《九年級數(shù)學上冊 第二十五章 概率初步 第56課時 用列舉法求概率(3)—無放回型(小冊子) (新版)新人教版》由會員分享,可在線閱讀,更多相關(guān)《九年級數(shù)學上冊 第二十五章 概率初步 第56課時 用列舉法求概率(3)—無放回型(小冊子) (新版)新人教版(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第二十五章 概率初步課前學習任務(wù)單課前學習任務(wù)單第第5656課時用列舉法求概率(課時用列舉法求概率(3 3)無放回型無放回型課前學習任務(wù)單課前學習任務(wù)單目標目標任務(wù)一:明確本課時學習目標任務(wù)一:明確本課時學習目標能夠運用列表法或畫樹狀圖法計算能夠運用列表法或畫樹狀圖法計算“無無放回型放回型”事件發(fā)生的概率,并闡明理由事件發(fā)生的概率,并闡明理由.承前承前任務(wù)二:復(fù)習回顧任務(wù)二:復(fù)習回顧1. 六張看上去無差別的卡片上分別寫有六張看上去無差別的卡片上分別寫有16的整數(shù),隨的整數(shù),隨機抽取一張后不放回,再隨機抽取第二張機抽取一張后不放回,再隨機抽取第二張. 用列表法列用列表法列出所有可能的結(jié)果出所有可
2、能的結(jié)果.課前學習任務(wù)單課前學習任務(wù)單略略.2. 根據(jù)左邊所列表格,求下列事件的概率:根據(jù)左邊所列表格,求下列事件的概率:(1)“兩數(shù)之積是偶數(shù)兩數(shù)之積是偶數(shù)”的概率;的概率;(2)“兩數(shù)之和是偶數(shù)兩數(shù)之和是偶數(shù)”的概率的概率. 課前學習任務(wù)單課前學習任務(wù)單解:(解:(1)()(2)啟后啟后任務(wù)三:學習列舉法,完成題目任務(wù)三:學習列舉法,完成題目1. 用樹狀圖表示任務(wù)二中第用樹狀圖表示任務(wù)二中第1題所有可能的結(jié)果題所有可能的結(jié)果.課前學習任務(wù)單課前學習任務(wù)單解:如答圖解:如答圖25-56-6所示所示. 2. 一只不透明的箱子里共有一只不透明的箱子里共有3個球,其中個球,其中2個白球、個白球、1
3、個個紅球,它們除顏色外均相同紅球,它們除顏色外均相同. 從箱子中隨機摸出一個球,從箱子中隨機摸出一個球,記錄下顏色后不將它放回箱子,攪勻后再摸出一個球,記錄下顏色后不將它放回箱子,攪勻后再摸出一個球,求兩次摸出的球都是白球的概率求兩次摸出的球都是白球的概率. 課前學習任務(wù)單課前學習任務(wù)單解:畫出樹狀圖如答圖解:畫出樹狀圖如答圖25-56-7所示所示.共有共有6種等可能的結(jié)果,兩次摸出種等可能的結(jié)果,兩次摸出的球都是白球的有的球都是白球的有2種情況,種情況,兩次摸出的球都是白球的概率為兩次摸出的球都是白球的概率為范例范例任務(wù)四:運用列表法或畫樹狀圖法計算任務(wù)四:運用列表法或畫樹狀圖法計算“無放回
4、型無放回型”事事件發(fā)生的概率件發(fā)生的概率 1. 將正面分別標有數(shù)字將正面分別標有數(shù)字1,2,3,背面花色相同的三張,背面花色相同的三張卡片洗勻后,背面朝上放在桌面上卡片洗勻后,背面朝上放在桌面上. 隨機抽取一張作為隨機抽取一張作為個位上的數(shù)字(不放回),再抽取一張作為十位上的數(shù)個位上的數(shù)字(不放回),再抽取一張作為十位上的數(shù)字,兩張卡片組成的數(shù)恰好為字,兩張卡片組成的數(shù)恰好為“12”的概率是多少?的概率是多少?課前學習任務(wù)單課前學習任務(wù)單課前學習任務(wù)單課前學習任務(wù)單解:畫出樹狀圖如答圖解:畫出樹狀圖如答圖25-56-8所示所示.共有共有6種等可能的結(jié)果,兩張卡片組成的數(shù)恰好為種等可能的結(jié)果,兩
5、張卡片組成的數(shù)恰好為“12”的只有的只有1種情況,種情況,兩張卡片組成的數(shù)恰好為兩張卡片組成的數(shù)恰好為“12”的概率是的概率是2. 有四張撲克牌(方塊有四張撲克牌(方塊2、黑桃、黑桃4、黑桃、黑桃5、梅花、梅花5),),將撲克牌洗勻后,背面朝上放置在桌面上將撲克牌洗勻后,背面朝上放置在桌面上. 同時抽取兩同時抽取兩張撲克牌,求兩張牌面數(shù)字之和為奇數(shù)的概率張撲克牌,求兩張牌面數(shù)字之和為奇數(shù)的概率. 課前學習任務(wù)單課前學習任務(wù)單解:畫出樹狀圖如答圖解:畫出樹狀圖如答圖25-56-9所示所示.共有共有12種等可能的結(jié)果,其中兩張牌面數(shù)字之和為奇種等可能的結(jié)果,其中兩張牌面數(shù)字之和為奇數(shù)的有數(shù)的有8種
