畢業(yè)設(shè)計-QTZ40塔式起重機塔身優(yōu)化設(shè)計
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
畢業(yè)設(shè)計計算書
指導(dǎo)教師
設(shè)計題目:QTZ40塔式起重機總體及臂架優(yōu)化設(shè)計 設(shè)計人:
摘要
本次設(shè)計在參照同類塔式起重機基礎(chǔ)上,對QTZ40型塔式起重機進行總體設(shè)計及吊臂的設(shè)計。在吊臂設(shè)計工程中,采用了有限元法對其進行分析計算,采用了ANSYS10.0軟件進行分析。
按照整機主要性能參數(shù),確定各機構(gòu)類型及鋼結(jié)構(gòu)型式,主要確定了吊臂的結(jié)構(gòu)參數(shù),并按照吊臂端部加載、跨中加載及根部加載三種工況分析。通過對吊臂作適當(dāng)?shù)暮喕?,?yīng)用ANSYS10.0軟件建立吊臂有限元模型,施加各工況載荷,進行求解,進而可得各工況下各節(jié)點受力情況及各單元所受軸向力、軸向應(yīng)力大小及各工況下吊臂的變形撓度大小,并能演示吊臂加載過程的動畫,清晰的展現(xiàn)了各工況下吊臂的受力性能。
通過修改模型參數(shù),對不同模型進行分析比較。由比較不同模型在相同工況下的受力狀況及剛度狀況,綜合分析強度和剛度條件,可得出受力最為合理的一組模型參數(shù),通過對此組參數(shù)下模型進行強度及剛度校核,進而獲得吊臂的最終參數(shù)結(jié)果。
關(guān)鍵詞:QTZ40型塔式起重機 吊臂 有限元分析 ANSYS10.0
Abstract
Refers to the similar tower crane, this design is composed by the system design and the lazy arm design to the QTZ40 tower crane. In the lazy arm design progress, it has carried Finite Element method on the analysis computation, and used ANSYS10.0 software.
According to the entire machine main performance parameter, various organizations type and the steel structure pattern has been determined. The design parameter of operating modes which are composed of nose increase, the cross center increase and the root increase. Through the suitable simplification to the lazy arm, the lazy arm finite element model is establishment applied ANSYS10.0 software, and then exerted various operating modes load, carried on the solution. Then ANSYS10.0 software can calculate various pitch points stress situation, various units receive the axial stress size, and the lazy arm distortion size under various operating modes. Also it can demonstrate the animation in the process of the lazy arm increase. It has clearly displayed the lazy arm stress performance under various operating modes.
Through the revision for model parameter, the analysis comparison is carried on the different model. Because the stress condition and rigidity condition of different model is compared under the same operating mode, and the generalized analysis intensity and the rigidity condition is carried on, a most reasonable model parameter can be obtained, though the intensity and the rigidity examination regarding this model, then the final parameter result of the lazy arm can be obtained.
Key words: QTZ40 tower crane Lazy arm Finite element analysis ANSYS10.0
目 錄
第1章 前言··········································································1
1.1 概述················································································1
1.2 發(fā)展趨勢·········································································1
第2章 總體設(shè)計····································································2
2.1 概述···········································································2
2.2 確定總體設(shè)計方案····························································2
2.3 總體設(shè)計原則·································································29
2.4 平衡臂與平衡重的計算······················································30
2.5 起重特性曲線·································································32
