QTZ40塔式起重機-塔身的優(yōu)化設計
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
畢業(yè)設計計算書
指導教師:
設計題目:QTZ40塔式起重機塔身的優(yōu)化設計 設計人:
摘要
本次設計在參照同類塔式起重機基礎上,對QTZ40型塔式起重機進行總體設計及塔身分析設計。在塔身設計工程中,采用了有限元法對其進行分析計算,采用了ANSYS10.0軟件進行分析。
按照整機主要性能參數(shù),確定各機構(gòu)類型及鋼結(jié)構(gòu)型式,主要確定了塔身的結(jié)構(gòu)參數(shù),并按照風載荷平行于起重臂方向,風載荷與起重臂方向呈45度角時兩種工況分析。通過對塔身作適當?shù)暮喕?,應用ANSYS10.0軟件建立塔身的有限元模型,施加各工況載荷,進行求解,進而可得各工況下各節(jié)點受力情況及各單元所受軸向力、軸向應力大小及各工況下塔身的變形撓度大小,并能演示塔身加載過程的動畫,清晰的展現(xiàn)了各工況下塔身的受力性能。
本次設計分析通過修改模型參數(shù)共準備了三種不同方案,進而對不同模型方案進行分析比較。由比較不同模型在相同工況下的受力狀況及剛度狀況,綜合分析強度和剛度條件,可得出受力最為合理的一組模型參數(shù),通過對此組參數(shù)下模型進行強度及剛度校核,進而獲得塔身的最終參數(shù)結(jié)果。
關鍵詞:QTZ40型塔式起重機 塔身 有限元分析 ANSYS10.0
Abstract
Based on the design of the similar tower crane, this design is composed of the system design and the tower body design of the QTZ40 tower crane. In the tower body design progress, it has carried Finite Element Method on the analysis computation, and used ANSYS10.0 software.
According to the entire machine main performance parameters, various organizations type and the steel structure pattern have been determined. And then, the parameter analysis is carried on two different operating modes which are composed of the direction of the wind load is parallel to the lazy arm and the direction of the wind load is at a 45 degrees angle with the lazy arm. Through the reasonable simplification of the tower body, the tower body finite element model is established by applying ANSYS12.0 software, and then it’s exerted various operating modes loads, and carried on the solution. Then ANSYS10.0 software can calculate various nodes stress situation, the axial stress various units receive, and the tower body distortion size under various operating modes. Also it can demonstrate the animation in the loads-carrying process on the tower body, which has clearly displayed the stress performance of the tower body under various operating modes.
Through the revision of the model parameters, three different schemes have been prepared for the analysis comparison, which is carried on the different models. Because the stress condition and stiffness condition of different model are compared under the same operating mode, and a comprehensive analysis of the intensity and the stiffness condition is carried on, a most reasonable model parameter can be obtained. Through the intensity and the stiffness examination regarding this model, then the final parameter result of the tower body can be obtained.
Key words: QTZ40 tower crane Tower body Finite element analysis ANSYS10.0
目錄
第1章 前言······················································1
1.1 塔式起重機概述··············································1
1.2 塔式起重機的發(fā)展情況········································1
1.3 塔式起重機的發(fā)展趨勢·······································3
第2章 總體設計··················································5
2.1 概述······················································· 5
2.2 確定總體設計方案············································5
2.2.1 金屬結(jié)構(gòu)···············································5
2.2.2 工作機構(gòu)···············································22
2.2.3 安全保護裝置···········································29
2.3 總體設計設計總則···········································32
2.3.1 整機工作級別 ··········································32
2.3.2 機構(gòu)工作級別···········································32
2.3.3主要技術性能參數(shù)······································· 33