6、情況,種情況,P(數(shù)字之和為奇數(shù))(數(shù)字之和為奇數(shù))=課前學習任務(wù)單課前學習任務(wù)單思考思考任務(wù)五:對于任務(wù)四的第任務(wù)五:對于任務(wù)四的第2題中的問題,如題中的問題,如果兩張牌面數(shù)字之和為奇數(shù)時,小亮獲勝;果兩張牌面數(shù)字之和為奇數(shù)時,小亮獲勝;否則小明獲勝否則小明獲勝. 請問這個游戲規(guī)則公平嗎?請問這個游戲規(guī)則公平嗎?并說明理由并說明理由. 解:解:P(小亮獲勝)(小亮獲勝)=,P(小明(小明獲勝)獲勝)=,這個游這個游戲規(guī)則不公平戲規(guī)則不公平.課堂小測課堂小測非線性循環(huán)練非線性循環(huán)練1. (10分)三角形兩邊的長是分)三角形兩邊的長是3和和4,第三邊的長是方,第三邊的長是方程程x212x350的
7、根,則該三角形的周長為的根,則該三角形的周長為 ()()A. 14B. 12C. 12或或14D. 以上都不對以上都不對B課堂小測課堂小測2. (20分)求二次函數(shù)分)求二次函數(shù)y=x2-2x-3與與x軸、軸、y軸的交點坐軸的交點坐標標. 解:令解:令y=0,得,得x2-2x-3=0. 解得解得x1=-1,x2=3. 二次函數(shù)二次函數(shù)y=x2-2x-3與與x軸的交點坐標為(軸的交點坐標為(-1,0),),(3,0). 令令x=0,得,得y=-3.二次函數(shù)二次函數(shù)y=x2-2x-3與與y軸的交點坐標為(軸的交點坐標為(0,-3). 課堂小測課堂小測3. (20分)一只口袋里放著分)一只口袋里放著
8、4個紅球、個紅球、8個黑球和若干個黑球和若干個白球,這三種球除顏色外沒有任何區(qū)別,并攪勻個白球,這三種球除顏色外沒有任何區(qū)別,并攪勻. (1)已知取出紅球的概率為,求白球有多少個)已知取出紅球的概率為,求白球有多少個;(2)取出黑球的概率是多少?)取出黑球的概率是多少?(3)再在原來的袋中放進多少個紅球,能使取出紅球)再在原來的袋中放進多少個紅球,能使取出紅球的概率達到?的概率達到?課堂小測課堂小測解:(解:(1)白球有)白球有8個個. (2)取出黑球的概率是)取出黑球的概率是(3)設(shè)再在原來的袋中放入)設(shè)再在原來的袋中放入y個紅球個紅球. 由題意由題意,得得3(4+y)=20+y.解得解得y
9、=4.答:再在原來的袋中放進答:再在原來的袋中放進4個紅球,能使取出紅球的概個紅球,能使取出紅球的概率達到率達到.課堂小測課堂小測當堂高效測當堂高效測1. (10分)在一個不透明的袋中裝有除顏色外其余都分)在一個不透明的袋中裝有除顏色外其余都相同的相同的3個小球,其中個小球,其中1個白球、個白球、2個紅球個紅球. 如果一次從如果一次從袋中摸出袋中摸出2個球,那么摸出的兩個球都是紅球的概率是個球,那么摸出的兩個球都是紅球的概率是_. 課堂小測課堂小測2. (20分)從甲、乙、丙、丁四名三好學生中隨機抽分)從甲、乙、丙、丁四名三好學生中隨機抽取取2名學生擔任旗手,用列表法或畫樹狀圖法求抽取的名學生
10、擔任旗手,用列表法或畫樹狀圖法求抽取的2名學生是甲和乙的概率名學生是甲和乙的概率. 解:畫出樹狀圖如答圖解:畫出樹狀圖如答圖25-56-10所示所示. 一共有一共有12種等可能的情況,抽取到甲和乙的有種等可能的情況,抽取到甲和乙的有2種,種,P(抽到甲和乙)(抽到甲和乙)=課堂小測課堂小測3. (20分)從數(shù)字分)從數(shù)字0,1,2,3中隨機抽取中隨機抽取2個數(shù)字,個數(shù)字,用列表法或畫樹狀圖法求抽取到的用列表法或畫樹狀圖法求抽取到的2個數(shù)字的積為偶數(shù)個數(shù)字的積為偶數(shù)的概率的概率.解:畫出樹狀圖如答圖解:畫出樹狀圖如答圖25-56-11所示所示.共有共有12種等可能的結(jié)果,抽取到的種等可能的結(jié)果,抽取到的2個數(shù)字的積是偶個數(shù)字的積是偶數(shù)的有數(shù)的有10種情況,種情況,抽取到的抽取到的2個數(shù)字的積是偶數(shù)的概率為個數(shù)字的積是偶數(shù)的概率為 =