帶孔彎曲件的冷沖模設(shè)計(jì)【含CAD圖紙+三維SW+文檔】
帶孔彎曲件的冷沖模設(shè)計(jì)【含CAD圖紙+三維SW+文檔】,含CAD圖紙+三維SW+文檔,彎曲,沖模,設(shè)計(jì),CAD,圖紙,三維,SW,文檔
中期檢查表
學(xué)生學(xué)號(hào)
學(xué)生姓名
題目名稱
帶孔彎曲件冷沖模設(shè)計(jì)
已完成內(nèi)容
前期工作已按照原定的進(jìn)度進(jìn)行:1.進(jìn)行了相關(guān)資料的整理和學(xué)習(xí),并按照要求對(duì)兩萬(wàn)字符的英文進(jìn)行了翻譯;2.對(duì)solidworks軟件進(jìn)行了學(xué)習(xí),基本掌握了solidworks的建模方法;3.根據(jù)相關(guān)資料,本次設(shè)計(jì)已完成初稿。
檢查日期:
完成情況
□全部完成
t按進(jìn)度完成
□滯后進(jìn)度安排
存在困難
由于條件限制,對(duì)于很多類型的模具只能通過(guò)參考資料學(xué)習(xí),沒(méi)有辦法根據(jù)實(shí)體學(xué)習(xí)和分析;對(duì)于模具的很多零部件都只是通過(guò)以前的課程簡(jiǎn)單接觸了,具體的使用方法并不熟悉,靈活變通方面還需要加強(qiáng);對(duì)于建模軟件的使用也不是非常熟悉,所以對(duì)于一些標(biāo)準(zhǔn)件的調(diào)用或者參數(shù)設(shè)置上還存在些許問(wèn)題。
解決辦法
通過(guò)查看相關(guān)的資料不斷學(xué)習(xí)以及指導(dǎo)老師的耐心指導(dǎo),現(xiàn)在已經(jīng)對(duì)設(shè)計(jì)任務(wù)有深刻理解,明確了設(shè)計(jì)方案。在對(duì)網(wǎng)上資料及一些參考書(shū)的學(xué)習(xí)中,設(shè)計(jì)中的困難基本解決了!在軟件方面自己再多花些時(shí)間練習(xí),還要下苦功夫;得出結(jié)果后完成余下的論文。
預(yù)期成績(jī)
□優(yōu) 秀
□良 好
□中 等
t及 格
□不及格
建
議
。
教師簽名:
教務(wù)處實(shí)踐教學(xué)科制表
說(shuō)明:1、本表由檢查畢業(yè)設(shè)計(jì)的指導(dǎo)教師如實(shí)填寫(xiě);2、此表要放入畢業(yè)設(shè)計(jì)(論文)檔案袋中;
3、各院(系)分類匯總后報(bào)教務(wù)處實(shí)踐教學(xué)科備
開(kāi)題報(bào)告
1.本課題的主要內(nèi)容、重點(diǎn)和難點(diǎn)
本設(shè)計(jì)圍繞帶孔彎曲件的冷沖模設(shè)計(jì)查找相關(guān)資料和文摘,主要的難點(diǎn)在于需要的工藝包括沖孔,落料,彎曲三方面,需要盡量做到定位精準(zhǔn)和盡量少的工位沖裁。
本設(shè)計(jì)的設(shè)計(jì)步驟大致如下:
1, 分析零件的參數(shù)和性能需求。,
2, 各種沖裁方式的比較,選擇恰當(dāng)?shù)臎_壓方案。
3, 模具各部件的設(shè)計(jì)。
4, 對(duì)模具重要部位的校核。
5, 對(duì)于模具不合理部位的改進(jìn)。
6, 二維圖和三維圖的繪制。
難點(diǎn)在于:
1, 工位的合理安排。,
2, 二維圖和三維圖的標(biāo)準(zhǔn)繪制。
3, 卸料和頂料裝置的選用和布置。
2.本課題的目的
本課題主要是針對(duì)零件的不同參數(shù)和性能選擇適當(dāng)?shù)哪>邲_壓,比較采用不同模具的優(yōu)缺點(diǎn),再根據(jù)該零件的生產(chǎn)批量和生產(chǎn)條件選擇最佳的設(shè)計(jì)方案。本設(shè)計(jì)中參考了各種資料,再根據(jù)零件的參數(shù)和形狀,決定采用連續(xù)沖壓模。因?yàn)槠涓鼙WC零件沖裁時(shí)的定位精度和零件成型的最終尺寸精度,結(jié)構(gòu)相較其他的算是比較復(fù)雜。
在模具制造工藝和沖壓工藝的學(xué)習(xí)中,大部分是著重零部件的設(shè)計(jì),只是簡(jiǎn)單的介紹了復(fù)合模和連續(xù)模的設(shè)計(jì)方法,在實(shí)際的運(yùn)用中還欠缺一定的經(jīng)驗(yàn),這次的課題就是讓我們?cè)趽碛胁糠掷碚摰幕A(chǔ)上,獨(dú)立的學(xué)習(xí)和設(shè)計(jì)整副模具。本設(shè)計(jì)的工件包含了沖孔,切邊,彎曲成形等多到工序,是比較完整的考察模具知識(shí)的一個(gè)設(shè)計(jì),也是期望通過(guò)本設(shè)計(jì)可以給我們以后的工作和學(xué)習(xí)中提供寶貴的參考方案和設(shè)計(jì)思路。
3.本課題的實(shí)行方案、進(jìn)度
進(jìn)度安排:
1. 02-26~03-01 畢業(yè)設(shè)計(jì)的準(zhǔn)備,查找相關(guān)資料,寫(xiě)開(kāi)題報(bào)告、翻譯。
2. 03-06~03-15 學(xué)習(xí)SolidWorks軟件。
3. 03-16~04-01 對(duì)帶孔彎曲件零件進(jìn)行工藝分析,制定工藝路線確,確定模具結(jié)構(gòu)。
4. 04-01~04-10 采用SolidWorks軟件對(duì)模具零件建模和生成裝配體文件。
5. 04-11~04-20 進(jìn)行模具關(guān)鍵參數(shù)校核,調(diào)整其結(jié)構(gòu)。
6. 04-21~05-01 生成相應(yīng)的零件圖、總裝圖。
7. 05-01~05-11 撰寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)。
8. 05-11~06-10 準(zhǔn)備畢業(yè)答辯。
4、已查閱參考文獻(xiàn):
[1]
[2] 王孝培編著.沖壓手冊(cè)[M]. 北京:機(jī)械工業(yè)出版社,2002.
