《湖南省耒陽市九年級數(shù)學(xué) 一元二次方程復(fù)習課件》由會員分享,可在線閱讀,更多相關(guān)《湖南省耒陽市九年級數(shù)學(xué) 一元二次方程復(fù)習課件(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 如圖,有一塊矩形鐵皮,長如圖,有一塊矩形鐵皮,長100 cm,寬,寬50 cm在它的四個角分別切去一個正方形,然后將四周突出在它的四個角分別切去一個正方形,然后將四周突出的部分折起,就能制作一個無蓋方盒如果要制作的的部分折起,就能制作一個無蓋方盒如果要制作的無蓋方盒的底面積是無蓋方盒的底面積是3 600 cm2,那么鐵皮各角應(yīng)切去,那么鐵皮各角應(yīng)切去多大的正方形?多大的正方形?問題問題1(1002 )(502 )3600 xx2753500 xx 要組織一次排球邀請賽,參賽的每兩個隊之間要組織一次排球邀請賽,參賽的每兩個隊之間都要比賽一場根據(jù)場地和時間等條件,賽程計劃都要比賽一場根據(jù)場地和時
2、間等條件,賽程計劃安排安排7天,每天安排天,每天安排4場比賽,比賽組織者應(yīng)該邀請場比賽,比賽組織者應(yīng)該邀請多少個隊參賽?多少個隊參賽?問題問題2(1)7 42x x(1)56x x2560 xx 1觀察下列方程,你能通過觀察得到觀察下列方程,你能通過觀察得到它們的共同特點嗎?它們的共同特點嗎? 22(1)753500;(2)560;xxxx特點:特點:(1)等號兩邊都是整式;等號兩邊都是整式;(2)整式的最高次數(shù)是)整式的最高次數(shù)是2次次 .22.1 一元二次方程一元二次方程 歸納:歸納: (1)方程的等號兩邊都是整式,只含有一個方程的等號兩邊都是整式,只含有一個 未知數(shù),且未知數(shù)的最高次數(shù)是
3、未知數(shù),且未知數(shù)的最高次數(shù)是2的方程的方程叫作一元叫作一元 二次方程二次方程; (2)一般地,任何一個關(guān)于)一般地,任何一個關(guān)于x的一元二次方程,的一元二次方程, 經(jīng)過整理,都能化成如下形式經(jīng)過整理,都能化成如下形式 : 2(0)0 bcaxxa 這種形式叫作一元二次方程的這種形式叫作一元二次方程的一般形式一般形式其中其中 ax2是二次是二次項,項,a是二次項系數(shù);是二次項系數(shù); bx是一次項,是一次項,b是一次項系數(shù);是一次項系數(shù);c是常是常數(shù)項數(shù)項 做精編第13頁3、4題3 (1)5(2)x xx 2將下列方程化為一元二次方程的將下列方程化為一元二次方程的一般形式,并指出各項系數(shù)一般形式,
4、并指出各項系數(shù).238100 xx一般形式:一般形式: 二次項系數(shù)是二次項系數(shù)是3,一次項系數(shù)是,一次項系數(shù)是8,常數(shù)項是常數(shù)項是10. 做精編第13頁7、8題3猜測下列方程的根是什么?猜測下列方程的根是什么?2560 xx 方程的根:方程的根: 使一元二次方程等號兩邊相等使一元二次方程等號兩邊相等的未知數(shù)的的未知數(shù)的值叫作一元二次方程的解(又叫做根)值叫作一元二次方程的解(又叫做根).4.(1)下列哪些數(shù)是方程)下列哪些數(shù)是方程260 xx的根?從中你能體會根的作用嗎?的根?從中你能體會根的作用嗎? 4,3,2,1,0,1,2,3,4 (2)若)若x2是方程是方程 的一個的一個 2450ax
5、x根,你能求出根,你能求出a的值嗎?的值嗎?根根的作用:的作用:可以使等號成立可以使等號成立.做精編第13頁6題鞏固練習鞏固練習2360 x 2490 x 7) 1)(5(xx1你能根據(jù)所學(xué)過的知識解出下列方程的解嗎?你能根據(jù)所學(xué)過的知識解出下列方程的解嗎?(1) ; (2) .2有人解這樣一個方程有人解這樣一個方程 解:解:x+5=1或或x1=7,所以,所以x1=4,x2= 8,你的看,你的看法如何?法如何? 本節(jié)課你學(xué)到了什么知識?本節(jié)課你學(xué)到了什么知識?小結(jié)小結(jié) (3) 使一元二次方程等號兩邊相等的未知使一元二次方程等號兩邊相等的未知數(shù)的值叫作一元二次方程的解(又叫做根)數(shù)的值叫作一元二次方程的解(又叫做根). (1)只含有一個只含有一個 未知數(shù),且未知數(shù)的最高次數(shù)未知數(shù),且未知數(shù)的最高次數(shù)是是2的整式方程叫作一元的整式方程叫作一元 二次方程;二次方程; (2)一元二次方程的一般形式為:)一元二次方程的一般形式為:2(0)0 bcaxxa精編第14頁12題作業(yè):作業(yè)精編P13-14