2.4 平衡重的計算···············································33
2.5 起重特性曲線···············································35
2.6 塔機風力計算·············································· 36
2.6.1 工作工況Ⅰ············································37
2.6.2 工作工況Ⅱ············································41
2.6.3 非工作工況Ⅲ···········································43
2.7整機的抗傾翻穩(wěn)定性·········································45
2.7.1工作工況Ⅰ············································46
2.7.2工作工況Ⅱ············································47
2.7.3非工作工況Ⅲ··········································49
2.7.4工作工況Ⅳ············································50
2.8固定基礎穩(wěn)定性計算·········································51
第3章 塔身的有限元分析設計···································53
3.1 塔身模型簡化···············································53
3.2 有限元分析計算·············································54
3.2.1 方案一···············································54
3.2.2 方案二··············································79
3.2.3 方案三··············································98
第4章 塔身的受力分析計算····································121
4.1 穩(wěn)定性校核················································121
4.2 塔身的剛度檢算············································122
4.3 塔身的強度校核············································124
4.4 鏈接套焊縫強度的計算······································125
4.5 塔身腹桿的計算············································126
4.6 高強度螺栓強度的計算······································127
第5章 畢業(yè)設計小結(jié)···········································129
致謝·····························································130
主要參考文獻····················································131
設計項目
計算與說明
結(jié)果
前言
塔式起重機概述
塔式起重機發(fā)展情況
塔式起重機的發(fā)展趨勢
第1章 前言
1.1 塔式起重機概述
塔式起重機是一種塔身豎立起重臂回轉(zhuǎn)的起重機械。在工業(yè)與民用建筑施工中塔式起重機是完成預制構(gòu)件及其他建筑材料與工具等吊裝工作的主要設備。在高層建筑施工中其幅度利用率比其他類型起重機高。由于塔式起重機能靠近建筑物,其幅度利用率可達全幅度的80%,普通履帶式、輪胎式起重機幅度利用率不超過50%,而且隨著建筑物高度的增加還會急劇地減小。因此,塔式起重機在高層工業(yè)和民用建筑施工的使用中一直處于領先地位。應用塔式起重機對于加快施工進度、縮短工期、降低工程造價起著重要的作用。同時,為了適應建筑物結(jié)構(gòu)件的預制裝配化、工廠化等新工藝、新技術應用的不斷擴大,現(xiàn)在的塔式起重機必須具備下列特點:
1. 起升高度和工作幅度較大,起重力矩大。
2. 工作速度高,具有安裝微動性能及良好的調(diào)速性能。
3. 要求裝拆、運輸方便迅速,以適應頻繁轉(zhuǎn)移工地的需
要。
QTZ40型自升式塔式起重機,其吊臂長40米,最大起重量4噸,額定起重力矩40噸米。是一種結(jié)構(gòu)合理、性能比較優(yōu)異的產(chǎn)品,比較目前國內(nèi)外同規(guī)格同類型的塔機具有更多的優(yōu)點,能滿足高層建筑施工的需要,可用于建筑材料和構(gòu)件的調(diào)運和安裝,并能在市內(nèi)狹窄地區(qū)和丘陵地帶建筑施工。整機結(jié)構(gòu)不算太大,可滿足中小型施工的要求。
本機以基本高度(獨立式)30米。用戶需高層附著施工,只需提出另行訂貨要求,即可增加某些部件實現(xiàn)本機的最大設計高度100米,也就是附著高層施工可建高樓32層以上。
1.2 塔式起重機發(fā)展情況
塔式起重機是在二次世界大戰(zhàn)后才真正獲得發(fā)展的。戰(zhàn)后各國面臨著重建家園的艱巨任務,浩大的建筑工程量迫切需要大量性能良好的塔式起重機。歐洲率先成功,1923年成功制成第一臺比較完整的塔式起重機,
在我國,塔式起重機的生產(chǎn)與應用已有40多年的歷史,經(jīng)歷了一個從測繪仿制到自行設計制造的過程。
20世紀50年代,為滿足國家經(jīng)濟建設的需要,中國引進了前蘇聯(lián)以及東歐一些國家的塔式起重機,并進行仿制。1954年仿制民主德國設計的樣機,在撫順試制成功了中國第一臺TQ2-6型塔式起重機。隨后又仿照前蘇聯(lián)樣機,研制了15t與25t塔式起重機,這個時期中國生產(chǎn)與使用的塔式起重機的數(shù)量都較少。
20世紀60年代,由于高層、超高層建筑的發(fā)展,廣泛使用了內(nèi)部爬升式和外部附著式塔式起重機,并在工作機構(gòu)中采用了比較先進的技術,如直流電機調(diào)速、可控硅調(diào)速、渦流制動器,在回轉(zhuǎn)和運行機構(gòu)中安裝液力耦合器等。在此時期,中國開始進入了自行設計與制造塔式起重機的階段。1961年,首先在北京試制成功了紅旗-11型塔式起重機,它也是中國最早自行設計的塔式起重機。隨后,中國又自行設計制造了TQ-6型等塔式起重機,至1965年全國已有生產(chǎn)廠10余家,生產(chǎn)塔式起重機360多臺。這些塔式起重機都是下回轉(zhuǎn)動臂式,可整體托運,能滿足六層以下民用建筑施工的需要。
20世紀七十年代,塔式起重機服務對象更為廣泛。塔式起重機的幅度、起重量和起升高度均有了顯著提高。為了滿足市場各方面的要求,塔式起重機又向一機多用方向發(fā)展。中國塔式起重機進入了技術提高、品種增多的新階段。1972年中國第一臺下回轉(zhuǎn)的輕型輪胎式軌道兩用起重機問世;同年為了北京飯店施工,中國又自行設計制造了QT-10型自升式塔式起重機,該機的起重力矩為1600kN·m。這一時期還先后開發(fā)了ZT100、ZT120、ZT280等小車變幅自升式塔式起重機、QT-20小車變幅內(nèi)爬式塔式起重機,QTL16、TQ40、TQ45、TD25、QTG40、QTG60下回轉(zhuǎn)動臂自行架設快裝塔式起重機等,其年產(chǎn)量最高超過900臺,標志著中國塔式起重機行業(yè)進入了一個新的階段。