[2] 袁國(guó)定編著.模具常用機(jī)構(gòu)設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,2003
[3] 彭建聲編著.模具設(shè)計(jì)與加工速查手冊(cè)[M].北京:機(jī)械工業(yè)出版社,2005
[4] 孫鳳勤,閆亞林等編著.沖壓與塑壓成形設(shè)備[M].北京:高等教育出版社,2003
[5] AMkaddem et al.Experimental characterisation in sheet forming processes by using Vickers micro-hardness technique [J]. Journal of Materials Processing Technology, 2006, 180(1-3): 1-8
[6] 楊占堯編著.沖壓模具典型結(jié)構(gòu)圖例[M].北京:化學(xué)工業(yè)出版社,2008
[7] 牟林,胡建華等編著.沖壓工藝與模具設(shè)計(jì)[M].北京:中國(guó)林業(yè)出版社,北京大學(xué)出版社,2006
[8] 付宏生編著.冷沖壓成形工藝與模具設(shè)計(jì)制造[M].北京:化學(xué)工業(yè)出版社,2005
[9] 宛強(qiáng)編著.沖壓模具設(shè)計(jì)及實(shí)例境界[M].北京:化學(xué)工業(yè)出版社,2008
[10] 劉冬花,李國(guó)輝,靳美艷等編著.UG NX6.0基礎(chǔ)培訓(xùn)標(biāo)準(zhǔn)教程 [M].北京:北京航空航天大學(xué)出版社,2010
指導(dǎo)教師意見(jiàn)
指導(dǎo)教師:
20**年3月 20日
系審查意見(jiàn)
系領(lǐng)導(dǎo)(公章):
20**年3月25日
Logopress3 Strip summary information工步41.000mm料帶寬度 111.322mm厚度2.000mm材料CRS CQ(CSTB)總力1.3 T總切削力 0.00 T實(shí)際沖裁輪廓線的周長(zhǎng)0.000mm總折彎力 1.25 T工位號(hào)8%材料損耗率15%沖頭周長(zhǎng) 0.000mm零件重量 鈑金工件圖_料帶-159.311 Gr單位基準(zhǔn)重量71.840 Gr零件表面積 鈑金工件圖_料帶-18280.177 mm
鎂合金筆記本板的連續(xù)沖壓模具設(shè)計(jì)
Heng-Kuang Tsai, Chien-Chin Liao, Fuh-Kuo Chen
中國(guó)臺(tái)灣 臺(tái)灣大學(xué)機(jī)械工程研究所碩士論文
2008年12月8日提供在線使用。
摘要
在目前的研究中,在室溫下用LZ91鎂合金板沖壓一臺(tái)筆記本的外殼,正在采用實(shí)驗(yàn)方式和有限元分析。四工位沖壓工藝正往同時(shí)消除在沖壓工件發(fā)生裂紋和皺紋缺陷的現(xiàn)象。為了驗(yàn)證有限元分析,標(biāo)準(zhǔn)的四工位沖壓工藝采用0.6mm厚的LZ91板材作為板料進(jìn)行沖裁。材料各位置壁厚的實(shí)驗(yàn)數(shù)據(jù)和有限元分析結(jié)果的吻合程度就是驗(yàn)證有限元分析的準(zhǔn)確性和精密度的根據(jù)。LZ91板材在室溫下的優(yōu)越性能同時(shí)也展示了在目前的研究中成功沖壓筆記本外殼的狀況。恰當(dāng)?shù)乃墓の还に嚳梢詢?yōu)化整條生產(chǎn)筆記本的生產(chǎn)鏈,與現(xiàn)在的生產(chǎn)工藝相比可以大大減少勞動(dòng)力。它同時(shí)也證明了LZ91鎂合金板材可以使用到筆記本外殼的沖壓生產(chǎn)中來(lái),它提供了一種可以當(dāng)今電行業(yè)中可以替代的鎂合金,那就是LZ91。
關(guān)鍵詞:筆記本外殼;LZ91鎂合金板材;多工位沖壓;成型性
文章大綱
1,簡(jiǎn)介
2,鎂合金力學(xué)性能表
3,有限元模型
4,多工位沖裁模具設(shè)計(jì)
4.1 兩工位沖裁工藝
4.2四工位沖裁工藝
5,實(shí)驗(yàn)驗(yàn)證
6,總結(jié)
感謝
參考文獻(xiàn)
1. 介紹
由于其重量輕、抗電磁干擾性能好、鎂合金廣泛用于電子行業(yè)結(jié)構(gòu)元件,如手機(jī)、筆記本的外殼。盡管目前生產(chǎn)過(guò)程中鎂合金產(chǎn)品已經(jīng)壓鑄、沖壓件的鎂合金板材行業(yè)已經(jīng)引起關(guān)注,因?yàn)樗母?jìng)爭(zhēng)效率和績(jī)效的有效生產(chǎn)薄壁結(jié)構(gòu)件。至于沖壓工藝對(duì)AZ31鎂合金(鋁3%、鋅1%)表通常用于形成過(guò)程在當(dāng)前的時(shí)間,盡管它需要在一定的溫度下形成由于其六角closed-packed(HCP)晶體結(jié)構(gòu)( [Chen et al., 2003] and [Chen and Huang, 2003] ). 最近,LZ合金已經(jīng)成功開(kāi)發(fā)出了在室溫下提高成型性能的鎂鋁合金。在鎂中添加可以使其發(fā)展成BCC晶體結(jié)構(gòu)的鋰,可以提高鎂的延展性( [Takuda et al., 1999a] , [Takuda et al., 1999b] and [Drozd et al., 2004] )。
在目前的研究中,已經(jīng)存在使用LZ板塊沖裁筆記本外殼的工藝。如展示在Fig.1(c)上的圖,因?yàn)閮蓚€(gè)凸緣之間的距離較小和凸緣的圓角半徑較小,導(dǎo)致成型筆記本外殼上的這兩個(gè)凸緣成為了沖裁工藝中最棘手的部分。當(dāng)鉸鏈的凸緣靠的太近筆記本的邊緣時(shí),非常容易導(dǎo)致鉸鏈凸緣的斷裂,圓角的半徑發(fā)生急劇的變化導(dǎo)致了復(fù)雜的幾何構(gòu)型,因此需要多工位沖裁工藝來(lái)克服上述缺點(diǎn)。在目前的研究中,正在通過(guò)實(shí)驗(yàn)方式和有限元分析驗(yàn)證LZ鎂合金板的性能還有優(yōu)化多工位沖裁的沖裁步驟,盡量減少工位的使用數(shù)目。
2. 鎂合金的力學(xué)性能表
通過(guò)拉伸試驗(yàn)對(duì)常溫下的鎂鋰合金LZ61,LZ91和LZ101板和在高溫下的AZ31板進(jìn)行力學(xué)性能的對(duì)比。圖2(a)顯示了在室溫LZ板,AZ31在室溫和200°C是的應(yīng)力-應(yīng)變關(guān)系,可以看出隨著鋰的增加,應(yīng)力-應(yīng)變曲線程下降趨勢(shì)。在圖中還可以明顯的看出來(lái)在室溫下的LZ91的應(yīng)力應(yīng)變關(guān)系和在高溫下的AZ31板非常的相近,而LZ101板在常溫下的延展性比室溫下的LZ91和高溫下的AZ31都要好??紤]到鋰的成本比較高,LZ91板比LZ101板更適合作為在室溫下成型的鎂合金材料?;谏鲜鲈?,在目前的研究中采用LZ91板作為筆記本外殼蓋的板料,同時(shí)試驗(yàn)在室溫下LZ91的成型狀況。為了確認(rèn)在有限元分析中是否會(huì)出現(xiàn)裂縫,0.6mm厚的LZ91板的成型極限圖同樣需要建立。
3. 有限元模型
像圖3顯示的一樣,通過(guò)DELTAMESH軟件把CAD軟件,PRO/E建立的幾何模型轉(zhuǎn)換成有限元網(wǎng)格。這個(gè)工件將被視為剛體,采用4節(jié)點(diǎn)的外殼單元來(lái)構(gòu)造板材的網(wǎng)格。通過(guò)實(shí)驗(yàn)獲取的材料力學(xué)性能和成型極限圖將被使用到有限元模擬,還有在原始操作的模擬數(shù)據(jù)還有:沖床速度5mm/s,壓邊力為3kn,摩擦系數(shù)為0.1。有限元軟件PAM_STAMP用來(lái)分析,并且將在臺(tái)式電腦上模擬。