2.6 塔機風(fēng)力計算·······························································33
2.7 整機的抗傾覆穩(wěn)定性計算·················································43
2.8 固定基礎(chǔ)穩(wěn)定性計算·······················································49
第3章 吊臂的設(shè)計計算························································50
3.1 分析單吊點與雙吊點的優(yōu)缺點·············································50
3.2 吊臂吊點位置選擇··························································51
3.3 吊臂結(jié)構(gòu)參數(shù)參數(shù)··························································52
3.4 有限元模型建立過程的幾點簡化··········································53
3.5 吊臂結(jié)構(gòu)的有限元分析計算················································54
3.6 計算結(jié)果分析································································69
3.7吊臂強度校核································································76
3.8 吊臂穩(wěn)定性校核·····························································76
畢業(yè)設(shè)計小結(jié)······································································87
致謝··················································································88
參考文獻············································································89
附:英文原文
英文翻譯
畢業(yè)實習(xí)報告
設(shè)計項目
計算與說明
結(jié)果
前言
概述
發(fā)展趨勢
總體設(shè)計
概述
確定總體設(shè)計方案
塔機金屬結(jié)構(gòu)
塔頂
吊臂
構(gòu)造型式
分節(jié)問題
截面形式及截面尺度
腹桿布置和桿件材料選用
吊點的選擇與構(gòu)造
平衡臂和平衡重
平衡臂的結(jié)構(gòu)型式
平衡重
拉桿
上、下支座
塔身
塔身結(jié)構(gòu)斷面型式
塔身結(jié)構(gòu)腹桿系統(tǒng)
標準節(jié)間的聯(lián)接方式
塔身結(jié)構(gòu)設(shè)計
塔身的接高問題
轉(zhuǎn)臺裝置
回轉(zhuǎn)支承
底架
附著裝置
套架與液壓頂升機構(gòu)
爬升架
頂升機構(gòu)
套架
液壓頂升
基礎(chǔ)
工作機構(gòu)
起升機構(gòu)
起升機構(gòu)的傳動方式
起升機構(gòu)的驅(qū)動方式
起升機構(gòu)的減速器
起升機構(gòu)的制動器
滑輪組
倍率
回轉(zhuǎn)機構(gòu)
變幅機構(gòu)
安全裝置
限位開關(guān)
起升高度限制器
起重量限制器
力矩限制器
風(fēng)速儀
鋼絲繩防脫裝置
電氣系統(tǒng)
總體設(shè)計原則
整機工作級別
機構(gòu)工作級別
主要技術(shù)性能參數(shù)
平衡臂與平衡重的計算
起重機各部件對塔身的中心力矩
起重特性曲線
各幅度時起重量
起重特性曲線
塔機的風(fēng)力計算
工作工況Ⅰ
平衡臂風(fēng)力計算
風(fēng)力系數(shù)選取
由平衡臂的設(shè)計尺寸計算迎風(fēng)面積
風(fēng)力計算
起升機構(gòu)的風(fēng)力計算
平衡重風(fēng)力計算
起重臂風(fēng)力計算
變幅機構(gòu)風(fēng)力計算
塔頂風(fēng)力計算
上下支座風(fēng)力計算
塔身風(fēng)力計算
司機室風(fēng)力計算
工作工況Ⅱ
平衡臂風(fēng)力計算
起升機構(gòu)風(fēng)力計算
平衡重風(fēng)力計算
起重臂風(fēng)力計算
變幅機構(gòu)風(fēng)力計算
塔頂風(fēng)力計算
上下支座風(fēng)力計算
塔身風(fēng)力計算
司機室風(fēng)力計算
非工作工況Ⅲ
平衡臂風(fēng)力計算
起升機構(gòu)風(fēng)力計算
平衡重風(fēng)力計算
起重臂風(fēng)力計算
變幅機構(gòu)風(fēng)力計算
塔頂風(fēng)力計算
上下支座風(fēng)力計算
塔身風(fēng)力計算
司機室風(fēng)力計算
起重機抗傾覆穩(wěn)定性計算
工作工況Ⅰ
平衡臂部分
起重臂部分
塔身部分
基礎(chǔ)部分
工作工況Ⅱ
平衡臂部分
起重臂部分
塔身部分
基礎(chǔ)部分
慣性載荷
坡度載荷
風(fēng)載荷
非工作工況Ⅲ
平衡臂部分
起重臂部分
塔身部分
基礎(chǔ)部分
風(fēng)載荷
工作工況Ⅳ
平衡臂部分
起重臂部分
塔身部分
基礎(chǔ)部分
風(fēng)載荷
固定基礎(chǔ)穩(wěn)定性計算
吊臂的設(shè)計計算
分析單吊點與雙吊點的優(yōu)缺點
吊臂吊點位置選擇
吊臂結(jié)構(gòu)參數(shù)選擇
有限元模型建立過程的幾點簡化
自重及風(fēng)載簡化
吊點處約束的確定
單元類型選擇
模型生成分析過程
吊臂結(jié)構(gòu)的有限元分析計算
吊臂結(jié)構(gòu)有限元分析程序命令流
前處理模塊
定義臂架一至七節(jié)節(jié)點
塔尖節(jié)點
定義工況節(jié)點
定義求解類型、單元類型
定義材料屬性
定義梁單元實常數(shù)
定義桿單元實常數(shù)
定義臂架上弦桿一至二節(jié)
定義臂架上弦桿三至五節(jié)
定義臂架上弦桿六至七節(jié)
定義臂架前側(cè)下弦桿一至五節(jié)
定義臂架后側(cè)下弦桿一至五節(jié)
定義臂架前側(cè)下弦桿六至七節(jié)
定義臂架后側(cè)下弦桿六至七節(jié)
定義臂架一節(jié)側(cè)腹桿
定義臂架一節(jié)水平面腹桿
定義臂架二至五節(jié)側(cè)腹桿
定義臂架二至五節(jié)水平面腹桿
定義臂架六節(jié)側(cè)腹桿
定義臂架六節(jié)水平面腹桿
定義臂架七節(jié)側(cè)腹桿
定義臂架七節(jié)水平面腹桿