20世紀80年代,中國塔式起重機相繼出現(xiàn)了不少新產(chǎn)品,主要有QTZ100、QTZ120等自升式塔式起重機,QT60、QTK60、QT25HK等下回轉(zhuǎn)快裝塔式起重機等。這些產(chǎn)品在性能方面已接近國外70年代水平,這一時期的最高年產(chǎn)量達1400臺。與此同時,隨著改革開放和國際技術交流的增多,為滿足建筑施工的需要,也從國外引進了一些塔式起重機,其中有聯(lián)邦德國的Liebherr、法國的Potain以及意大利的Edilmac等公司的產(chǎn)品。由于這些塔式起重機制造質(zhì)量較好,技術性能比較先進,極大地促進了中國塔式起重機產(chǎn)品的設計與制造技術的進步。20世紀90年代以后,中國塔式起重機行業(yè)隨著全國范圍建筑任務的增加而進入了一個新的興盛時期,年產(chǎn)量連年猛增,而且有部分產(chǎn)品出口到國外。全國塔式起重機的總擁有量也從20世紀50年代的幾十臺截至2000年約為6萬臺。至此,無論從生產(chǎn)規(guī)模、應用范圍和塔式起重機總量等角度來衡量,中國均堪稱塔式起重機大國。
1.3塔式起重機的發(fā)展趨勢
根據(jù)國內(nèi)外一些技術資料的介紹,塔式起重機的發(fā)展趨勢具體歸納為以下幾個方面。
1、吊臂長度加長
在20世紀60年代初,吊臂長度超過40m的較少,70年代吊臂長度已能做到70m。快速拆裝下回轉(zhuǎn)塔式起重機的吊臂長度可達到35m。自升式塔式起重機吊臂是可以接長的,標準臂長一般為30~40m,可以接長到50~60m。重型塔式起重機吊臂則更長。隨著塔式起重機設計水平的提高,可以解決由臂長加大帶來的一些技術問題,而低合金高強度鋼材及鋁合金的廣泛采用也為加長吊臂提供了非常有利的條件。
2、工作速度提高,且能調(diào)速
由于調(diào)速技術的進步,混輪組倍率的可變、雙速、三速電動機及直流電動機調(diào)速的應用,使塔式起重機工作速度在逐漸提高。20世紀50年代生產(chǎn)的塔式起重機工作速度較低,起升速度一般只有20~30m/min,回轉(zhuǎn)速度為0.6~1r/min,變幅速度為30~40m/min,大車行走速度為10~40m/min,而近幾年來塔式起重機工作速度已有提高。起升機構(gòu)普遍做到具有3~4種工作速度,重物起升速度超過100m/min者已經(jīng)很多,構(gòu)件安裝就位速度可在0~10m/min范圍內(nèi)進行選擇,回轉(zhuǎn)速度一般可在0~1r/min之間進行調(diào)節(jié),小車牽引和塔式起重機行走大多也有2~3種工作速度,小車牽引速度最快可達60m/min。
3、改善操縱條件
隨著塔式起重機向大型、大高度方向發(fā)展,操作人員的能見度越來越差。因此需要在吊臂端部或小車上安裝電視攝像機,在操作室利用電視進行操作。有的還采用了雙頻道的無線電遙控系統(tǒng),不僅可由地面的操作人員控制吊裝,還可以根據(jù)事先編排的程序自動進行吊裝。
4、更多地采用組裝式結(jié)構(gòu)
為了便于產(chǎn)品更新?lián)Q代,簡化設計制造、使用與管理,提高塔式起重機使用的經(jīng)濟效益,國外塔式起重機專業(yè)廠已做到產(chǎn)品系列化、部件模數(shù)化。以不同模數(shù)塔身、臂架標準節(jié)組合成變斷面塔身和臂架,這不僅能提高塔身、臂架的力學性能,減輕塔式起重機自重,而且可明顯減少使用單位塔架、臂架的儲備量,為降低成本、簡化管理創(chuàng)造了條件。
140
設計項目
計算與說明
結(jié)果
總體設計
概述
確定總體設計方案
塔機金屬結(jié)構(gòu)
塔頂
吊臂
構(gòu)造型式
分節(jié)問題
截面形式及截面尺度
腹桿布置和桿件材料選用
吊點的選擇與構(gòu)造
平衡臂和平衡重
平衡臂的結(jié)構(gòu)型式
平衡重
拉桿
上、下支座
塔身
塔身結(jié)構(gòu)斷面型式
塔身結(jié)構(gòu)腹桿系統(tǒng)
標準節(jié)間的聯(lián)接方式
塔身結(jié)構(gòu)設計
塔身的接高問題
轉(zhuǎn)臺裝置
回轉(zhuǎn)支承
底架
附著裝置
套架與液壓頂升機構(gòu)
爬升架
頂升機構(gòu)
套架
液壓頂升
基礎
工作機構(gòu)
起升機構(gòu)
起升機構(gòu)的傳動方式
起升機構(gòu)的驅(qū)動方式
起升機構(gòu)的減速器
起升機構(gòu)的制動器
滑輪組
倍率
回轉(zhuǎn)機構(gòu)
變幅機構(gòu)
安全裝置
限位開關
起升高度限制器
起重量限制器
力矩限制器
風速儀
鋼絲繩防脫裝置
電氣系統(tǒng)
總體設計原則
整機工作級別
機構(gòu)工作級別
第2章 總體設計
2.1 概述
總體設計是畢業(yè)設計中至關重要的一個環(huán)節(jié),它是后續(xù)設計的基礎和框架。只有在做好總體設計的前提下,才能更好的完成設計。它是對滿足塔機技術參數(shù)及形式的總的構(gòu)想,總體設計的成敗關系到塔機的經(jīng)濟技術指標,直接決定了塔機設計的成敗。
總體設計指導各個部件和各個機構(gòu)的設計進行,一般由總工程師負責設計。在接受設計任務以后,應進行深入細致的調(diào)查研究,收集國內(nèi)外的同類機械的有關資料,了解當前的國內(nèi)外塔機的使用、生產(chǎn)、設計和科研的情況,并進行分析比較,制定總的設計原則。設計原則應當保證所設計的機型達到國家有關標準的同時,力求結(jié)構(gòu)合理,技術先進,經(jīng)濟性好,工藝簡單,工作可靠。
2.2 確定總體設計方案
QTZ40塔式起重機是上回轉(zhuǎn)液壓自升式起重機。盡管其設計型號有各種各樣,但其基本結(jié)構(gòu)大體相同。整臺的上回轉(zhuǎn)塔機主要由金屬結(jié)構(gòu),工作機構(gòu),液壓頂升系統(tǒng),電器控制系統(tǒng)及安全保護裝置等五大部分組成。
2.2.1 金屬結(jié)構(gòu)
塔式起重機金屬結(jié)構(gòu)部分由塔頂,吊臂,平衡臂,上、下支座,塔身,轉(zhuǎn)臺等主要部件組成。對于特殊的塔式起重機,由于構(gòu)造上的差異,個別部件也會有所增減。金屬結(jié)構(gòu)是塔式起重機的骨架,承受塔機的自重載荷及工作時的各種外載荷,是塔式起重機的重要組成部分,其重量通常約占整機重量的一半以上,因此金屬結(jié)構(gòu)設計合理與否對減輕起重機自重,提高起重性能,節(jié)約鋼材以及提高起重機的可靠性等都有重要意義。
1. 塔頂
自升塔式起重機塔身向上延伸的頂端是塔頂,又稱塔帽或塔尖。其功能是承受臂架拉繩及平衡臂拉繩傳來的上部載荷,并通過回轉(zhuǎn)塔架、轉(zhuǎn)臺、承座等的結(jié)構(gòu)部件或直接通過轉(zhuǎn)臺傳遞給塔身結(jié)構(gòu)。
自升式塔機的塔頂有直立截錐柱式、前傾或后傾截錐柱式、人字架式及斜撐式等形式。截錐柱式塔尖實質(zhì)上是一個轉(zhuǎn)柱,由于構(gòu)造上的一些原因,低部斷面尺寸要比塔身斷面尺寸為小,其主弦桿可視需要選用實心圓鋼,厚壁無縫鋼管或不等邊角鋼拼焊的矩形鋼管。人字架式塔尖部件由一個平面型鋼焊接桁架和兩根定位系桿組成。而斜撐式塔尖則由一個平面型鋼焊接桁架和兩根定位系桿組成。這兩種型式塔尖的共同特點是構(gòu)造簡單自重輕,加工容易,存放方便,拆卸運輸便利。
塔頂高度與起重臂架承載能力有密切關系,一般取為臂架長度的1/7-1/10,長臂架應配用較高的塔尖。但是塔尖高度超過一定極限時,弦桿應力下降效果便不顯著,過分加高塔尖高度不僅導致塔尖自重加大,而且會增加安裝困難需要換用起重能力更大的輔助吊機。因此,設計時,應權(quán)衡各方面的條件選擇適當?shù)乃敻叨取?