有限元模型首先構(gòu)建來(lái)檢測(cè)一工位鉸鏈的沖壓工藝,因?yàn)閷?duì)稱的關(guān)系,只需要仿真一半的頂蓋,如圖3.a所示。仿真結(jié)果如3.b所示,可以看出裂紋發(fā)生在圓角的凸緣,還有最小半徑小于0.35mm。這意味著裂紋的問(wèn)題非常嚴(yán)重,不可能僅僅通過(guò)擴(kuò)大凸緣的圓角半徑來(lái)解決。有限元仿真還可以用來(lái)研究發(fā)生裂紋處的參數(shù)。比企鵝可以提出許多種避免裂紋的方法。
4. 多工位沖壓模具的設(shè)計(jì)
為了避免裂紋的產(chǎn)生,多工位沖壓工藝是必須的。在當(dāng)前的產(chǎn)業(yè)實(shí)踐中,用鎂合金來(lái)成型外殼蓋通常最少需要10個(gè)操作程序,所以目前的研究很多都嘗試減少操作程序的數(shù)目。有很多種方法被提出來(lái)用以避免裂紋,四工位沖壓工藝也已經(jīng)展示了它在解決裂縫問(wèn)題上的可行性。介于文章篇幅的關(guān)系,下面僅僅介紹二工位和四工位沖壓工藝。
4.1二工位成型工藝
二工位成型工藝的第一個(gè)工位是成型側(cè)壁,第二個(gè)工位是成型高度為5mm的鉸鏈的凸緣。圖4.c顯示了有限元仿真中的壁厚分布,變形的最小壁厚為0.41mm,還有拉緊力全部都在成型極限之內(nèi),這樣意味著可以避免裂紋缺陷。還有,凸緣的高度符合預(yù)期的目標(biāo),然而,這個(gè)工藝會(huì)產(chǎn)生一個(gè)關(guān)鍵性的褶皺,并且還影響鉸鏈的凸緣在后續(xù)的切削加工。因此,雖然二工位沖壓工藝解決了拐角部位和鉸鏈凸緣的裂縫問(wèn)題,但是還是需要找出更好的方案解決鉸鏈凸緣的起皺問(wèn)題。
4.2 4工位沖壓工藝
在目前的研究中,4工位沖壓工藝首先是成型3邊的側(cè)壁和給予鉸鏈的凸緣一個(gè)大概的角度,如圖5.a所示。由于靠近凸緣的側(cè)壁是開(kāi)放的而且轉(zhuǎn)角半徑比預(yù)期大,這樣凸緣就可以成功的成型,不會(huì)出現(xiàn)褶皺。這個(gè)工藝成功的避免了同時(shí)成型兩個(gè)集合特征的難題,但是增加了板料的使用。
第二個(gè)步驟切削側(cè)壁外的板料,增加轉(zhuǎn)角的半徑到4mm,讓其逐步接近預(yù)期的半徑2.5mm,從而形成鉸鏈。
第三個(gè)步驟是折疊開(kāi)放的一邊,以便側(cè)壁完成其的外圍構(gòu)造。第三個(gè)步驟還要研究在第二個(gè)步驟中切削側(cè)壁外多余的板料的作用。如果多余的板料不被切除,轉(zhuǎn)角的厚度為0.381mm,然而切除后,轉(zhuǎn)角的壁厚變成了0.437mm。根據(jù)零件的設(shè)計(jì),在第三個(gè)翻邊步驟中多出來(lái)的原料都要被切除。
最后一個(gè)步驟是磨削,使所有的轉(zhuǎn)角半徑都符合設(shè)計(jì)參數(shù)。轉(zhuǎn)角處的最小壁厚在最后一步工序是大于0.42,還有所有的拉緊力要在成形極限之內(nèi)。這是應(yīng)該注意圖5(a-c)只是展示了一個(gè)軸的形成。同樣的設(shè)計(jì)理念,然后擴(kuò)展到?jīng)_壓工藝上蓋上完整的案例。
5,實(shí)驗(yàn)驗(yàn)證
為了驗(yàn)證有限元分析,標(biāo)準(zhǔn)的四工位沖壓工藝采用0.6mm厚的LZ91板材作為板料進(jìn)行沖裁。板材的尺寸和模具都是根據(jù)有限元仿真的結(jié)果來(lái)設(shè)計(jì)的。一件完整的沒(méi)有產(chǎn)生裂紋和褶皺的產(chǎn)品被制造出來(lái),如圖6.a所示。為了進(jìn)一步定量的驗(yàn)證有限元分析的結(jié)果,鉸鏈凸緣的轉(zhuǎn)角壁厚將被測(cè)量和跟有限元仿真得到的數(shù)據(jù)比較。它被認(rèn)為是在表1,試驗(yàn)數(shù)據(jù)和有限元結(jié)果是一致的。4工位沖壓工藝設(shè)計(jì)基于有限元分析的實(shí)驗(yàn)數(shù)據(jù)證實(shí)有效。
6.結(jié)束語(yǔ)
本課題采用了試驗(yàn)方法和有限元分析來(lái)研究鎂合金的沖壓成型。首先分析了AZ31和LZ板的力學(xué)性能,試驗(yàn)結(jié)果發(fā)現(xiàn)LZ91是最適合的材料,因?yàn)槠湓谑覝叵碌男阅芎虯Z31在高溫下的性能基本一致。成功的成型了筆記本外殼蓋也顯示了LZ91在室溫下優(yōu)越的性能。推薦的4工位沖壓工藝也看出了與目前的生產(chǎn)實(shí)踐相比,它可以做到用比較少的步驟成型筆記本的側(cè)壁。同時(shí)它也證明了LZ91板可以采用來(lái)沖壓成型筆記本外殼,LZ91也是目前生產(chǎn)中鎂合金的一種可行性選擇。
鳴謝
作者對(duì)中華民國(guó)國(guó)家科學(xué)委員會(huì)對(duì)本項(xiàng)目財(cái)政上的支持表示衷心的感謝,因?yàn)槠浒驯卷?xiàng)目列為編號(hào)NSC-95-2622-E-002-019-CC3的財(cái)政支持項(xiàng)目才是本項(xiàng)目能以實(shí)行。同時(shí)感謝法國(guó)ESI對(duì)PAM_STAMP軟件運(yùn)行上的幫助。
參考文獻(xiàn)
Chen and Huang, 2003 F.K. Chen and T.B. Huang 鎂合金AZ31板的沖壓成型特性
Chen et al., 2003 F.K. Chen, T.B. Huang and C.K. Chang 鎂合金AZ31板的拉伸性能表
Drozd et al., 2004 Z. Drozd, Z. Trojanová and S. Kúdela, 鎂鋰鋁合金的變形性能
Takuda et al., 1999a H. Takuda, T. Yoshii and N. Hatta, 鎂合金AZ31板成形性能的有限元分析
Takuda et al., 1999b H. Takuda, S. Kikuchi, T. Tsukada, K. Kubota and N. Hatta, a Mg–8.5Li–1Zn合金板在常溫下應(yīng)變速率對(duì)變型的影響。
用電子束車削修整冶金設(shè)備零部件表面性能的自動(dòng)化設(shè)備
作者:S.I. Belyuk, A.G. Rau, I.V. Osipov*, N.G. Rempe*
俄羅斯Tmosk,2/1 Akademicheskii Ave,材料科學(xué)和物理量子研究所
俄羅斯 tmosk , 40 Lenin Ave.,tmosk州立大學(xué)無(wú)線電電子學(xué)和控制系統(tǒng)
文摘:該電子束車削設(shè)備專為金屬制品表面的具有耐磨和抗高溫的特性涂料產(chǎn)品設(shè)計(jì),此設(shè)備可以自動(dòng)的和高質(zhì)量的在大面積表面上涂層。車削設(shè)備擁有兩個(gè)陰極等離子的噴槍,因此可以高效完成車削工藝。該噴槍安裝在一個(gè)兩軸機(jī)械手的真空室內(nèi),可以同時(shí)的進(jìn)行加工。這個(gè)裝置用于生產(chǎn)冶金中用在空氣噴槍、鋼連鑄晶體、輥碎機(jī)等的耐磨涂料。
1, 介紹
電子束在真空中切削,可以采用特定性質(zhì)的涂料,而且這種涂層方式并沒(méi)有涂料粘附不上的問(wèn)題。不但材料可以采用這種方式涂層,而且材料表面的涂料有非常多的選擇。高重復(fù)性的結(jié)果結(jié)合工藝流程的恰當(dāng)控制使生產(chǎn)我們需求結(jié)構(gòu)和預(yù)定性質(zhì)的涂料變得可行。我們開(kāi)發(fā)了一套采用沉積的熱量和空氣高爐噴槍來(lái)增加一般經(jīng)營(yíng)的機(jī)械零件和冶煉設(shè)備耐久性的裝置。它還可以用于各種金屬和合金的焊接,包括高熔點(diǎn)的材料。無(wú)論任何的金屬,鋼材和合金,根據(jù)它表面的切削粉末的組成,該裝置可以生產(chǎn)出單和多膜的各種性能(硬化,耐磨,耐熱和耐沖擊等)的涂料。這個(gè)裝置還可以噴涂在長(zhǎng)達(dá)2100mm寬達(dá)900mm厚度為200mm的零件平面或者長(zhǎng)達(dá)2100mm直徑達(dá)1200mm的回轉(zhuǎn)體上,并且整個(gè)工藝流程還是全自動(dòng)化的。
