11、熱點題型1 正、余弦定理的應用
題型分析:利用正、余弦定理解題是歷年高考的熱點,也是必考點,求解的關鍵是合理應用正、余弦定理實現邊角的互化.
【例1】 在△ABC中,角A,B,C所對的邊分別是a,b,c,且+=.
(1)證明:sin Asin B=sin C;
(2)若b2+c2-a2=bc,求tan B.
[解] (1)證明:根據正弦定理,可設===k(k>0).
則a=ksin A,b=ksin B,c=ksin C,
代入+=中,有
+=, 2分
即sin Asin B=sin Acos B+cos Asin B=sin(A+B). 4分
在△ABC
12、中,由A+B+C=π,
有sin(A+B)=sin(π-C)=sin C,
所以sin Asin B=sin C. 6分
(2)由已知,b2+c2-a2=bc,根據余弦定理,有
cos A==, 8分
所以sin A==. 9分
由(1)知sin Asin B=sin Acos B+cos Asin B,
所以sin B=cos B+ sin B, 12分
故tan B==4. 14分
[方法指津]
關于解三角形問題,一般要用到三角形的內角和定理,正、余弦定理及有關三角形的性質,常見的三角變換方法和原則都適用,同時要注意“三統(tǒng)一”,即“統(tǒng)一角、
13、統(tǒng)一函數、統(tǒng)一結構”,這是使問題獲得解決的突破口.
[變式訓練1] (1)(20xx·溫州市普通高中高考模擬考試)在△ABC中,內角A,B,C所對的邊長分別為a,b,c,記S為△ABC的面積.若A=60°,b=1,S=,則c=________,cos B=________. 【導學號:68334041】
3 [因為S=bcsin A=×1×c×=,所以c=3;由余弦定理,得a2=b2+c2-2bccos A=1+9-6×=7,所以cos B===.
(2)在△ABC中,a,b,c分別為內角A,B,C的對邊,且acos B+bcos(B+C)=0.
①證明:△ABC為等腰三角形;
14、
②若2(b2+c2-a2)=bc,求cos B+cos C的值.
[解]?、僮C明:∵acos B+bcos (B+C)=0,
∴由正弦定理得sin Acos B+sin Bcos(π-A)=0,
即sin Acos B-sin Bcos A=0, 3分
∴sin(A-B)=0,∴A-B=kπ,k∈Z. 4分
∵A,B是△ABC的兩內角,
∴A-B=0,即A=B, 5分
∴△ABC是等腰三角形. 6分
②由2(b2+c2-a2)=bc,
得=, 7分
由余弦定理得cos A=, 8分
cos C=cos(π-2A)=-cos 2A=1-
15、2cos2 A=. 10分
∵A=B,∴cos B=cos A=, 12分
∴cos B+cos C=+=. 14分
熱點題型2 三角形面積的求解問題
題型分析:三角形面積的計算及與三角形面積有關的最值問題是解三角形的重要命題點之一,本質上還是考查利用正、余弦定理解三角形,難度中等.
【例2】 設f(x)=sin xcos x-cos2.
(1)求f(x)的單調區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若f=0,a=1,求△ABC面積的最大值.
【解題指導】 (1)
―→
(2)
[解] (1)由題意知
f(x)=-
16、
=-=sin 2x-. 2分
由-+2kπ≤2x≤+2kπ,k∈Z,可得-+kπ≤x≤+kπ,k∈Z.由+2kπ≤2x≤+2kπ,k∈Z,可得+kπ≤x≤+kπ,k∈Z. 4分
所以f(x)的單調遞增區(qū)間是-+kπ,+kπ(k∈Z);單調遞減區(qū)間是(k∈Z). 6分
(2)由f=sin A-=0,得sin A=, 7分
由題意知A為銳角,所以cos A=. 8分
由余弦定理a2=b2+c2-2bccos A,可得1+bc=b2+c2≥2bc, 12分
即bc≤2+,當且僅當b=c時等號成立.
因此bcsin A≤,
所以△ABC面積的最大值為. 14
17、分
[方法指津]
1.在研究三角函數的圖象與性質時常先將函數的解析式利用三角恒等變換轉化為y=Asin(ωx+φ)+B(或y=Acos(ωx+φ)+B,y=Atan(ωx+φ)+B)的形式,進而利用函數y=sin x(或y=cos x,y=tan x)的圖象與性質解決問題.
2.在三角形中,正、余弦定理可以實現邊角互化,尤其在余弦定理a2=b2+c2-2bccos A中,有a2+c2和ac兩項,二者的關系a2+c2=(a+c)2-2ac經常用到,有時還可利用基本不等式求最值.
[變式訓練2] (名師押題)在△ABC中,角A,B,C的對邊分別為a,b,c,a+=4cos C,b=1.
18、 (1)若sin C=,求a,c;
(2)若△ABC是直角三角形,求△ABC的面積.
[解] (1)∵sin C=,∴cos2C=1-sin2C=,cos C=. 1分
∵4cos C=a+,
∴=a+,解得a=或a=. 3分
又+a=4cos C=4×=4×,
∴a2+1=2(a2+1-c2),即2c2=a2+1. 5分
∴當a=時,c=2;
當a=時,c=. 6分
(2)由(1)可知2c2=a2+1.
又△ABC為直角三角形,C不可能為直角.
①若角A為直角,則a2=b2+c2=c2+1,
∴2c2-1=c2+1,
∴c=,a=, 8分
∴S=bc=×1×=. 9分
②若角B為直角,則b2=a2+c2,a2+c2=1.
∴2c2=a2+1=(1-c2)+1,
∴c2=,a2=,即c=,a=, 12分
∴S=ac=××=. 14分
精品數學高考復習資料
精品數學高考復習資料