定義吊臂拉桿
施加2m工況集中載荷
退出前處理并進入求解模塊
施加20m工況集中載荷并求解
施加40m工況集中載荷并求解
退出求解模塊
模型示意圖
進入后處理模塊
讀入2m工況并顯示結(jié)果
讀入20m工況并顯示結(jié)果
讀入50m工況并顯示結(jié)果
退出后處理模塊
計算結(jié)果分析
確定優(yōu)化結(jié)論
各工況數(shù)據(jù)
工況1-1變形圖
工況1-2變形圖
工況1-3變形圖
工況2-1變形圖
工況2-2變形圖
工況2-3變形圖
工況3-1變形圖
工況3-2變形圖
工況3-3變形圖
提取軸向力
上弦桿軸向力最值
下弦桿軸向力最值
側(cè)腹桿軸向力最值
水平腹桿軸向力最值
分析確定危險工況
危險工況
吊臂強度校核
吊臂穩(wěn)定性校核
工況1-2
上弦桿三-五節(jié)穩(wěn)定性校核
工況1-1
上弦桿六-七節(jié)穩(wěn)定性校核
工況1-3下弦桿一-五節(jié)穩(wěn)定性校核
工況1-3
下弦桿六-七節(jié)穩(wěn)定性校核
工況1-3
側(cè)腹桿一節(jié)穩(wěn)定性校核
工況1-2
側(cè)腹桿二-五節(jié)穩(wěn)定性校核
工況1-3
側(cè)腹桿六-七節(jié)穩(wěn)定性校核
工況1-3
水平腹桿一節(jié)穩(wěn)定性校核
工況1-2
水平腹桿二-五節(jié)穩(wěn)定性校核
工況1-1
水平腹桿六-七節(jié)穩(wěn)定性校核
第1章 前言
1.1 概述
塔式起重機是我們建筑機械的關(guān)鍵設(shè)備,在建筑施工中起著重要作用,我們只用了五十年時間走完了國外發(fā)達國家上百年塔機發(fā)展的路程,如今已達到發(fā)達國家九十年代末期水平并躋身于當(dāng)代國際市場。
QTZ40型塔式起重機簡稱QTZ40型塔機,是一種結(jié)構(gòu)合理,性能比較優(yōu)異的產(chǎn)品,比較國內(nèi)同規(guī)格同類型的塔機具有更多的優(yōu)點,能夠滿足高層建筑施工的需要,可用于建筑材料和預(yù)制構(gòu)件的吊運和安裝,并能在市內(nèi)狹窄地區(qū)和丘陵地帶建筑施工。高層建筑施工中,它的幅度利用率比其他類型起重機高,其幅度利用率可達全幅度的80%。
QTZ40型塔式起重機是400kN·m上回轉(zhuǎn)自升式塔機。上回轉(zhuǎn)自升塔式起重機是我國目前建筑工程中使用最廣泛的塔機,幾乎是萬能塔機。它的最大特點是可以架得很高,所以所有的高層和超高層建筑、橋梁工程、電力工程,都可以用它去完成。這種塔式起重機適應(yīng)性很強,所以市場需求很大。
1.2 發(fā)展趨勢
塔式起重機是在第二次世界大戰(zhàn)后才真正獲得發(fā)展的。在六十年代,由于高層、超高層建筑的發(fā)展,廣泛使用了內(nèi)部爬升式和外部附著式塔式起重機。并在工作機構(gòu)中采用了比較先進的技術(shù),如可控硅調(diào)速、渦流制動器等。進入七十年代后,它的服務(wù)對象更為廣泛。因此,幅度、起重量和起升高度均有了顯著的提高。
就工程起重機而言,今后的發(fā)展主要表現(xiàn)在如下幾個方面:①整機性能:由于先進技術(shù)和材料的應(yīng)用,同種型號的產(chǎn)品,整機重量要輕20%左右;②高性能、高可靠性的配套件,選擇余地大、適應(yīng)性好,性能得到充分發(fā)揮;③電液比例控制系統(tǒng)和智能控制顯示系統(tǒng)的推廣應(yīng)用;④操作更方便、舒適、安全,保護裝置更加完善;⑤向吊重量大、起升高度、幅度更大的大噸位方向發(fā)展。
第2章 總體設(shè)計
2.1 概述
總體設(shè)計是畢業(yè)設(shè)計中至關(guān)重要的一個環(huán)節(jié),它是后續(xù)設(shè)計的基礎(chǔ)和框架。只有在做好總體設(shè)計的前提下,才能更好的完成設(shè)計。它是對滿足塔機技術(shù)參數(shù)及形式的總的構(gòu)想,總體設(shè)計的成敗關(guān)系到塔機的經(jīng)濟技術(shù)指標,直接決定了塔機設(shè)計的成敗。
總體設(shè)計指導(dǎo)各個部件和各個機構(gòu)的設(shè)計進行,一般由總工程師負責(zé)設(shè)計。在接受設(shè)計任務(wù)以后,應(yīng)進行深入細致的調(diào)查研究,收集國內(nèi)外的同類機械的有關(guān)資料,了解當(dāng)前的國內(nèi)外塔機的使用、生產(chǎn)、設(shè)計和科研的情況,并進行分析比較,制定總的設(shè)計原則。設(shè)計原則應(yīng)當(dāng)保證所設(shè)計的機型達到國家有關(guān)標準的同時,力求結(jié)構(gòu)合理,技術(shù)先進,經(jīng)濟性好,工藝簡單,工作可靠。
2.2 確定總體設(shè)計方案
QTZ40塔式起重機是上回轉(zhuǎn)液壓自升式起重機。盡管其設(shè)計型號有各種各樣,但其基本結(jié)構(gòu)大體相同。整臺的上回轉(zhuǎn)塔機主要由金屬結(jié)構(gòu),工作機構(gòu),液壓頂升系統(tǒng),電器控制系統(tǒng)及安全保護裝置等五大部分組成。
2.2.1 金屬結(jié)構(gòu)
塔式起重機金屬結(jié)構(gòu)部分由塔頂,吊臂,平衡臂,上、下支座,塔身,轉(zhuǎn)臺等主要部件組成。對于特殊的塔式起重機,由于構(gòu)造上的差異,個別部件也會有所增減。金屬結(jié)構(gòu)是塔式起重機的骨架,承受塔機的自重載荷及工作時的各種外載荷,是塔式起重機的重要組成部分,其重量通常約占整機重量的一半以上,因此金屬結(jié)構(gòu)設(shè)計合理與否對減輕起重機自重,提高起重性能,節(jié)約鋼材以及提高起重機的可靠性等都有重要意義。
1. 塔頂
自升塔式起重機塔身向上延伸的頂端是塔頂,又稱塔帽或塔尖。其功能是承受臂架拉繩及平衡臂拉繩傳來的上部載荷,并通過回轉(zhuǎn)塔架、轉(zhuǎn)臺、承座等的結(jié)構(gòu)部件或直接通過轉(zhuǎn)臺傳遞給塔身結(jié)構(gòu)。
自升式塔機的塔頂有直立截錐柱式、前傾或后傾截錐柱式、人字架式及斜撐式等形式。截錐柱式塔尖實質(zhì)上是一個轉(zhuǎn)柱,由于構(gòu)造上的一些原因,低部斷面尺寸要比塔身斷面尺寸為小,其主弦桿可視需要選用實心圓鋼,厚壁無縫鋼管或不等邊角鋼拼焊的矩形鋼管。人字架式塔尖部件由一個平面型鋼焊接桁架和兩根定位系桿組成。而斜撐式塔尖則由一個平面型鋼焊接桁架和兩根定位系桿組成。這兩種型式塔尖的共同特點是構(gòu)造簡單自重輕,加工容易,存放方便,拆卸運輸便利。
塔頂高度與起重臂架承載能力有密切關(guān)系,一般取為臂架長度的1/7-1/10,長臂架應(yīng)配用較高的塔尖。但是塔尖高度超過一定極限時,弦桿應(yīng)力下降效果便不顯著,過分加高塔尖高度不僅導(dǎo)致塔尖自重加大,而且會增加安裝困難需要換用起重能力更大的輔助吊機。因此,設(shè)計時,應(yīng)權(quán)衡各方面的條件選擇適當(dāng)?shù)乃敻叨取?