2, 電子束切削
電子束的切削原理如圖1所示。電子束先在工件的表面產(chǎn)生一個(gè)金屬熔池,由分配器把粘附在工件表面使工件產(chǎn)生所需性能的粉末提供給金屬熔池。工件在真空室里相對(duì)噴槍和分配器移動(dòng)或者噴槍和分配器相對(duì)工件移動(dòng)。
多通道電子束切削的技術(shù)是基于粉末在金屬池里的“凍結(jié)”現(xiàn)象。在每一個(gè)后續(xù)波的通過(guò)時(shí),新的粉末凍結(jié)而前面的粉末溶解。粉末加入溶解池加速了溶解物的結(jié)晶,因此可以產(chǎn)生結(jié)晶顆粒和結(jié)構(gòu)更加優(yōu)良的產(chǎn)物同時(shí)調(diào)整了殘余應(yīng)力。而需要的沉積層厚度是通過(guò)變化粉末的比例和增加通道的數(shù)目來(lái)實(shí)現(xiàn)的。切削工藝通過(guò)以下的參數(shù)進(jìn)行評(píng)估:加速電壓、電子束電流,聚焦系統(tǒng)與工件的表面的距離,電子束掃描的直徑和長(zhǎng)度、工件的運(yùn)動(dòng)速度,以及粉末供應(yīng)的比例。
3, 電子槍
切削工藝伴隨著強(qiáng)烈的蒸汽和氣體從切削區(qū)域排出,因此等離子陰極槍使用[3,4]產(chǎn)生電子束。這些槍不含進(jìn)行加熱操作的熱點(diǎn)及或者組建,因此他們對(duì)處理中的高熔點(diǎn)材料反應(yīng)不敏感。因此在發(fā)射器沒(méi)有采取特殊保護(hù)措施的情況下,其同樣可以進(jìn)行操作。
噴槍的電子發(fā)射是通過(guò)空心的陰極管低壓反應(yīng)放電發(fā)生的,等離子在高壓電廠中加速發(fā)射出大量電子,然后通過(guò)聚焦系統(tǒng)的聚焦磁場(chǎng)集中成電子束。等離子發(fā)射的電子電流是通過(guò)放電電流的變化控制的。在設(shè)計(jì)的噴槍中,是由電子焊接保證金屬的氣密性和機(jī)械強(qiáng)度。槍支外殼采用的還是腔內(nèi)結(jié)構(gòu),這樣的設(shè)計(jì)便于等離子陰極組建的的拆卸維護(hù)。圖2 給出了噴槍安裝在機(jī)械臂的外觀圖。
4, 電源供給模塊
供電系統(tǒng)的設(shè)備(圖3)由加速電壓?jiǎn)卧ˋVU),放電電源單元(DPU),一個(gè)光束聚焦和偏轉(zhuǎn)控制單元(bfdu),和一個(gè)控制單元——?dú)怏w流量控制器。該單位是由計(jì)算機(jī)控制,通過(guò)光學(xué)或RS 485接口。加速電壓和放電電源單元是由經(jīng)典的電路設(shè)計(jì)——電橋相逆變控制電路構(gòu)成。在逆變器中,開(kāi)關(guān)場(chǎng)磁效應(yīng)晶體管的共振方法實(shí)現(xiàn)了在開(kāi)關(guān)功率晶體管中提供較低的電磁噪音和減少動(dòng)力損失。高轉(zhuǎn)換頻率(30千赫)可以降低輸出電容的電力供應(yīng)至10nF和提高控制信號(hào)的處理速率。
加速電壓?jiǎn)卧梢怨ぷ髟谝韵碌钠渲幸粋€(gè)模式:穩(wěn)定的加速電壓和輸出電流有限制。在第一種模式中,給定的加速電壓不變,負(fù)載電流從0增加到150mA,這可以使該單元正常運(yùn)行。一旦負(fù)載電流超出150MA,加速電壓?jiǎn)卧獙⒃?0s內(nèi)進(jìn)入到電流限制模式,這樣可以保護(hù)負(fù)載和防止電子槍發(fā)生電弧放電故障。當(dāng)負(fù)載電流減小,加速電壓?jiǎn)卧貜?fù)正常運(yùn)行。如果負(fù)載電流不減少,該單元關(guān)閉至20—100m,然后返回正常操作狀態(tài)。該算法還提供在極端瞬態(tài)和電弧環(huán)境中無(wú)故障運(yùn)行。
放電電源單元是一個(gè)輸出電壓介于50到1500V的電流源,它通過(guò)調(diào)節(jié)輸出電壓的范圍運(yùn)行在穩(wěn)定的電流模式中。在結(jié)構(gòu)上,加速電壓和放電電源單元是有兩部分組成:包含變頻器的低壓部分和安置在輸出階段的充油的高壓罐。在不超過(guò)0.01秒的控制時(shí)間里改變放電電流可以控制和穩(wěn)定電流束。
5,裝置的運(yùn)行和安裝
該裝置是在真空室里噴涂沉積層的。兩根電子管噴槍安裝在真空室的兩軸機(jī)械手上,該機(jī)械手給噴槍提供了獨(dú)立的水平運(yùn)動(dòng),以致其可以在較大面積的工件平面沉積涂層,兩個(gè)機(jī)械手的同時(shí)運(yùn)行還可以增加噴涂的效率。在噴涂環(huán)狀的工件時(shí),需要額外增加一個(gè)機(jī)械手用來(lái)使工件旋轉(zhuǎn)。裝置的外觀圖如圖5所示。
該裝置通過(guò)自動(dòng)的計(jì)算機(jī)系統(tǒng)來(lái)控制運(yùn)行時(shí)的真空系統(tǒng),供電,噴槍的運(yùn)行和工藝過(guò)程。模式和參數(shù)的選擇可以在顯示器上進(jìn)行,只要用手指去按顯示器上的對(duì)應(yīng)的控制圖標(biāo)即可完成操作。
控制系統(tǒng)可以再以下三種模式中工作:真空系統(tǒng),電子槍,機(jī)械手。
在真空系統(tǒng)模式中,通過(guò)控制泵的開(kāi)和關(guān)來(lái)選擇真空系統(tǒng)閥門的開(kāi)和關(guān)。該顯示器還可以顯示真空表在不同的真空系統(tǒng)的讀數(shù)和冷卻系統(tǒng)的狀態(tài)。在這種模式下,可以做到控制所有的閥和泵的切換順序,以便自動(dòng)抽空真空室的氣體。
在電子模式下控制電子束噴槍的供電。在這種模式下可以控制電壓加速,改變束流的大小和控制氣體的流動(dòng)率和電子束掃描工件表面的參數(shù)。
機(jī)器人模式目的是控制工件和電子槍的運(yùn)動(dòng)。根據(jù)工件的性能,機(jī)械手有兩種運(yùn)行模式。在沉積涂層在大平面表面的工件是,運(yùn)行機(jī)械手平面體模式,在這種模式下,工件不動(dòng)而電子槍在其表面沿著預(yù)定的軌跡噴涂。需要再?gòu)?fù)雜表面上沉積涂層時(shí),選擇機(jī)械手回轉(zhuǎn)體模式,在這種模式下,電子槍不動(dòng),工件根據(jù)給定的速度和角度旋轉(zhuǎn)。
結(jié)論
我們制造的這個(gè)裝置現(xiàn)在用于世界上最大的冶煉產(chǎn)地——西西伯利亞鋼鐵廠,用在空氣噴槍、鋼連鑄晶體、輥碎機(jī)等的耐磨涂料。
參考
[1]V.E. Panin, S.I. Belyuk, V.G. Durakov, G.A. Pribytkov, and N.G.Rempe, Svarochnoe Proizvodstvo, 2, 34 (2000).
[2]V.E. Panin, V.G. Durakov, G.A. Pribytkov,I.V.Polev, and S.I.Belyuk, Fizika i Khimia Obra
botki Materialov, 6, 53 (1998).
[3]V.L. Galansky, V.A. Gruzdev, I.V. Osipov, and N.G. Rempe, J. Phys. D: Appl. Phys., 27, 953(1994).