本設計采用前傾截錐柱式塔頂,斷面尺寸為1.36m×1.36m。腹桿采用圓鋼管。塔頂高6.115米。塔冒用無縫鋼管焊接而成,頂部設有連接平衡臂拉桿和吊臂拉桿的鉸銷吊耳,以及穿繞起升鋼絲繩的定滑輪,頂部應裝有安全燈和避雷針。其結(jié)構(gòu)如圖2-1所示:
圖2-1 塔頂結(jié)構(gòu)圖
2. 起重臂
1) 構(gòu)造型式
塔式起重機的起重臂簡稱臂架或吊臂,按構(gòu)造型式可分為:小車變幅水平臂架;俯仰變幅臂架,簡稱動臂;伸縮式小車變幅臂架;折曲式臂架。
小車變幅水平臂架,簡稱小車臂架,是一種承受壓彎作用的水平臂架,是各式塔機廣泛采用的一種吊臂。其優(yōu)點是:吊臂可借助變幅小車沿臂架全長進行水平位移,并能平穩(wěn)準確地進行安裝就位。因此此次設計采用小車變幅水平臂架。
小車臂架可概分為三種不同型式:單吊點小車臂架,雙吊點小車臂架和起重機與平衡臂架連成一體的錘頭式小車臂架。單吊點小車變幅臂架是靜定結(jié)構(gòu),而雙吊點小車變幅臂架則是超靜定結(jié)構(gòu)。幅度在40m以下的小車臂架大都采用單吊點式構(gòu)造;雙吊點小車變幅臂架結(jié)構(gòu)一般幅度都大于50m。雙吊點小車變幅臂架結(jié)構(gòu)自重輕,據(jù)分析與同等起重性能的單吊點小車變幅臂架相比,自重均可減輕5%-10%。小車變幅臂架拉索吊點可以設在下弦處,也可設在上弦處,現(xiàn)今通用小車變幅臂架多是上弦吊點,正三角形截面臂架。這種臂架的下弦桿上平面均用作小車運行軌道。
2) 分節(jié)問題
臂架型式的選定及構(gòu)造細部處理取決于塔機作業(yè)特點,使用范圍以及承載能力等因素,設計時,應通盤考慮作出最佳選擇,首先要解決好分節(jié)問題。
小車臂架常用的標準節(jié)間長度有6、7、8、10、12m五種。為便于組合成若干不同長度的臂架,除標準節(jié)間外,一般都配設1~2個3~5m長的延接節(jié),一個根部節(jié),一個首部節(jié)和端頭節(jié)。端頭節(jié)構(gòu)造應當簡單輕巧,配有小車牽引繩換向滑輪、起升繩端頭固定裝置。此端頭節(jié)長度不計入臂架總長,但可與任一標準節(jié)間配裝,形成一個完整的起重臂。本次設計選用標準節(jié)長度為6m,另加上2m長的延接節(jié)。其示意圖見圖2-2:
圖2-2臂架分節(jié)
3) 截面形式及截面尺度
塔機臂架的截面形式有三種:正三角形截面、倒三角形截面和矩形截面。小車變幅水平臂架大都采用正三角形截面,本次設計的QTZ40采用正三角形截面。選用這種方式的優(yōu)點是:節(jié)省鋼材,減輕重量,從而節(jié)約成本。其尺寸截面形式如圖2-3所示:
圖2-3 臂架截面及其腹桿布置
1-水平腹桿2-側(cè)腹桿3-上弦桿4-下弦桿
臂架一-五節(jié):B=1020mm H=800mm
臂架六-七節(jié):B=1017mm H=800mm
臂架截面尺寸與臂架承載能力、臂架構(gòu)造、塔頂高度及拉桿結(jié)構(gòu)等因素有關。截面高度主要受最大起重量和拉桿吊點外懸臂長度影響最大。截面寬度主要與臂架全長有關。設計臂架長度為40m,共分七節(jié)。
4) 腹桿布置和桿件材料選用
矩形截面臂架的腹桿體系宜采用人字式布置方式,而三角形截面起重臂的腹桿體系既可采用人字式布置方式,也可 采用順斜置式。此兩種布置方式各有特點。
當采用順斜置式式,焊縫長度較短、質(zhì)量不易保證。焊接變形不均勻,節(jié)點剛度較差,且不便于布置小車變幅機構(gòu)。因此本設計選用人字式布置方式。其優(yōu)點在于,這種布置方式應用區(qū)段不受限制,焊縫長度較長,強度易于保證,焊接變形較均勻,節(jié)點剛度較好,便于布置小車變幅機構(gòu)。
臂架桿件材料有多種選擇可能性。一般情況下,上吊點小車變幅臂架的上弦以選用16Mn實心鋼為宜,但造價要高。因此本設計選用20號無縫圓鋼管。其特點是:慣性矩、長細比要小,抗失穩(wěn)能力高。下弦采用等邊角鋼對焊的箱型截面桿件,經(jīng)濟實用,具有良好的抗壓性能。因此上弦桿選用89×8、89×7,下弦選用的角鋼型號為:75×8、75×5,臂間由銷軸連接。
5) 吊點的選擇與構(gòu)造
吊點可分為單吊點和雙吊點。其設計原則是:臂架長度小于50m,對最大起吊量并無特大要求,一般采用單吊點結(jié)構(gòu)。若臂架總長在50m以上,或?qū)缰懈浇畲笃鸬趿坑刑卮笠髴捎秒p吊點。采用單吊點結(jié)構(gòu)時,吊點可以設在上弦或下弦。吊點以左可看作簡支梁,以右可看作懸臂梁。在設計中采用雙吊點。
3. 平衡臂與平衡重
QTZ40塔式起重機是上回轉(zhuǎn)塔機。上回轉(zhuǎn)塔機均需配設平衡臂,其功能是支撐平衡重(或稱配重),用以構(gòu)成設計上所需要的作用方向與起重力矩方向相反的平衡力矩,在小車變幅水平臂架自升式塔機中,平衡臂也是延伸了的轉(zhuǎn)臺,除平衡重外,還常在其尾端裝設起升機構(gòu)。起升機構(gòu)之所以同平衡重一起安放在平衡臂尾端,一則可發(fā)揮部分配重作用,二則增大鋼絲繩卷筒與塔尖導輪間的距離,以利鋼絲繩的排繞并避免發(fā)生亂繩現(xiàn)象。