本設(shè)計采用前傾截錐柱式塔頂,斷面尺寸為1.36m×1.36m。腹桿采用圓鋼管。塔頂高6.115米。塔冒用無縫鋼管焊接而成,頂部設(shè)有連接平衡臂拉桿和吊臂拉桿的鉸銷吊耳,以及穿繞起升鋼絲繩的定滑輪,頂部應(yīng)裝有安全燈和避雷針。其結(jié)構(gòu)如圖2-1所示:
圖2-1 塔頂結(jié)構(gòu)圖
2. 起重臂
1) 構(gòu)造型式
塔式起重機的起重臂簡稱臂架或吊臂,按構(gòu)造型式可分為:小車變幅水平臂架;俯仰變幅臂架,簡稱動臂;伸縮式小車變幅臂架;折曲式臂架。
小車變幅水平臂架,簡稱小車臂架,是一種承受壓彎作用的水平臂架,是各式塔機廣泛采用的一種吊臂。其優(yōu)點是:吊臂可借助變幅小車沿臂架全長進行水平位移,并能平穩(wěn)準確地進行安裝就位。因此此次設(shè)計采用小車變幅水平臂架。
小車臂架可概分為三種不同型式:單吊點小車臂架,雙吊點小車臂架和起重機與平衡臂架連成一體的錘頭式小車臂架。單吊點小車變幅臂架是靜定結(jié)構(gòu),而雙吊點小車變幅臂架則是超靜定結(jié)構(gòu)。幅度在40m以下的小車臂架大都采用單吊點式構(gòu)造;雙吊點小車變幅臂架結(jié)構(gòu)一般幅度都大于50m。雙吊點小車變幅臂架結(jié)構(gòu)自重輕,據(jù)分析與同等起重性能的單吊點小車變幅臂架相比,自重均可減輕5%-10%。小車變幅臂架拉索吊點可以設(shè)在下弦處,也可設(shè)在上弦處,現(xiàn)今通用小車變幅臂架多是上弦吊點,正三角形截面臂架。這種臂架的下弦桿上平面均用作小車運行軌道。
2) 分節(jié)問題
臂架型式的選定及構(gòu)造細部處理取決于塔機作業(yè)特點,使用范圍以及承載能力等因素,設(shè)計時,應(yīng)通盤考慮作出最佳選擇,首先要解決好分節(jié)問題。
小車臂架常用的標準節(jié)間長度有6、7、8、10、12m五種。為便于組合成若干不同長度的臂架,除標準節(jié)間外,一般都配設(shè)1~2個3~5m長的延接節(jié),一個根部節(jié),一個首部節(jié)和端頭節(jié)。端頭節(jié)構(gòu)造應(yīng)當(dāng)簡單輕巧,配有小車牽引繩換向滑輪、起升繩端頭固定裝置。此端頭節(jié)長度不計入臂架總長,但可與任一標準節(jié)間配裝,形成一個完整的起重臂。本次設(shè)計選用標準節(jié)長度為6m,另加上3.84m長的延接節(jié)。其示意圖見圖2-2:
圖2-2臂架分節(jié)
3) 截面形式及截面尺度
塔機臂架的截面形式有三種:正三角形截面、倒三角形截面和矩形截面。小車變幅水平臂架大都采用正三角形截面,本次設(shè)計的QTZ40采用正三角形截面。選用這種方式的優(yōu)點是:節(jié)省鋼材,減輕重量,從而節(jié)約成本。其尺寸截面形式如圖2-3所示:
圖2-3 臂架截面及其腹桿布置
1-水平腹桿2-側(cè)腹桿3-上弦桿4-下弦桿
臂架1-7節(jié):B=1020mm H=800mm
臂架截面尺寸與臂架承載能力、臂架構(gòu)造、塔頂高度及拉桿結(jié)構(gòu)等因素有關(guān)。截面高度主要受最大起重量和拉桿吊點外懸臂長度影響最大。截面寬度主要與臂架全長有關(guān)。設(shè)計臂架長度為40m,共七節(jié)。
4) 腹桿布置和桿件材料選用
矩形截面臂架的腹桿體系宜采用人字式布置方式,而三角形截面起重臂的腹桿體系既可采用人字式布置方式,也可 采用順斜置式。此兩種布置方式各有特點。
當(dāng)采用順斜置式式,焊縫長度較短、質(zhì)量不易保證。焊接變形不均勻,節(jié)點剛度較差,且不便于布置小車變幅機構(gòu)。因此本設(shè)計選用人字式布置方式。其優(yōu)點在于,這種布置方式應(yīng)用區(qū)段不受限制,焊縫長度較長,強度易于保證,焊接變形較均勻,節(jié)點剛度較好,便于布置小車變幅機構(gòu)。
臂架桿件材料有多種選擇可能性。一般情況下,上吊點小車變幅臂架的上弦以選用Q345實心鋼為宜,但造價要高。因此本設(shè)計選用20號無縫圓鋼管。其特點是:慣性矩、長細比要小,抗失穩(wěn)能力高。下弦采用等邊角鋼對焊的箱型截面桿件,經(jīng)濟實用,具有良好的抗壓性能。因此上弦桿選用83×6、89×7、108×8,下弦選用的角鋼型號為:63×5、70×6,臂間由銷軸連接。
5) 吊點的選擇與構(gòu)造
吊點可分為單吊點和雙吊點。其設(shè)計原則是:臂架長度小于50m,對最大起吊量并無特大要求,一般采用單吊點結(jié)構(gòu)。若臂架總長在50m以上,或?qū)缰懈浇畲笃鸬趿坑刑卮笠髴?yīng)采用雙吊點。采用單吊點結(jié)構(gòu)時,吊點可以設(shè)在上弦或下弦。吊點以左可看作簡支梁,以右可看作懸臂梁。在設(shè)計中采用雙吊點。