[4]I. Osipov and N. Rempe, RSI, 1, 1638 (2000)
數(shù)字系統(tǒng)在臥式磨床應(yīng)用的現(xiàn)狀分析和發(fā)展趨勢(shì)
現(xiàn)代工業(yè)生產(chǎn)中,生產(chǎn)的大型和小型配件形狀的復(fù)雜度和精度要求都大幅增加。傳統(tǒng)的加工工具已經(jīng)越來(lái)越難以滿足當(dāng)代產(chǎn)品的要求,然而高精密度的數(shù)控加工工具在計(jì)算機(jī)技術(shù)高速發(fā)展和數(shù)控技術(shù)廣泛應(yīng)用的情況下,可以高效的使用機(jī)器來(lái)完成這些配件需求的復(fù)雜的特征。數(shù)控設(shè)備用那些常規(guī)的軟件甚至是一個(gè)硬件就可以使其操作更加靈活,功能更加強(qiáng)大。
早期的制造業(yè)競(jìng)爭(zhēng)主要是勞動(dòng)成本的低廉程度,而如今競(jìng)爭(zhēng)的是產(chǎn)品的成本,整體的效率和產(chǎn)品的質(zhì)量。為了滿足客戶的需求,全面積極的開(kāi)發(fā)有競(jìng)爭(zhēng)性的新產(chǎn)品將會(huì)面臨產(chǎn)品的知識(shí)和技術(shù)更新越來(lái)越快,產(chǎn)品的體積更小,質(zhì)量和性能要求更高,同時(shí)環(huán)保意識(shí)也是不斷的增強(qiáng)。因此擁有先進(jìn)的制造技術(shù)將很快的贏得競(jìng)爭(zhēng),使企業(yè)存活,這也是發(fā)展的主要手段。計(jì)算機(jī)信息技術(shù)和制造自動(dòng)化的結(jié)合更加緊密,靈活的生產(chǎn)自動(dòng)化作為數(shù)控生產(chǎn)工具的重要組成部分使其共享更多。
一,數(shù)字平磨的發(fā)展現(xiàn)狀和主要的數(shù)字系統(tǒng)。
與車床、銑床相比,臥式磨床使用數(shù)字系統(tǒng)比較晚,因?yàn)樗鼘?duì)于數(shù)字系統(tǒng)的要求比較特殊。在過(guò)去十年中,隨著這些技術(shù)設(shè)施,磨床,砂輪修整,自動(dòng)補(bǔ)償,自動(dòng)更換砂輪及更多的工作工藝,如自動(dòng)傳輸和裝夾工具操作的實(shí)現(xiàn),數(shù)字技術(shù)在臥式磨床中逐漸開(kāi)始傳播開(kāi)來(lái)。在最近的漢諾威,東京,芝加哥和國(guó)內(nèi)的大型機(jī)床展覽會(huì)上,數(shù)控磨床占據(jù)來(lái)了磨床產(chǎn)品的大部分,如德國(guó)著名的磨床公司Blohm集團(tuán)的BLE公司就不再生產(chǎn)傳統(tǒng)的磨床,日本的軍用公司也在自己批量生產(chǎn)全功能的平磨,在自己積極發(fā)展低檔平磨的同時(shí)研發(fā)高檔的平磨。
德國(guó)的產(chǎn)品隨著幾年前的ELB輝煌系列雙坐標(biāo)磨床應(yīng)用非常廣泛,其是用數(shù)字控制垂直和水平兩軸,液壓控制垂直導(dǎo)向,砂輪修整安裝在輥鉆石上。超輝煌系列是一維的三坐標(biāo)磨削成型設(shè)備,機(jī)床采用的是天然花崗巖,幾何精密度高,沿直線滾動(dòng)導(dǎo)軌滑行,無(wú)反沖傳動(dòng),從而確保工作表面可以更平滑。輝煌未來(lái)系列改進(jìn)了上述的產(chǎn)品,采用靜態(tài)壓力垂直導(dǎo)向的人造花崗巖機(jī)床,齒形皮帶傳動(dòng),橫向和縱向均有給有預(yù)應(yīng)力的支線滾動(dòng)導(dǎo)軌導(dǎo)向,滾珠絲桿傳輸,三軸數(shù)控交流伺服電機(jī),可測(cè)量0.5m16ug圖像。ELB公司還開(kāi)發(fā)了最新技術(shù)的現(xiàn)代磨床產(chǎn)品,結(jié)合計(jì)算機(jī)和根據(jù)CAD-MASTER工藝模塊軟件開(kāi)發(fā)的CAD-MASTER系統(tǒng)和COMPACT-MASTER系列磨削加工中心,最大可以達(dá)到24軸控制軸向。為了全面實(shí)施模塊化設(shè)計(jì)和縮短制造專用磨床的周期,ELB公司還開(kāi)發(fā)了多種高效的專用磨床,如SFVG100/2專用磨床,它一旦發(fā)現(xiàn)了工藝中心便通過(guò)11根數(shù)控軸線將磨頭傾斜,漸漸的小心的放入坡道進(jìn)行磨削。英國(guó)和美國(guó)的合資公司JONES&SHIPMAN A-B公司自行開(kāi)發(fā)了用于數(shù)字FORMAT5模式平磨的A-B600數(shù)字系統(tǒng),其可以調(diào)節(jié)驅(qū)動(dòng)垂直運(yùn)動(dòng)的速度,利用水平控制磨頭進(jìn)入滾珠絲杠副,直流伺服驅(qū)動(dòng),間歇式砂輪修整和陰極射線管顯示圖形仿真。還有其他很多類型的數(shù)字系統(tǒng),以滿足不同用戶的需求。
目前,半導(dǎo)體的掌握度不斷的增加,新推出的系統(tǒng)外觀較小,結(jié)構(gòu)更加緊湊,還增加了遠(yuǎn)距離通信,遠(yuǎn)程診斷和多平面網(wǎng)絡(luò)等功能。界面的視窗操作系統(tǒng)增加了鼠標(biāo)的運(yùn)用,可以用其遙控車床。發(fā)那科大公司今年還推出了18I,16I,20I,21I系統(tǒng)而西門子是840D,810D,02D結(jié)構(gòu)緊湊型系統(tǒng)。還有一些廠家如:臺(tái)灣精密機(jī)械研究開(kāi)發(fā)中心開(kāi)發(fā)了基于視窗操作系統(tǒng)的pa8000nt系列數(shù)控系統(tǒng),其采用多核處理,單節(jié)處理速度為2000條每秒,單節(jié)前1000次僅處理少數(shù)的程序。結(jié)合阿爾特(預(yù)適應(yīng)技術(shù))和最佳學(xué)習(xí)功能的參數(shù),將跟蹤誤差減少到0,軟件路徑過(guò)濾器減少加工過(guò)程中因?yàn)榧铀俣茸兓^(guò)大而產(chǎn)生的機(jī)械共振,從而提高表面表面粗糙度精度;帶有伺服的靈活運(yùn)用和使用+-10V類比伺服接口,它還提供了國(guó)際標(biāo)準(zhǔn)的數(shù)字伺服系統(tǒng)的通訊接口設(shè)計(jì)梯形圖;PLC程序,結(jié)構(gòu)表達(dá),功能塊,指令代碼,流程圖,五種語(yǔ)言,便捷設(shè)計(jì),溝通與維護(hù);遠(yuǎn)程計(jì)算機(jī)通信,即時(shí)遠(yuǎn)程維護(hù)系統(tǒng),控制可以擴(kuò)展到最大的軸數(shù),主軸是64,輸入/輸出點(diǎn)可以擴(kuò)展到792/528點(diǎn),推薦奔騰處理器,高速PLC程序的速度可以達(dá)到25K。
除了世界聞名的西門子、發(fā)那科數(shù)控系統(tǒng),專業(yè)的發(fā)展和機(jī)器產(chǎn)品都已經(jīng)需要水平和成型磨削系統(tǒng),一些生產(chǎn)機(jī)械設(shè)備平磨產(chǎn)品的廠商也在積極的開(kāi)發(fā)數(shù)控磨床系統(tǒng)。值得注意的是,西門子SINMERIK 840D系統(tǒng),該系統(tǒng)有20多根伺服軸,坐標(biāo)控制為訪問(wèn)式,通過(guò)外部計(jì)算機(jī)手動(dòng)數(shù)據(jù)輸入或者輸出,遠(yuǎn)程診斷可以減少砂輪的直徑改變行程,滾珠絲桿間隙誤差補(bǔ)償自動(dòng)修整砂輪。西門子3G系統(tǒng)專為磨削加工和工程開(kāi)發(fā)使用,不但可以在軸傾斜時(shí)控制演示設(shè)備,還可以之選活大圓弧的磨削,可以重復(fù)的進(jìn)行周期性操作如:主軸線的擺動(dòng),使用外部信號(hào)中斷程序,砂輪切裁,砂輪修整以及其他一些用于設(shè)備的有特殊功能的固定循環(huán)程序。還有其不僅可以使用外部測(cè)量裝置,而且在恰當(dāng)?shù)倪B接時(shí),即使是第一次測(cè)量或者控制可以直接的比較機(jī)器部件最終尺寸的差別。