1) 平衡臂的結(jié)構(gòu)型式
平衡臂的構(gòu)造設計必須保證所要求的平衡力矩得到滿足。短平衡臂的優(yōu)點是:便于保證塔機在狹窄的空間里進行安裝架設和拆卸,適合在城市建筑密集地區(qū)承擔施工任務的塔機使用,不易受鄰近建筑物的干擾,結(jié)構(gòu)自重較輕。長平衡臂的主要優(yōu)點是:可以適當減少平衡重的用量,相應減少塔身上部的垂直載荷。平衡重與平衡臂的長度成反比關系,而平衡臂長度與起重臂之間又存在一定關系,因此,平衡臂的合理設計可節(jié)約材料,降低整機造價。
常用平衡臂有以下三種結(jié)構(gòu)型式:
(1) 平面框架式平衡臂,由兩根槽鋼縱梁或由槽鋼焊成的箱形斷面組合梁河系桿構(gòu)成。在框架的上平面鋪有走道板,走到板兩旁設有防護欄桿。其特點是結(jié)構(gòu)簡單,加工容易。
(2) 三角形斷面桁架式平臂,又分為正三角形斷面和倒三角形斷面兩種形式。此類平衡臂的構(gòu)造與平面框架式平衡臂結(jié)構(gòu)構(gòu)造相似,但較為輕巧,適用于長度較大的平衡臂。從實用上來看,正三角形斷面桁架式平衡臂似不如倒三角形斷面桁架式平衡臂。
(3) 矩形斷面格桁結(jié)構(gòu)平衡臂,其特點是根部與座在轉(zhuǎn)臺上的回轉(zhuǎn)塔架聯(lián)接成一體,適用于小車變幅水平臂架特長的超重型自升式塔機。
平衡臂結(jié)構(gòu)選用型式的原則是:自重比較輕;加工制造簡單,造型美觀與起重臂匹配得體。故此次設計選用平面框架式平衡臂。它由兩根槽鋼縱梁或由槽鋼焊成的箱形斷面組合梁和系桿構(gòu)成。在框架的上平面鋪有走道板,走道板兩旁設有防護欄桿。這種平衡臂的優(yōu)點是結(jié)構(gòu)簡單,加工容易。平衡臂的長度是10.17m。如圖2-4所示:
圖2-4 平衡臂
2) 平衡重
平衡重屬于平衡臂系統(tǒng)的組成部分,它的用量甚是可觀,輕型塔機一般至少要用3~4t,重型自升式塔機要裝有近30t平衡重。因此在設計平衡重過程中,應對平衡重的選材、構(gòu)造以及安裝進行認真考慮并作妥善安排。
平衡重一般可分為固定式和活動式兩種?;顒悠胶庵刂饕糜谧陨剿C,其特點是可以移動,易于使塔身上部作用力矩處于平衡狀態(tài),便于進行頂升接高作業(yè)。但是,構(gòu)造復雜,機加工量大,造價較高。故國內(nèi)大部分塔機均采用固定式平衡重。
平衡重可用鑄造或鋼筋混凝土制成。鑄鐵平衡重的構(gòu)造較復雜,制造難度大,加工費用貴,但體形尺寸較小,迎風面積較小,有利于減少風載荷的不利影響。鋼筋混凝土平衡重的主要缺點是體積大,迎風面積大,對塔身結(jié)構(gòu)及穩(wěn)定性均有不利影響。但是構(gòu)造簡單,預制生產(chǎn)容易,可就地澆注,并且不怕風吹雨淋,便于推廣。
因此,本次設計的塔式起重機采用鋼筋混凝土式平衡重。
4. 拉桿
QTZ40塔式起重機采用雙吊點式拉桿結(jié)構(gòu),拉桿由焊件組成,其材料為16Mn,拉桿節(jié)之間用過渡節(jié)連接,由受力特性計算出其拉桿點作為位置,其中在平衡臂和吊臂上設有拉板和銷軸用來連接用。
5. 上、下支座
上支座上部分別與塔頂、起重臂、平衡臂連接,下部用高強螺栓與回轉(zhuǎn)支承相連接在支承座兩側(cè)安裝有回轉(zhuǎn)機構(gòu),它下面的小齒輪準確地與回轉(zhuǎn)支承外齒圈嚙合,另一面設有限位開關。
下支座上部用高強螺栓與回轉(zhuǎn)支承連接、支承上部結(jié)構(gòu),下部四角平面用4個銷軸和8個M30的高強螺栓分別與爬升架和塔身連接。
6. 塔身
塔身結(jié)構(gòu)也稱塔架,是塔機結(jié)構(gòu)的主體,支撐著塔機上部結(jié)構(gòu)的重量和承受載荷,并將這些載荷通過塔身傳至底架或直接傳遞給地基基礎。
1) 塔身結(jié)構(gòu)斷面型式
塔身結(jié)構(gòu)斷面分為圓形斷面、三角形斷面及方形斷面三類。圓形斷面和三角形斷面現(xiàn)在基本上不用,現(xiàn)今國內(nèi)外生產(chǎn)的塔機均采用方形斷面結(jié)構(gòu)。因此本設計采用的也是方形斷面結(jié)構(gòu)。按塔身結(jié)構(gòu)主弦桿材料的不同,這類方形斷面塔架可分為:角鋼焊接格桁架結(jié)構(gòu)塔身,主弦桿為角鋼輔以加強筋的矩形斷面格桁架結(jié)構(gòu);角鋼拼焊方鋼管格桁架結(jié)構(gòu)塔身及無縫鋼管焊接格桁架結(jié)構(gòu)塔身。由型鋼或鋼管焊成的空間桁架,其成本比較低,且能滿足工作需要。因此主弦桿采用由等邊角鋼拼焊成的方管。這種樣式具有選材方便、靈活的優(yōu)點。常用的矩形尺寸有:1.2m×1.2m,1.3m×1.3m,1.4m×1.4m,1.5m×1.5m,1.6m×1.6m,1.7m×1.7m,1.8m×1.8m,2.0m×2.0m。此次設計的尺寸為1.6m×1.6m。根據(jù)承載能力的不同,同一種截面尺寸,其主弦桿又有兩種不同截面之分。主弦桿截面較大的標準節(jié)用于下部塔身,主弦桿截面較小的標準節(jié)則用于上部塔身。塔身標準節(jié)的長度有2.5m,3m,3.33m,4.5m,5m,6m,10m等多種規(guī)格,常用的尺寸是2.5m和3m。選用標準節(jié)長度為2.5m。