3. 平衡臂與平衡重
QTZ40塔式起重機是上回轉(zhuǎn)塔機。上回轉(zhuǎn)塔機均需配設(shè)平衡臂,其功能是支撐平衡重(或稱配重),用以構(gòu)成設(shè)計上所需要的作用方向與起重力矩方向相反的平衡力矩,在小車變幅水平臂架自升式塔機中,平衡臂也是延伸了的轉(zhuǎn)臺,除平衡重外,還常在其尾端裝設(shè)起升機構(gòu)。起升機構(gòu)之所以同平衡重一起安放在平衡臂尾端,一則可發(fā)揮部分配重作用,二則增大鋼絲繩卷筒與塔尖導(dǎo)輪間的距離,以利鋼絲繩的排繞并避免發(fā)生亂繩現(xiàn)象。
1) 平衡臂的結(jié)構(gòu)型式
平衡臂的構(gòu)造設(shè)計必須保證所要求的平衡力矩得到滿足。短平衡臂的優(yōu)點是:便于保證塔機在狹窄的空間里進行安裝架設(shè)和拆卸,適合在城市建筑密集地區(qū)承擔(dān)施工任務(wù)的塔機使用,不易受鄰近建筑物的干擾,結(jié)構(gòu)自重較輕。長平衡臂的主要優(yōu)點是:可以適當(dāng)減少平衡重的用量,相應(yīng)減少塔身上部的垂直載荷。平衡重與平衡臂的長度成反比關(guān)系,而平衡臂長度與起重臂之間又存在一定關(guān)系,因此,平衡臂的合理設(shè)計可節(jié)約材料,降低整機造價。
常用平衡臂有以下三種結(jié)構(gòu)型式:
(1) 平面框架式平衡臂,由兩根槽鋼縱梁或由槽鋼焊成的箱形斷面組合梁河系桿構(gòu)成。在框架的上平面鋪有走道板,走到板兩旁設(shè)有防護欄桿。其特點是結(jié)構(gòu)簡單,加工容易。
(2) 三角形斷面桁架式平臂,又分為正三角形斷面和倒三角形斷面兩種形式。此類平衡臂的構(gòu)造與平面框架式平衡臂結(jié)構(gòu)構(gòu)造相似,但較為輕巧,適用于長度較大的平衡臂。從實用上來看,正三角形斷面桁架式平衡臂似不如倒三角形斷面桁架式平衡臂。
(3) 矩形斷面格桁結(jié)構(gòu)平衡臂,其特點是根部與座在轉(zhuǎn)臺上的回轉(zhuǎn)塔架聯(lián)接成一體,適用于小車變幅水平臂架特長的超重型自升式塔機。
平衡臂結(jié)構(gòu)選用型式的原則是:自重比較輕;加工制造簡單,造型美觀與起重臂匹配得體。故此次設(shè)計選用平面框架式平衡臂。它由兩根槽鋼縱梁或由槽鋼焊成的箱形斷面組合梁和系桿構(gòu)成。在框架的上平面鋪有走道板,走道板兩旁設(shè)有防護欄桿。這種平衡臂的優(yōu)點是結(jié)構(gòu)簡單,加工容易。平衡臂的長度是11.67m。如圖2-4所示:
圖2-4 平衡臂
2) 平衡重
平衡重屬于平衡臂系統(tǒng)的組成部分,它的用量甚是可觀,輕型塔機一般至少要用3~4t,重型自升式塔機要裝有近30t平衡重。因此在設(shè)計平衡重過程中,應(yīng)對平衡重的選材、構(gòu)造以及安裝進行認真考慮并作妥善安排。
平衡重一般可分為固定式和活動式兩種。活動平衡重主要用于自升式塔機,其特點是可以移動,易于使塔身上部作用力矩處于平衡狀態(tài),便于進行頂升接高作業(yè)。但是,構(gòu)造復(fù)雜,機加工量大,造價較高。故國內(nèi)大部分塔機均采用固定式平衡重。
平衡重可用鑄造或鋼筋混凝土制成。鑄鐵平衡重的構(gòu)造較復(fù)雜,制造難度大,加工費用貴,但體形尺寸較小,迎風(fēng)面積較小,有利于減少風(fēng)載荷的不利影響。鋼筋混凝土平衡重的主要缺點是體積大,迎風(fēng)面積大,對塔身結(jié)構(gòu)及穩(wěn)定性均有不利影響。但是構(gòu)造簡單,預(yù)制生產(chǎn)容易,可就地澆注,并且不怕風(fēng)吹雨淋,便于推廣。
因此,本次設(shè)計的塔式起重機采用鋼筋混凝土式平衡重。
4. 拉桿
QTZ40塔式起重機采用雙吊點式拉桿結(jié)構(gòu),拉桿由焊件組成,其材料為Q345,拉桿節(jié)之間用過渡節(jié)連接,由受力特性計算出其拉桿點作為位置,其中在平衡臂和吊臂上設(shè)有拉板和銷軸用來連接用。
5. 上、下支座
上支座上部分別與塔頂、起重臂、平衡臂連接,下部用高強螺栓與回轉(zhuǎn)支承相連接在支承座兩側(cè)安裝有回轉(zhuǎn)機構(gòu),它下面的小齒輪準確地與回轉(zhuǎn)支承外齒圈嚙合,另一面設(shè)有限位開關(guān)。
下支座上部用高強螺栓與回轉(zhuǎn)支承連接、支承上部結(jié)構(gòu),下部四角平面用4個銷軸和8個M30的高強螺栓分別與爬升架和塔身連接。
6. 塔身
塔身結(jié)構(gòu)也稱塔架,是塔機結(jié)構(gòu)的主體,支撐著塔機上部結(jié)構(gòu)的重量和承受載荷,并將這些載荷通過塔身傳至底架或直接傳遞給地基基礎(chǔ)。
1) 塔身結(jié)構(gòu)斷面型式