美國(guó)公司ALLEY-BRANDLY生產(chǎn)的8400cnc,8600cnc數(shù)字系列使用與車床、銑床和磨床。8400cnc多達(dá)六根伺服軸控制,第二節(jié)軸可能用來(lái)排氣,三根軸螺旋布置,六根軸直排。8600cnc系列有17個(gè)坐標(biāo)控制,包括八個(gè)在漏極軸,八個(gè)空間軸和一個(gè)主使用圖形顯示。其通過(guò)分支程序的擴(kuò)展改善處理時(shí)間,高速訪問(wèn)程序和刀具壽命的監(jiān)視。
日本公司升級(jí)了FANUC OG高速高性能數(shù)字系統(tǒng),其中O-GSG適用于臥式磨床,可以根據(jù)需要磨削的零件的不同形狀選擇四種磨削模式的任意一種。通過(guò)控制砂輪軸角度運(yùn)行磨削,分為粗磨,精磨,無(wú)火花磨削,轉(zhuǎn)動(dòng)砂輪的位置在磨削循環(huán)中可以完成補(bǔ)償功能。相比于修復(fù)需要普通的直線引導(dǎo)控制功能的零件,帶圓弧的器件對(duì)外圓弧半徑的補(bǔ)償功能要求更高,砂輪外形圖和磨削參數(shù)顯示出,這個(gè)系統(tǒng)的最小運(yùn)行單位為0.116ugm,其價(jià)格便宜性能較好。
還有一些公司,比如德國(guó)和大學(xué)教委會(huì)開(kāi)發(fā)的LB UNICON系統(tǒng),日本大海灣鐵匠OSP5000G-G,OSP30-NF,這些自行開(kāi)發(fā)的成形磨削數(shù)碼印刷系統(tǒng)。OSP5000G-G最大控制達(dá)到9個(gè)坐標(biāo),他還可以連接六個(gè)坐標(biāo),一個(gè)12英寸的大同,交互式編程,自動(dòng)識(shí)別從磁盤輸入的切割元素,自動(dòng)化系統(tǒng),最小脈沖當(dāng)量,移動(dòng)脈沖和測(cè)試脈沖16ug是0.1m,平磨本身也可以同時(shí)用作回路測(cè)探器。
盡管平磨機(jī)床本身運(yùn)行時(shí)使用主機(jī)廠系統(tǒng),但是自行開(kāi)發(fā)的軟件可以使其更適合水平和成型磨削,比如基于德國(guó)西門子公司SINUMERIK 810 Jung的基礎(chǔ),該公司開(kāi)發(fā)了專門的軟件為Jung來(lái)改善砂輪修整和運(yùn)行的圖像支持功能。日本sincerely公司聯(lián)合Fanuc數(shù)字系統(tǒng)硬件公司,為磨削加工開(kāi)發(fā)語(yǔ)言等等。直線電機(jī)平衡技術(shù)和越來(lái)越多的正當(dāng)程序,大大提高了機(jī)械工具的效率。精密測(cè)量技術(shù)中隨著數(shù)字系統(tǒng)的發(fā)展和應(yīng)用,機(jī)器工具和電器自動(dòng)化控制功能如虎添翼。
第二,國(guó)內(nèi)數(shù)字平磨發(fā)展的研究。
自從上個(gè)世紀(jì)80年代數(shù)字臥式磨床的開(kāi)始出現(xiàn),開(kāi)發(fā)廠商都有所發(fā)展,與高校及科研單位的合作直接引進(jìn)成熟的數(shù)字系統(tǒng)。例如杭州機(jī)床廠是一個(gè)具有50年專業(yè)生產(chǎn)平面磨床歷史的生產(chǎn)廠,他從80年代中期就開(kāi)始生產(chǎn)數(shù)字平磨床,其開(kāi)發(fā)的產(chǎn)品MGK7132直軸高精度平磨統(tǒng)治了臺(tái)灣此類產(chǎn)品的市場(chǎng)。mk7130系列普通數(shù)字平,mlk7140數(shù)字地貌塑造自己,mgk7120,mk7163,mk7150直軸統(tǒng)治臺(tái)灣數(shù)字平,mky7760垂直軸數(shù)字雙端面,mky7660,mky7650/ 101直軸數(shù)字雙端面平磨床,-k1610,hz-k2010,hz-050數(shù)控,hz-kd2010,hz-k3015,hz-k3020,如數(shù)字專用龍門式hz-k4020臥式磨床和指南。數(shù)字系統(tǒng)的開(kāi)發(fā)和應(yīng)用隨著和高校及科研單位的合作開(kāi)發(fā)的shanbanji系統(tǒng)得到很大的發(fā)展,同時(shí)也自主開(kāi)發(fā)了大型機(jī)的單片機(jī)簡(jiǎn)單控制系統(tǒng)和使用數(shù)字主機(jī)廠成熟的數(shù)字產(chǎn)品系統(tǒng)。
Ping發(fā)現(xiàn)了MGK7120高精度,公司介紹日本FabucMATE-D購(gòu)買數(shù)字錄音記錄系統(tǒng)來(lái)控制磨頭的尖端,是尖端的最小體積小至0.116ugm,并能完成全自動(dòng)磨削循環(huán)功能。
HZ-KD2010六軸雙磨頭龍門數(shù)字圖像磨床采用FANUC-0MC數(shù)字系統(tǒng),四根數(shù)控軸控制兩個(gè)獨(dú)立的水平磨頭和垂直磨頭,用一個(gè)PMC周邊磨頭控制磨頭砂輪來(lái)磨削工件,而另一個(gè)PMC軸空頭全方位的分度旋轉(zhuǎn)。該磨床充分利用系統(tǒng)的性能,降低生產(chǎn)成本和提高機(jī)器工具的性價(jià)比。
第三,數(shù)控磨床的發(fā)展之我見(jiàn)
我國(guó)工廠數(shù)控磨床發(fā)展至今,已經(jīng)有相當(dāng)一部分有實(shí)力的主機(jī)生產(chǎn)廠,我們的數(shù)字系統(tǒng)從完全依賴系統(tǒng)供應(yīng)商到已經(jīng)具有初步的能力來(lái)自行開(kāi)發(fā),但是在數(shù)字系統(tǒng)應(yīng)用中不斷增加需求的機(jī)械傳動(dòng)鏈的性能,替代勞動(dòng)力的機(jī)械手,簡(jiǎn)單操作循環(huán)工藝方面,我們與先進(jìn)的水平相比依然有很大的差距。比如在靜謐機(jī)床工具,自動(dòng)化功能,加工效率,可靠性等等方面還有許多需要改進(jìn),很多問(wèn)題需要解決。我認(rèn)為我們需要應(yīng)該分析總結(jié)所有生產(chǎn)廠目前的生產(chǎn)產(chǎn)品結(jié)構(gòu)和使用的生產(chǎn)技術(shù),找出其優(yōu)點(diǎn)和長(zhǎng)處、并且針對(duì)如何實(shí)現(xiàn)自動(dòng)化,如何整體的發(fā)展制定出學(xué)習(xí)和工作計(jì)劃。對(duì)于數(shù)字軟件開(kāi)發(fā)方面,從發(fā)展趨勢(shì)和硬件市場(chǎng)學(xué)來(lái)的技術(shù)或者是限制性的任務(wù),將用新技術(shù)來(lái)制造產(chǎn)品,新功能逐步投入應(yīng)用也將縮小和世界先進(jìn)水平的差距。
隨著數(shù)字系統(tǒng)性能和可靠性的提高,價(jià)錢變得更合理,以致數(shù)控磨床和普通磨床的定價(jià)被廣發(fā)的使用者接受,還有隨著生產(chǎn)自動(dòng)化需求的增加,數(shù)控磨床也將更加普及。平磨數(shù)字處理的軟件技能和其他磨床將會(huì)變得更加優(yōu)秀,還有更多高效率高檔的磨削加工中心專注于數(shù)控磨床方向。我相信伴隨著計(jì)算機(jī)、深入的信息技術(shù)革命、數(shù)控磨床智能化和信息控制,這些喜用將會(huì)有巨大的進(jìn)步。如何能做到一直前進(jìn)?找到適合自身特點(diǎn)的發(fā)展道路,技術(shù)工藝搜索的突破,這兩者都是我們工作的重點(diǎn),也是關(guān)乎企業(yè)未來(lái)的生存和發(fā)展的重點(diǎn)。
12
Die design for stamping a notebook case with magnesium alloy sheets
Heng-Kuang?Tsai, Chien-Chin?Liao, Fuh-Kuo?Chen?,?
Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan, ROC
Available online 8 December 2007.
?
Abstract
In the present study, the stamping process for manufacturing a notebook top cover case with LZ91 magnesium–lithium alloy sheet at room temperature was examined using both the experimental approach and the finite element analysis. A four-operation stamping process was developed to eliminate both the fracture and wrinkle defects occurred in the stamping process of the top cover case. In order to validate the finite element analysis, an actual four-operation stamping process was conducted with the use of 0.6 mm thick LZ91 sheet as the blank. A good agreement in the thickness distribution at various locations between the experimental data and the finite element results confirmed the accuracy and efficiency of the finite element analysis. The superior formability of LZ91 sheet at room temperature was also demonstrated in the present study by successful manufacturing of the notebook top cover case. The proposed four-operation process lends itself to an efficient approach to form the hinge in the notebook with less number of operational procedures than that required in the current practice. It also confirms that the notebook cover cases can be produced with LZ91 magnesium alloy sheet by the stamping process. It provides an alternative to the electronics industry in the application of magnesium alloys.
Keywords: Notebook case; LZ91 magnesium–lithium alloy sheet; Multi-operation stamping; Formability
Article Outline
· 1. Introduction
· 2. Mechanical properties of magnesium alloy sheets
· 3. The finite element model
· 4. Multi-operation stamping process design
·
o 4.1. Two-operation stamping process
o 4.2. Four-operation stamping process
· 5. Experimental validation
· 6. Concluding remarks
· Acknowledgments
· References
1. Introduction
Due to its lightweight and good performance in EMI resistance, magnesium alloy has been widely used for structural components in the electronics industry, such as cellular phones and notebook cases. Although the prevailing manufacturing process of magnesium alloy products has been die casting, the stamping of magnesium alloy sheet has drawn interests from industry because of its competitive productivity and performance in the effective production of thin-walled structural components. As for stamping process, AZ31 magnesium alloy (aluminum 3%, zinc 1%) sheet has been commonly used for the forming process at the present time, even though it needs to be formed at elevated temperature due to its hexagonal closed-packed (HCP) crystal structure ( [Chen et al., 2003] and [Chen and Huang, 2003] ). Recently, the magnesium–lithium (LZ) alloy has also been successfully developed to improve the formability of magnesium alloy at room temperature. The ductility of magnesium alloy can be improved with the addition of lithium that develops the formation of body centered-cubic (BCC) crystal structure ( [Takuda et al., 1999a] , [Takuda et al., 1999b] and [Drozd et al., 2004] ).
In the present study, the stamping process of a notebook top cover case with the use of LZ sheet was examined. The forming of the two hinges in the top cover of a notebook, as shown in Fig. 1(a and b), is the most difficult operation in the stamping process due to the small distance between the flanges and the small corner radii at the flanges, as displayed in Fig. 1(c). This geometric complexity was caused by a dramatic change in the corner radius when the flange of hinge gets too close to the edge of the notebook, which would easily cause fracture defect around the flange of hinge and require a multi-operation stamping process to overcome this problem. In the present study, the formability of LZ magnesium alloy sheets was investigated and an optimum multi-operation stamping process was developed to reduce the number of operational procedures using both the experimental approach and the finite element analysis.
Full-size image (22K)
Fig. 1.?
Flange of hinges at notebook top cover case. (a) Hinge, (b) top cover case and (c) flanges of hinge.
View Within Article
2. Mechanical properties of magnesium alloy sheets
The tensile tests were performed for magnesium–lithium alloy sheets of LZ61 (lithium 6%, zinc 1%), LZ91, and LZ101 at room temperature to compare their mechanical properties to those of AZ31 sheets at elevated temperatures. Fig. 2(a) shows the stress–strain relations of LZ sheets at room temperature and those of AZ31 sheets at both room temperature and 200 °C. It is noted that the stress–strain curve tends to be lower as the content of lithium increases. It is also observed from Fig. 2(a) that the curves of LZ91 sheet at room temperature and AZ31 sheet at 200 °C are close to each other. LZ101 sheet at room temperature exhibits even better ductility than LZ91 and AZ31 do at 200 °C. Since the cost of lithium is very expensive, LZ91 sheet, instead of LZ101 sheet, can be considered as a suitable LZ magnesium alloy sheet to render favorable formability at room temperature. For this reason, the present study adopted LZ91 sheet as the blank for the notebook top cover case and attempted to examine the formability of LZ91 at room temperature. In order to determine if the fracture would occur in the finite element analysis, the forming limit diagram for the 0.6 mm thick LZ91 sheet was also established as shown in Fig. 2(b).
Full-size image (44K)
Fig. 2.?
Mechanical properties of magnesium alloy. (a) The stress–strain relations of magnesium alloy; (b) forming limit diagram (FLD) of LZ91 sheet.
View Within Article
3. The finite element model
The tooling geometries were constructed by a CAD software, PRO/E, and were converted into the finite element mesh, as shown in Fig. 3(a), using the software DELTAMESH. The tooling was treated as rigid bodies, and the four-node shell element was adopted to construct the mesh for blank. The material properties and forming limit diagrams obtained from the experiments were used in the finite element simulations. The other simulation parameters used in the initial run were: punch velocity of 5 mm/s, blank-holder force of 3 kN, and Coulomb friction coefficient of 0.1. The finite element software PAM_STAMP was employed to perform the analysis, and the simulations were performed on a desktop PC.
Full-size image (40K)
Fig. 3.?
The finite element simulations. (a) Finite element mesh and (b) fracture at the corners.
View Within Article
A finite element model was first constructed to examine the one-operation forming process of the hinge. Due to symmetry, only one half of the top cover case was simulated, as shown in Fig. 3(a). The simulation result, as shown in Fig. 3(b), indicates that fracture occurs at the corners of flanges, and the minimum thickness is less than 0.35 mm. It implies that the fracture problem is very serious and may not be solved just by enlarging the corner radii at the flanges. The finite element simulations were performed to study the parameters that affect the occurrence of fracture. Several approaches were proposed to avoid the fracture as well.
4. Multi-operation stamping process design
In order to avoid the occurrence of fracture, a multi-operation stamping process is required. In the current industrial practice, it usually takes at least ten operational procedures to form the top cover case using the magnesium alloy sheet. In the present study, attempts were made to reduce the number of operational procedures. Several approaches were proposed to avoid the fracture, and the four-operation stamping process had demonstrated itself as a feasible solution to the fracture problem. To limit the length of this paper, only the two-operation and the four-operation stamping processes were depicted in the following.
4.1. Two-operation stamping process
The first operation in the two-operation stamping process was sidewall forming as shown in Fig. 4(a), and the second one was the forming of flange of hinge presented in Fig. 4(b), the height of the flange of hinge being 5 mm. Fig. 4(c) shows the thickness distribution obtained from the finite element simulation. The minimum thickness of the deformed sheet was 0.41 mm and the strains were all above the forming limit diagram. It means the fracture defect could be avoided. In addition, the height of the flange conformed to the target goal to be achieved. However, this process produced a critical defect of wrinkling, as shown in Fig. 4(d), on the flange of hinge, which induces a problem in the subsequent trimming operation. Hence, even though the two-operation stamping process solved the fracture problem at the corner of the bottom and the flange of hinge, a better forming process is still expected to solve the wrinkling of flange of hinge.
Full-size image (51K)
Fig. 4.?
Two-operation stamping process. (a) Formation of sidewalls, (b) formation of hinges, (c) thickness distribution and (d) wrinkle.
View Within Article
4.2. Four-operation stamping process
The four-operation forming process proposed in the present study starts with the forming of three sidewalls and the flange of the hinge with a generous corner radius, as shown in Fig. 5(a). Since the sidewall close to the flange was open and the corner radius was larger than the desired ones, the flange was successfully formed without fracture. Such process successfully avoided the difficulty of forming two geometric features simultaneously, but increased the material flow of the blank sheet. The next step was to trim the blank outside the sidewalls, and to calibrate the corner radius of 4 mm to the desired value of 2.5 mm. The hinge was thus formed, as shown in Fig. 5(b). The third step was to fold the open side, so that the sidewall could be completed around its periphery, as shown in Fig. 5(c). The effect of trimming the extra sheet outside the sidewalls in the second step on the third step was studied. When the extra sheet was not trimmed, the thickness at the corner was 0.381 mm, as shown in Fig. 5(d). The thickness of the corner increased to 0.473 mm, as shown in Fig. 5(e), if the trimming was implemented in the second step. The excessive material produced by the folding process in the third step was then trimmed off according to the parts design. The last step was the striking process that is applied to calibrate all the corner radii to the designed values. The minimum thickness at the corner of the final product was 0.42 mm, and all the strains were above the forming limit diagram. It is to be noted that Fig. 5(a–c) only shows the formation of one hinge. The same design concept was then extended to the stamping process of the complete top cover case.
