直角三角形2“邊角互化”是解決三角問(wèn)題常用的一個(gè)策略歸納總結(jié)1正弦定理和余弦定理的應(yīng)用3正余定理掌握住三角地帶任漫步邊角轉(zhuǎn)化是關(guān)鍵正余合璧很精彩