塔身結(jié)構(gòu)斷面分為圓形斷面、三角形斷面及方形斷面三類。圓形斷面和三角形斷面現(xiàn)在基本上不用,現(xiàn)金國內(nèi)外生產(chǎn)的塔機均采用方形斷面結(jié)構(gòu)。因此本設(shè)計采用的也是方形斷面結(jié)構(gòu)。按塔身結(jié)構(gòu)主弦桿材料的不同,這類方形斷面塔架可分為:角鋼焊接格桁架結(jié)構(gòu)塔身,主弦桿為角鋼輔以加強筋的矩形斷面格桁架結(jié)構(gòu);角鋼拼焊方鋼管格桁架結(jié)構(gòu)塔身及無縫鋼管焊接格桁架結(jié)構(gòu)塔身。由型鋼或鋼管焊成的空間桁架,其成本比較低,且能滿足工作需要。因此主弦桿采用由等邊角鋼拼焊成的方管。這種樣式具有選材方便、靈活的優(yōu)點。常用的矩形尺寸有:1.2m×1.2m,1.3m×1.3m,1.4m×1.4m,1.5m×1.5m,1.6m×1.6m,1.7m×1.7m,1.8m×1.8m,2.0m×2.0m。此次設(shè)計的尺寸為1.6m×1.6m。根據(jù)承載能力的不同,同一種截面尺寸,其主弦桿又有兩種不同截面之分。主弦桿截面較大的標準節(jié)用于下部塔身,主弦桿截面較小的標準節(jié)則用于上部塔身。塔身標準節(jié)的長度有2.5m,3m,3.33m,4.5m,5m,6m,10m等多種規(guī)格,常用的尺寸是2.5m和3m。選用標準節(jié)長度為2.5m。
2) 塔身結(jié)構(gòu)腹桿系統(tǒng)
塔身結(jié)構(gòu)的腹桿系統(tǒng)采用角鋼或無縫鋼管制成,腹桿可焊裝與角鋼主弦桿內(nèi)側(cè)或焊裝于角鋼主弦桿外側(cè)。斜腹桿和水平腹桿可采用同一規(guī)格,腹桿有三角形,K字型等多種布置形式。腹桿不同會影響塔身的扭轉(zhuǎn)剛度和彈性穩(wěn)定。
本次設(shè)計腹桿采用三角形布置。適合于中等起重能力塔身結(jié)構(gòu)采用的腹桿布置方式。
3) 標準節(jié)間的聯(lián)接方式
塔身標準節(jié)的聯(lián)接方式有:蓋板螺栓聯(lián)接,套柱螺栓聯(lián)接,承插銷軸聯(lián)接和瓦套法蘭聯(lián)接。蓋板螺栓聯(lián)接和套柱螺栓聯(lián)接應(yīng)用最廣。
本次設(shè)計的QTZ40塔機采用套柱螺栓聯(lián)接,其特點是:套柱采用企口定位,螺栓受拉,用低合金結(jié)構(gòu)鋼制作。適用于方鋼管和角鋼主弦桿塔身標準節(jié)的聯(lián)接,雖加工工藝要求比較復(fù)雜,但安裝速度比較快。
4) 塔身結(jié)構(gòu)設(shè)計
(1) 輕、中型自升塔機和內(nèi)爬式塔機宜采用整體式塔身標準節(jié)。附著式自升式塔機和起升高度大的軌道式以及獨立式自升塔機宜采用拼裝式塔身標準節(jié)。拼裝式塔機塔身標準節(jié)的加工精度要求比較高,制作難度比較大,零件多和拼裝麻煩,但拼裝式塔身標準節(jié)的優(yōu)越性更不容忽視:一是堆放儲存占地小;二是裝卸容易;三是運輸費用便宜,特別是長途陸運和運洋海運,由于利用集裝箱裝運,其抗銹蝕和節(jié)約運費的效果極為顯著。
QTZ40屬于中型自升式塔機,綜合各種型式的特點,塔身結(jié)構(gòu)采用整體式塔身標準節(jié),如圖2-5所示:
圖2-5 塔身結(jié)構(gòu)示意圖
(2) 為減輕塔身的自重,充分發(fā)揮鋼材的承載能力,并適應(yīng)發(fā)展組合制式塔機的需要,對于達到40m起升高度的塔機塔身宜采用兩種不同規(guī)格的塔身標準節(jié),而起升高度達到60m的塔機塔身宜采用3種不同規(guī)格的塔身標準節(jié)。除伸縮式塔身結(jié)構(gòu)和中央頂升式自升塔機的內(nèi)塔外,塔身結(jié)構(gòu)上、下的外形尺寸均保持不變,但下部塔身結(jié)構(gòu)的主弦桿截面則須予以加大。
(3) 塔身的主弦桿可以是角鋼、角鋼拼焊方鋼管、無縫鋼管式實心圓鋼,取決于塔身的起重能力、供貨條件、經(jīng)濟效益以及開發(fā)系列產(chǎn)品的規(guī)劃和需要。
(4) 塔身節(jié)內(nèi)必須設(shè)置爬梯,以便司機及機工可以上下。在設(shè)計塔身標準節(jié),特別是在設(shè)計拼裝式塔身標準節(jié)時,要處理好爬梯與塔身的關(guān)系,以保證使用安全及安裝便利。爬梯寬度不宜小于40mm,梯級間距應(yīng)上下相等,并應(yīng)不大于30mm。當(dāng)爬梯高度大于5m時,應(yīng)從高2m處開始裝設(shè)直徑為650~800mm的安全護圈,相鄰兩護圈間距為40mm.。當(dāng)爬梯高度超過10m時,爬梯應(yīng)分段轉(zhuǎn)接,在轉(zhuǎn)接處加一休息平臺。