2) 塔身結(jié)構(gòu)腹桿系統(tǒng)
塔身結(jié)構(gòu)的腹桿系統(tǒng)采用角鋼或無縫鋼管制成,腹桿可焊裝與角鋼主弦桿內(nèi)側(cè)或焊裝于角鋼主弦桿外側(cè)。斜腹桿和水平腹桿可采用同一規(guī)格,腹桿有三角形,K字型等多種布置形式。腹桿不同會影響塔身的扭轉(zhuǎn)剛度和彈性穩(wěn)定。
本次設計腹桿采用三角形布置。適合于中等起重能力塔身結(jié)構(gòu)采用的腹桿布置方式。
3) 標準節(jié)間的聯(lián)接方式
塔身標準節(jié)的聯(lián)接方式有:蓋板螺栓聯(lián)接,套柱螺栓聯(lián)接,承插銷軸聯(lián)接和瓦套法蘭聯(lián)接。蓋板螺栓聯(lián)接和套柱螺栓聯(lián)接應用最廣。
本次設計的QTZ40塔機采用套柱螺栓聯(lián)接,其特點是:套柱采用齊口定位,螺栓受拉,用低合金結(jié)構(gòu)鋼制作。適用于方鋼管和角鋼主弦桿塔身標準節(jié)的聯(lián)接,雖加工工藝要求比較復雜,但安裝速度比較快。
4) 塔身結(jié)構(gòu)設計
(1) 輕、中型自升塔機和內(nèi)爬式塔機宜采用整體式塔身標準節(jié)。附著式自升式塔機和起升高度大的軌道式以及獨立式自升塔機宜采用拼裝式塔身標準節(jié)。拼裝式塔機塔身標準節(jié)的加工精度要求比較高,制作難度比較大,零件多和拼裝麻煩,但拼裝式塔身標準節(jié)的優(yōu)越性更不容忽視:一是堆放儲存占地?。欢茄b卸容易;三是運輸費用便宜,特別是長途陸運和運洋海運,由于利用集裝箱裝運,其抗銹蝕和節(jié)約運費的效果極為顯著。
QTZ40屬于中型自升式塔機,綜合各種型式的特點,塔身結(jié)構(gòu)采用整體式塔身標準節(jié),如圖2-5所示:
圖2-5 塔身結(jié)構(gòu)示意圖
(2) 為減輕塔身的自重,充分發(fā)揮鋼材的承載能力,并適應發(fā)展組合制式塔機的需要,對于達到40m起升高度的塔機塔身宜采用兩種不同規(guī)格的塔身標準節(jié),而起升高度達到60m的塔機塔身宜采用3種不同規(guī)格的塔身標準節(jié)。除伸縮式塔身結(jié)構(gòu)和中央頂升式自升塔機的內(nèi)塔外,塔身結(jié)構(gòu)上、下的外形尺寸均保持不變,但下部塔身結(jié)構(gòu)的主弦桿截面則須予以加大。
(3) 塔身的主弦桿可以是角鋼、角鋼拼焊方鋼管、無縫鋼管式實心圓鋼,取決于塔身的起重能力、供貨條件、經(jīng)濟效益以及開發(fā)系列產(chǎn)品的規(guī)劃和需要。
(4) 塔身節(jié)內(nèi)必須設置爬梯,以便司機及機工可以上下。在設計塔身標準節(jié),特別是在設計拼裝式塔身標準節(jié)時,要處理好爬梯與塔身的關系,以保證使用安全及安裝便利。爬梯寬度不宜小于500mm,梯級間距應上下相等,并應不大于30mm。當爬梯高度大于5m時,應從高2m處開始裝設直徑為650~800mm的安全護圈,相鄰兩護圈間距為500mm。當爬梯高度超過10m時,爬梯應分段轉(zhuǎn)接,在轉(zhuǎn)接處加一休息平臺。
對于高檔的塔機,可根據(jù)用戶要求增設電梯,以節(jié)省司機的體力,充分體現(xiàn)人機工程學的應用。
5) 塔身的接高問題
在遇到塔身需要接高問題時,應按下述兩種不同情況分別處理:
(1) 在額定最大自由高度范圍內(nèi),根據(jù)工程對象需要增加塔身標準節(jié),使低塔機變?yōu)楦咚C。
(2) 根據(jù)施工需要,增加塔身標準節(jié),使塔身高度略超越固定式塔機的規(guī)定最大自由高度。
在進行具體接高操作之前,還應制定相關的安全操作規(guī)程,以保證拆裝作業(yè)的安全順利進行。
7.轉(zhuǎn)臺裝置
轉(zhuǎn)臺是一個直接坐在回轉(zhuǎn)支承(轉(zhuǎn)盤)上的承上啟下的支撐結(jié)構(gòu)。
上回轉(zhuǎn)自升式塔機的轉(zhuǎn)臺多采用型鋼和鋼板組焊成的工字型斷面環(huán)梁結(jié)構(gòu),它支撐著塔頂結(jié)構(gòu)和回轉(zhuǎn)塔架 ,并通過回轉(zhuǎn)支承及承座將上部載荷下傳給塔身結(jié)構(gòu)。
8.回轉(zhuǎn)支承裝置
回轉(zhuǎn)支承簡稱轉(zhuǎn)盤,是塔式起重機的重要部件,由齒圈、座圈、滾動體、隔離快、連接螺栓及密封條等組成。按滾動體的不同,回轉(zhuǎn)支承可分為兩大類:一是球式回轉(zhuǎn)支承,另一類是滾柱式回轉(zhuǎn)支承。