Full-size image (53K)
Fig. 5.?
Four-operation stamping process. (a) First operation, (b) second operation, (c) third operation, (d) without trimming and (e) with trimming.
View Within Article
5. Experimental validation
In order to validate the finite element analysis, an actual four-operation stamping process was conducted with the use of 0.6 mm thick LZ91 sheet as the blank. The blank dimension and the tooling geometries were designed according to the finite element simulation results. A sound product without fracture and wrinkle was then manufactured, as shown in Fig. 6(a). To further validate the finite element analysis quantitatively, the thickness at the corners around the hinge of the sound product, as shown in Fig. 6(b), were measured and compared with those obtained from the finite element simulations, as listed in Table 1. It is seen in Table 1 that the experimental data and the finite element results were consistent. The four-operation process design based on the finite element analysis was then confirmed by the experimental data.
Full-size image (31K)
Fig. 6.?
The sound product. (a) Without fracture and wrinkle and (b) locations of thickness measured.
View Within Article
Table 1. Comparison of thickness measured
A
B
C
D
Experiment
0.42 mm
0.44 mm
0.49 mm
0.53 mm
Simulation
0.423 mm
0.448 mm
0.508 mm
0.532 mm
Error
0.71%
1.79%
3.54%
0.38%
Full-size table
View Within Article
6. Concluding remarks
The press forming of magnesium alloy sheets was studied in the present study using the experimental approach and the finite element analysis. The formability of both AZ31 and LZ sheets was examined first. The research results indicated that the LZ91 sheet has favorable formability at room temperature, which is similar to that of AZ31 sheet at the forming temperature of 200 °C.
The superior formability of LZ91 sheet at room temperature was also demonstrated in the present study by successful manufacturing of the notebook top cover case. The proposed four-operation process lends itself to an efficient approach to form the hinge in the notebook with fewer operational procedures than that required in the current practice.
It also confirms that the notebook cover cases can be produced with LZ91 magnesium alloy LZ91 sheet by the stamping process. It provides an alternative to the electronics industry in the application of magnesium alloys.
Acknowledgments
The authors would like to thank the National Science Council of the Republic of China for financially supporting this research under the Project No. NSC-95-2622-E-002-019-CC3, which made this research possible. They would also like to thank ESI, France for the help in running the PAM_STAMP program.
References
Chen and Huang, 2003?F.K. Chen and T.B. Huang, Formability of stamping magnesium-alloy AZ31 sheets. J. Mater. Process. Technol., ?142? (2003), pp. 643–647. Article | PDF (153 K) | | View Record in Scopus | | Cited By in Scopus (62)
Chen et al., 2003?F.K. Chen, T.B. Huang and C.K. Chang, Deep drawing of square cups with magnesium alloy AZ31 sheets. Int. J. Mach. Tools Manuf., ?43? (2003), pp. 1553–1559. Article | PDF (978 K) | | View Record in Scopus | | Cited By in Scopus (67)
Drozd et al., 2004?Z. Drozd, Z. Trojanová and S. Kúdela, Deformation of behavior of Mg–Li–Al alloy. J. Mater. Compd., ?378? (2004), pp. 192–195. Article | PDF (214 K) | | View Record in Scopus | | Cited By in Scopus (52)
Takuda et al., 1999a?H. Takuda, T. Yoshii and N. Hatta, Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet. J. Mater. Process. Technol., ?89/90? (1999), pp. 135–140. Article | PDF (964 K) | | View Record in Scopus | | Cited By in Scopus (54)
Takuda et al., 1999b?H. Takuda, S. Kikuchi, T. Tsukada, K. Kubota and N. Hatta, Effect of strain rate on deformation behavior of a Mg–8.5Li–1Zn alloy sheet at room temperature. Mater. Sci. Eng., ?271? (1999), pp. 251–256. Article | PDF (2276 K) | | View Record in Scopus | | Cited By in Scopus (30)
Corresponding author.
Copyright ? 2007 Elsevier B.V. All rights reserved.
Journal of Materials Processing Technology
Volume 201, Issues 1-3, 26 May 2008, Pages 247-251
10th International Conference on Advances in Materials and Processing Technologies
Automated Installation for Modification Surface Properties
of Details and Units of the Metallurgical Equipment
by the Electron Beam Facing
S.I. Belyuk, A.G. Rau, I.V. Osipov*, N.G. Rempe*
Institute of Strength Physics and Materials Science, 2/1 Akademicheskii Ave.,Tomsk, Russia
*Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk, Russia,
Abstract : The electron-beam facing installation is designed for the production of coatings on the surface of metal articles. The coatings have protective, wear-resistive,and heat-resistive properties.The installation is capable of creating coatings on large-area surface with high efficiency.The technological process is automated.
There are two plasma-cathode e-guns in the facing installation. This makes it possible to increase the facing efficiency and productivity. The guns are placed in a vacuum chamber on a two-rectilinear manipulator and can operate simultaneously.
This installation is used in metallurgy for creating wear-resistant coatings on aerial and oxygen lances, on crystallizers of continuous casting of steel, on rolls, etc.
1. Introduction
Electron-beam facing in vacuum [1,2] allows coatings with unique properties to be produced. With this method of coating deposition there is no adhesion problem. The materials which can be treated by this method and the coatings which can be produced on their surfaces are widely diversified. The high repeatability of results in combination with the adaptable control of the technological process make it possible to produce coatings of required structure and preassigned properties.
We have developed an installation intended for deposition of heat and aerial blast-furnace lances with the purpose of increasing their operational durability and also for restoration of various machine parts and metallurgical equipment. It can also be used for welding various metals and alloys, including high-melting ones.
The installation makes it possible to produce mono-and multilayer coatings of various purposes (hardening, wear-resistant, heat-resistant, temperature-resistant, etc.) depending on the composition of the facing powder on the surface of articles made of any metals, steels, and cast iron.
With this installation it is possible to deposit coatings on plane surfaces of workpieces of length up to 2100 mm, width up to 900 mm, and thickness up to 200 mm and on bodies of revolution of diameter up to 1200 mm and length up to 2100 mm.
The technological process of coating deposition is full-automatic.
2. Electron-beam facing
The principle of electron-beam facing is shown in Fig. 1. The electron beam creates a molten metal pool on the surface of the workpiece. The powder whose particles form a coating with required properties on the surface is supplied to the molten metal by a dispenser. The workpiece is moved inside the vacuum chamber relative to the (immobile) e-gun and dispenser or the e-gun with the dispenser are moved relative to the (immobile) workpiece.
Fig.1.
The technology of multipass electron-beam facing is based on the phenomenon of "freezing" a powder into a melt pool. In every subsequent pass, a new portion of the powder is "frozen" and the previous portion is melted. The powder supplied to the pool speeds up the crystallization of the melt, thus promoting the formation of a fine grain structure and moderating the residual stresses in the deposited coating. The required thickness of the deposited layer is obtained by varying the rate of powder supply or by increasing the number of passes.
The process of facing is characterized by the following parameters: the accelerating voltage, the electron beam current, the distance from the focusing system to the surface of the workpiece, the electron beam scanning diameter and length, the velocity of motion of the workpiece, and the rate of powder supply.
3.Electron guns
The facing process is accompanied by intense ejection of vapors and gases from the facing zone. The refore, to produce an electron beam, plasma-cathode guns are used [3, 4]. These guns do not contain hot electrodes or components which would be heated in operation, and this makes them insensitive to reactive and high-melting vapors of the materials under treatment. They are capable of operating under the conditions of facing not taking special measures for protection of the emitter.
Figure 2
Figure 3
The electron emission in the guns occurs from the plasma of a hollow cathode low-voltage reflected discharge [4]. The electrons outgoing from the plasma get in a high-voltage electric field where they are accelerated, collected in a beam, and focused by the magne
收藏