對于高檔的塔機,可根據(jù)用戶要求增設(shè)電梯,以節(jié)省司機的體力,充分體現(xiàn)人機工程學(xué)的應(yīng)用。
5) 塔身的接高問題
在遇到塔身需要接高問題時,應(yīng)按下述兩種不同情況分別處理:
(1) 在額定最大自由高度范圍內(nèi),根據(jù)工程對象需要增加塔身標準節(jié),使低塔機變?yōu)楦咚C。
(2) 根據(jù)施工需要,增加塔身標準節(jié),使塔身高度略超越固定式塔機的規(guī)定最大自由高度。
在進行具體接高操作之前,還應(yīng)制定相關(guān)的安全操作規(guī)程,以保證拆裝作業(yè)的安全順利進行。
7.轉(zhuǎn)臺裝置
轉(zhuǎn)臺是一個直接坐在回轉(zhuǎn)支承(轉(zhuǎn)盤)上的承上啟下的支撐結(jié)構(gòu)。
上回轉(zhuǎn)自升式塔機的轉(zhuǎn)臺多采用型鋼和鋼板組焊成的工字型斷面環(huán)梁結(jié)構(gòu),它支撐著塔頂結(jié)構(gòu)和回轉(zhuǎn)塔架 ,并通過回轉(zhuǎn)支承及承座將上部載荷下傳給塔身結(jié)構(gòu)。
8.回轉(zhuǎn)支承裝置
回轉(zhuǎn)支承簡稱轉(zhuǎn)盤,是塔式起重機的重要部件,由齒圈、座圈、滾動體、隔離快、連接螺栓及密封條等組成。按滾動體的不同,回轉(zhuǎn)支承可分為兩大類:一是球式回轉(zhuǎn)支承,另一類是滾柱式回轉(zhuǎn)支承。
1) 柱式回轉(zhuǎn)支承
柱式回轉(zhuǎn)支承又可分為:轉(zhuǎn)柱式和定柱式兩類。定柱式回轉(zhuǎn)支承結(jié)構(gòu)簡單,制造方便,起重回轉(zhuǎn)部分轉(zhuǎn)動慣量小,自重和驅(qū)動功率小,能使起重機重心降低。轉(zhuǎn)柱式結(jié)構(gòu)簡單,制造方便,適用于起升高度和工作幅度以及起重量較大的塔機。
2) 滾動軸承式回轉(zhuǎn)支承
滾動軸承式回轉(zhuǎn)支承裝置按滾動體形狀和排列方式可分為:單排四點角接觸球式回轉(zhuǎn)支承、雙排球式回轉(zhuǎn)支承、單排交叉滾柱式回轉(zhuǎn)支承、三排滾柱式回轉(zhuǎn)支承。滾動軸承式回轉(zhuǎn)支承裝置結(jié)構(gòu)緊湊,可同時承受垂直力、水平力和傾覆力矩是目前應(yīng)用最廣的回轉(zhuǎn)支承裝置。為保證軸承裝置正常工作,對固定軸承座圈的機架要求有足夠的剛度。滾動軸承式回轉(zhuǎn)支承,回轉(zhuǎn)部分固定,在大軸承的回轉(zhuǎn)座圈上,而大軸承的的固定座圈則與塔身(底架或門座)的頂面相固結(jié)。
設(shè)計選用球式回轉(zhuǎn)支承,其優(yōu)點是:剛性好,變形比較小,對承座結(jié)構(gòu)要求較低。鋼球為純滾動,摩擦阻力小,功率損失小。
根據(jù)構(gòu)造不同和滾動體使用數(shù)量的多少,回轉(zhuǎn)支承又分為單排四點接觸球式回轉(zhuǎn)支承、雙排球式回轉(zhuǎn)支承、單排交叉滾柱式回轉(zhuǎn)支承和三排滾柱式回轉(zhuǎn)支承。
設(shè)計采用單排四點接觸球式回轉(zhuǎn)支承,它是由一個座圈和齒圈組成,結(jié)構(gòu)緊湊,重量輕,鋼球與圓弧滾道四點接觸,能同時承受軸向力、徑向力和傾翻力矩。
9.底架
塔機底架構(gòu)造隨著塔身結(jié)構(gòu)特點(轉(zhuǎn)柱式塔身或定柱式塔身),起重機的走形方式(軌道式、輪胎式或履帶式)及爬升方式(內(nèi)爬式或外附著自升式)而異。
小車變幅水平臂架自升塔機采用的底架結(jié)構(gòu)可分為:十字型底架,帶撐桿的十字型底架,帶撐桿的井字型底架,帶撐桿的水平框架式桿件拼裝底架和塔身偏置式底架。
本次設(shè)計采用的是帶撐桿的x底架。底架用工字鋼焊接成框架結(jié)構(gòu),在四角安裝有四條輻射狀可拆卸支腿,該支腿用槽鋼焊接而成,用螺栓與框架結(jié)構(gòu)連接,底架通過20個預(yù)埋地腳螺栓與基礎(chǔ)固定,螺栓為M36,底架外輪廓尺寸約為:長×寬×高=4600×4600×250 mm。
撐桿的作用是使塔身基礎(chǔ)節(jié)與底架的四角相連,形成一個空間結(jié)構(gòu),增加塔機整體穩(wěn)定性。由于塔身撐桿的設(shè)置,塔身危險斷面由塔身根部向上移到撐桿的上支承面,同時塔身根部平面對底架的作用減小,從而改善底架的受力情況。
底架安裝時,將底架拼裝組合,放置于混凝土基礎(chǔ)上,對正四角的放射形支腿地腳螺栓,使底架墊平牢實,要求校平,平面度小于1/1000,擰緊20個M36的地腳螺栓。
10. 附著裝置
附著裝置由一套附著框架,四套頂桿和三根撐桿組成,通過它們將起重機塔身的中間節(jié)段錨固在建筑物上,以增加塔身的剛度和整體穩(wěn)定性.撐桿的長度可以調(diào)整,以滿足塔身中心線到建筑物的距離限制.