1) 柱式回轉(zhuǎn)支承
柱式回轉(zhuǎn)支承又可分為:轉(zhuǎn)柱式和定柱式兩類。定柱式回轉(zhuǎn)支承結(jié)構(gòu)簡單,制造方便,起重回轉(zhuǎn)部分轉(zhuǎn)動慣量小,自重和驅(qū)動功率小,能使起重機重心降低。轉(zhuǎn)柱式結(jié)構(gòu)簡單,制造方便,適用于起升高度和工作幅度以及起重量較大的塔機。
2) 滾動軸承式回轉(zhuǎn)支承
滾動軸承式回轉(zhuǎn)支承裝置按滾動體形狀和排列方式可分為:單排四點角接觸球式回轉(zhuǎn)支承、雙排球式回轉(zhuǎn)支承、單排交叉滾柱式回轉(zhuǎn)支承、三排滾柱式回轉(zhuǎn)支承。滾動軸承式回轉(zhuǎn)支承裝置結(jié)構(gòu)緊湊,可同時承受垂直力、水平力和傾覆力矩是目前應用最廣的回轉(zhuǎn)支承裝置。為保證軸承裝置正常工作,對固定軸承座圈的機架要求有足夠的剛度。滾動軸承式回轉(zhuǎn)支承,回轉(zhuǎn)部分固定,在大軸承的回轉(zhuǎn)座圈上,而大軸承的的固定座圈則與塔身(底架或門座)的頂面相固結(jié)。
設計選用球式回轉(zhuǎn)支承,其優(yōu)點是:剛性好,變形比較小,對承座結(jié)構(gòu)要求較低。鋼球為純滾動,摩擦阻力小,功率損失小。
根據(jù)構(gòu)造不同和滾動體使用數(shù)量的多少,回轉(zhuǎn)支承又分為單排四點接觸球式回轉(zhuǎn)支承、雙排球式回轉(zhuǎn)支承、單排交叉滾柱式回轉(zhuǎn)支承和三排滾柱式回轉(zhuǎn)支承。
設計采用單排四點接觸球式回轉(zhuǎn)支承,它是由一個座圈和齒圈組成,結(jié)構(gòu)緊湊,重量輕,鋼球與圓弧滾道四點接觸,能同時承受軸向力、徑向力和傾翻力矩。
9.底架
塔機底架構(gòu)造隨著塔身結(jié)構(gòu)特點(轉(zhuǎn)柱式塔身或定柱式塔身),起重機的走形方式(軌道式、輪胎式或履帶式)及爬升方式(內(nèi)爬式或外附著自升式)而異。
小車變幅水平臂架自升塔機采用的底架結(jié)構(gòu)可分為:十字型底架,帶撐桿的十字型底架,帶撐桿的井字型底架,帶撐桿的水平框架式桿件拼裝底架和塔身偏置式底架。
本次設計采用的是帶撐桿的x底架。底架用工字鋼焊接成框架結(jié)構(gòu),在四角安裝有四條輻射狀可拆卸支腿,該支腿用槽鋼焊接而成,用螺栓與框架結(jié)構(gòu)連接,底架通過20個預埋地腳螺栓與基礎固定,螺栓為M36,底架外輪廓尺寸約為:長×寬×高=4600×4600×250 mm。
撐桿的作用是使塔身基礎節(jié)與底架的四角相連,形成一個空間結(jié)構(gòu),增加塔機整體穩(wěn)定性。由于塔身撐桿的設置,塔身危險斷面由塔身根部向上移到撐桿的上支承面,同時塔身根部平面對底架的作用減小,從而改善底架的受力情況。
底架安裝時,將底架拼裝組合,放置于混凝土基礎上,對正四角的放射形支腿地腳螺栓,使底架墊平牢實,要求校平,平面度小于1/1000,擰緊20個M36的地腳螺栓。
10. 附著裝置
附著裝置由一套附著框架,四套頂桿和三根撐桿組成,通過它們將起重機塔身的中間節(jié)段錨固在建筑物上,以增加塔身的剛度和整體穩(wěn)定性.撐桿的長度可以調(diào)整,以滿足塔身中心線到建筑物的距離限制.
塔身附著裝置是用角鋼對焊組合成的附著框架,由螺栓聯(lián)接成框形,包箍于塔身標準的外表面,在附著框架下方的塔身主弦桿上分別固定一個小抱箍,以支持附著框架的重量,再由三根可伸縮調(diào)整的附著撐桿,通過銷軸把該框架與建筑物連接,使塔機在規(guī)定高度與建筑物附著。.附著裝置如圖2-6所示:
2-6 附著裝置
11. 套架與液壓頂升機構(gòu)
1) 爬升架
爬升架主要由套架,平臺,液壓頂升裝置及標準節(jié)引進裝置等組成。套架是套在塔身標準節(jié)外部。套架用無縫鋼管焊接而成,節(jié)高4.94米,截面尺寸2.0×2.0米2。外側(cè)設有平臺和套架爬升導向裝置—爬升滾輪。在套架內(nèi)側(cè)的下方,還設有支承套架的支塊,當套架上升到規(guī)定位置時,需將此支塊連同套架支托于塔身標準節(jié)的踏塊上。
為便于頂升安裝的安全需要特設有工作平臺,爬升架內(nèi)側(cè)沿塔身主弦桿安裝8個滾輪,支撐在塔身主弦桿外側(cè),在爬升架的橫梁上,焊上兩塊耳板與液壓系統(tǒng)油缸鉸接承受油缸的頂升載荷,爬升架下部有兩個杠桿原理操縱的擺動爪,在液壓缸回收活塞以及引進標準節(jié)等過程中作為爬升架承托上部結(jié)構(gòu)重量之用。
2) 頂升機構(gòu)
頂升機構(gòu)主要由頂升套架、頂升作業(yè)平臺和液壓頂升裝置組成,用于完成塔身的頂升加節(jié)接高工作。
3) 套架