塔身附著裝置是用角鋼對焊組合成的附著框架,由螺栓聯(lián)接成框形,包箍于塔身標準的外表面,在附著框架下方的塔身主弦桿上分別固定一個小抱箍,以支持附著框架的重量,再由三根可伸縮調(diào)整的附著撐桿,通過銷軸把該框架與建筑物連接,使塔機在規(guī)定高度與建筑物附著。.附著裝置如圖2-6所示:
2-6 附著裝置
11. 套架與液壓頂升機構(gòu)
1) 爬升架
爬升架主要由套架,平臺,液壓頂升裝置及標準節(jié)引進裝置等組成。套架是套在塔身標準節(jié)外部。套架用無縫鋼管焊接而成,節(jié)高4.94米,截面尺寸2.0×2.0米2。外側(cè)設(shè)有平臺和套架爬升導(dǎo)向裝置—爬升滾輪。在套架內(nèi)側(cè)的下方,還設(shè)有支承套架的支塊,當(dāng)套架上升到規(guī)定位置時,需將此支塊連同套架支托于塔身標準節(jié)的踏塊上。
為便于頂升安裝的安全需要特設(shè)有工作平臺,爬升架內(nèi)側(cè)沿塔身主弦桿安裝8個滾輪,支撐在塔身主弦桿外側(cè),在爬升架的橫梁上,焊上兩塊耳板與液壓系統(tǒng)油缸鉸接承受油缸的頂升載荷,爬升架下部有兩個杠桿原理操縱的擺動爪,在液壓缸回收活塞以及引進標準節(jié)等過程中作為爬升架承托上部結(jié)構(gòu)重量之用。
2) 頂升機構(gòu)
頂升機構(gòu)主要由頂升套架、頂升作業(yè)平臺和液壓頂升裝置組成,用于完成塔身的頂升加節(jié)接高工作。
3) 套架
上回轉(zhuǎn)自升塔機要有頂升套架。整體標準節(jié)用外套架。外套架就是套架本體套在塔身的外部。套架本身就是一個空間桁架結(jié)構(gòu)。套架由框架,平臺,欄桿,支承踏步塊等組成。安裝套架時,大窗口應(yīng)與標準節(jié)焊有踏塊的方向相反。套架的上端用螺栓與回轉(zhuǎn)下支座的外伸腿相連接,其前方的上半部沒有焊腹桿,而是引入門框,因此其弦必須作特殊的加強,以防止側(cè)向局部失穩(wěn)。門框內(nèi)裝有兩根引入導(dǎo)軌,以便與標準節(jié)的引入。
4) 液壓頂升
(1) 按頂升接高方式的不同,液壓頂升分為上頂升加節(jié)接高、中頂升加節(jié)接高和下頂升加節(jié)接高和下頂升接高三種形式。上頂升加節(jié)接高的工藝是由上向下插入標準節(jié),多用于俯仰變幅的動臂自升式塔是起重機。下頂升加節(jié)接高的優(yōu)點:人員在下部操作,安全方便。缺點是:頂升重量大,頂升時錨固裝置必須松開。中頂升加節(jié)接高的工藝是由塔身一側(cè)引入標準節(jié),可適用于不同形式的臂架,內(nèi)爬,外附均可,而且頂升時無需松開錨固裝置,應(yīng)用面比較廣。
本次設(shè)計的QTZ40塔式起重機采用上頂升加節(jié)接高。
(2) 按頂升機構(gòu)的傳動方式不同,可分為繩輪頂升機構(gòu)、輪頂升機構(gòu)、條頂升機構(gòu)、絲杠頂升機構(gòu)和液壓頂升機構(gòu)等五種。繩輪頂升機構(gòu)的特點是構(gòu)造簡單,但不平穩(wěn)。鏈輪頂升機構(gòu)與繩輪頂升機構(gòu)相類似,采用較少。齒條頂升機構(gòu)在每節(jié)外塔架內(nèi)側(cè)均裝有齒條,內(nèi)塔架外側(cè)底部安裝齒輪。齒輪在齒條上滾動,內(nèi)塔架隨之爬升或下降。絲杠爬升機構(gòu)的絲杠裝在內(nèi)塔架中軸線處,或裝在塔身的側(cè)面內(nèi)外塔架的空隙里。通過絲杠正、反轉(zhuǎn),完成頂升過程。
本次設(shè)計的QTZ40塔式起重機采用液壓頂升機構(gòu)。液壓頂升機構(gòu)由電動機驅(qū)動齒輪油泵,液壓油經(jīng)手動換向閥、平衡閥進入液壓缸,使液壓缸伸縮,實現(xiàn)塔機上部的爬升和拆卸。其主要優(yōu)點是構(gòu)造簡單、工作可靠、平穩(wěn)、安全、操作方便、爬升速度快。本機構(gòu)另有一套手動操作的爬升吊裝裝置與頂升液壓系統(tǒng)配合工作。液壓頂升系統(tǒng)如圖2-7所示:
2-7 液壓頂升系統(tǒng)
1- 電動機 2-聯(lián)軸器 3-齒輪泵 4-濾油器
5-溢流閥
收藏
編號:83513741
類型:共享資源
大小:6.64MB
格式:ZIP
上傳時間:2022-05-01
50
積分
- 關(guān) 鍵 詞:
-
畢業(yè)設(shè)計
QTZ40
塔式起重機
優(yōu)化
設(shè)計
- 資源描述:
-
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。