上回轉(zhuǎn)自升塔機要有頂升套架。整體標準節(jié)用外套架。外套架就是套架本體套在塔身的外部。套架本身就是一個空間桁架結(jié)構(gòu)。套架由框架,平臺,欄桿,支承踏步塊等組成。安裝套架時,大窗口應與標準節(jié)焊有踏塊的方向相反。套架的上端用螺栓與回轉(zhuǎn)下支座的外伸腿相連接,其前方的上半部沒有焊腹桿,而是引入門框,因此其弦必須作特殊的加強,以防止側(cè)向局部失穩(wěn)。門框內(nèi)裝有兩根引入導軌,以便與標準節(jié)的引入。
4) 液壓頂升
(1) 按頂升接高方式的不同,液壓頂升分為上頂升加節(jié)接高、中頂升加節(jié)接高和下頂升加節(jié)接高和下頂升接高三種形式。上頂升加節(jié)接高的工藝是由上向下插入標準節(jié),多用于俯仰變幅的動臂自升式塔是起重機。下頂升加節(jié)接高的優(yōu)點:人員在下部操作,安全方便。缺點是:頂升重量大,頂升時錨固裝置必須松開。中頂升加節(jié)接高的工藝是由塔身一側(cè)引入標準節(jié),可適用于不同形式的臂架,內(nèi)爬,外附均可,而且頂升時無需松開錨固裝置,應用面比較廣。
本次設計的QTZ40塔式起重機采用上頂升加節(jié)接高。
(2) 按頂升機構(gòu)的傳動方式不同,可分為繩輪頂升機構(gòu)、鏈輪頂升機構(gòu)、齒條頂升機構(gòu)、絲杠頂升機構(gòu)和液壓頂升機構(gòu)等五種。繩輪頂升機構(gòu)的特點是構(gòu)造簡單,但不平穩(wěn)。鏈輪頂升機構(gòu)與繩輪頂升機構(gòu)相類似,采用較少。齒條頂升機構(gòu)在每節(jié)外塔架內(nèi)側(cè)均裝有齒條,內(nèi)塔架外側(cè)底部安裝齒輪。齒輪在齒條上滾動,內(nèi)塔架隨之爬升或下降。絲杠爬升機構(gòu)的絲杠裝在內(nèi)塔架中軸線處,或裝在塔身的側(cè)面內(nèi)外塔架的空隙里。通過絲杠正、反轉(zhuǎn),完成頂升過程。
本次設計的QTZ40塔式起重機采用液壓頂升機構(gòu)。液壓頂升機構(gòu)由電動機驅(qū)動齒輪油泵,液壓油經(jīng)手動換向閥、平衡閥進入液壓缸,使液壓缸伸縮,實現(xiàn)塔機上部的爬升和拆卸。其主要優(yōu)點是構(gòu)造簡單、工作可靠、平穩(wěn)、安全、操作方便、爬升速度快。本機構(gòu)另有一套手動操作的爬升吊裝裝置與頂升液壓系統(tǒng)配合工作。液壓頂升系統(tǒng)如圖2-7所示:
2-7 液壓頂升系統(tǒng)
1- 電動機 2-聯(lián)軸器 3-齒輪泵 4-濾油器
5-溢流閥 6-壓力表開關 7-壓力表 8-手動換向閥
9-油缸 10-平衡閥
(3) 頂升液壓缸的布置:頂升接高方式又可分為中央頂升和側(cè)頂升兩種。所謂中央頂升,是指揮頂升液壓缸布置在塔身的中央,并設上,下橫梁各一個。液壓缸上端固定在橫梁鉸點處。頂升時,活塞桿外身,通過下橫梁支在下部塔身的托座或相應的腹桿節(jié)點上。液壓缸的大腔在上,小腔在下壓力油不斷注入液壓缸大腔,小腔中液壓油則回入油箱,從而使液壓缸將塔式起重機的上部頂起。所謂側(cè)頂升式,是將頂升液壓油缸設在套架的后側(cè)。頂升時,壓力油不斷泵入油缸大腔,小腔里的液壓油則回流入油箱?;钊麠U外伸,通過頂升橫梁支撐在焊接于塔身主弦桿上的專用踏步塊間距視活塞有效行程而定。一般取1-1.5m。由于液壓缸上端鉸接在頂升套架橫梁上,故能隨著液壓缸活塞桿的漸漸外伸而將塔機上部頂起來。側(cè)頂式的主要優(yōu)點是:塔身標準節(jié)長度可適當加大,液壓缸行程可以相應縮短,加工制造比較方便,成本亦低廉一些。本次設計的QTZ40塔式起重機采用側(cè)頂式。
12. 基礎
固定式塔式起重機,可靠的地基基礎是保證塔機安全使用的必備條件。該基礎應根據(jù)不同地質(zhì)情況,嚴格按照規(guī)定制作。除在堅硬巖石地段可采用錨樁地基(分塊基礎)外,一般情況下均采用整體鋼筋混凝土基礎。
鋼筋混凝土基礎有多種形式可供選用。對于有底架的固定自升式塔式起重機,可視工程地質(zhì)條件,周圍環(huán)境以及施工現(xiàn)場情況選用X形整體基礎,四個條塊分隔式基礎或者四個獨立塊體式基礎。對于無底架的自升式塔式起重機則采用整體式方塊基礎。如這種塔機必須安裝在深基坑近旁,或者塔機安裝位置地質(zhì)條件較差,則應采用鉆孔灌注樁承臺基礎。
1) X形整體基礎的形狀及平面尺寸大致與塔式起重機X形底架相似。塔式起重機的X形底架通過預埋地腳螺栓固定在混凝土基礎上,此種形式多用于輕型自升式塔式起重機,如圖2-8所示:
圖2-8 X形整體基礎
2) 長條形基礎由兩條或四條并列平行的鋼筋混凝土底梁組成,其功能猶如兩條鋼筋混凝土的鋼軌軌道基礎,分別支承底架的四個支座和由底架支座傳來的上部荷載。如果塔機安裝在混凝土砌塊人行道上,或
收藏
編號:83527980
類型:共享資源
大?。?span id="isqmqug" class="font-tahoma">3.73MB
格式:ZIP
上傳時間:2022-05-01
50
積分
- 關 鍵 詞:
-
QTZ40
塔式起重機
優(yōu)化
設計
- 資源描述:
-
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。