某乘用車轉(zhuǎn)向柱助力式轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【三維CATIA模型】【4張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
某乘用車轉(zhuǎn)向柱助力式轉(zhuǎn)向系統(tǒng)設(shè)計(jì)
摘 要
汽車電動(dòng)助力轉(zhuǎn)向是一種由電動(dòng)機(jī)提供的由ECU實(shí)時(shí)調(diào)節(jié)與控制助力大小的汽車助力轉(zhuǎn)向技術(shù)。將其運(yùn)用在汽車的轉(zhuǎn)向系統(tǒng)中,可大大改善汽車的轉(zhuǎn)向性能;根據(jù)車速提供不同大小的轉(zhuǎn)向助力,減輕泊車與低速行駛時(shí)的操縱力,提高高速行駛時(shí)的轉(zhuǎn)向特性和主動(dòng)安全性能。良好的EPS控制策略還可以使轉(zhuǎn)向系統(tǒng)的相應(yīng)更加迅速,為設(shè)計(jì)性能優(yōu)異的助力轉(zhuǎn)向系統(tǒng)提供了可能。
本文以奇瑞QQ乘用車為研究對象,最總目的是設(shè)計(jì)出一套性能優(yōu)異的乘用車轉(zhuǎn)向系統(tǒng)。首先運(yùn)用了汽車設(shè)計(jì)和機(jī)械設(shè)計(jì)的相關(guān)知識,選取合理的傳動(dòng)方式和整體布置方式,對汽車轉(zhuǎn)向系統(tǒng)其他的參數(shù)進(jìn)行設(shè)計(jì),利用三維建模軟件建立此轉(zhuǎn)向系統(tǒng)的三維模型;然后在此基礎(chǔ)上對轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)(主要為轉(zhuǎn)向梯形)進(jìn)行優(yōu)化設(shè)計(jì),以獲取更好的轉(zhuǎn)向性能;接著對轉(zhuǎn)向節(jié)進(jìn)行有限元分析,建立最終的汽車轉(zhuǎn)向柱助力式轉(zhuǎn)向系統(tǒng)的三維模型,從而完成對整個(gè)轉(zhuǎn)向系統(tǒng)機(jī)械傳動(dòng)部分的設(shè)計(jì)。
本課題基于CATIA三維設(shè)計(jì)技術(shù),將轉(zhuǎn)向助力技術(shù)應(yīng)用于汽車轉(zhuǎn)向系統(tǒng)中,對汽車轉(zhuǎn)向助力系統(tǒng)的設(shè)計(jì)開發(fā)具有一定的參考價(jià)值。
關(guān)鍵詞:轉(zhuǎn)向系統(tǒng);實(shí)體設(shè)計(jì);轉(zhuǎn)向梯形優(yōu)化;轉(zhuǎn)向節(jié)有限元分析;
A?passenger car?steering system design power steeringcolumn
Abstract
Electric power steering is composed of a motor provided by the ECU real time adjustment and control of power steering technology. Its use in the car's steering, steering performance can greatly improve the car; according to the speed to provide different size of the steering, reduce parking and low speed control force, improve the steering characteristics and active safety performance when running at a high speed. The corresponding EPS good control strategy can also make the steering system more quickly, may provide for the design of high performance power steering system.
In this paper, the Chery QQ passenger car as the research object, using the knowledge of automotive design and mechanical design, reasonable selection of transmission mode and overall layout, design the turn to other parameter system of automobile, built the three dimensional model of the system using 3D modeling software; and then on the basis of the steering gear (mainly as the steering trapezium) to optimize the design, in order to obtain the steering performance better; then the finite element analysis of steering knuckle, build the ultimate vehicle steering system three-dimensional model column power steering, and finish the design of steering system of mechanical transmission parts.
The CATIA 3D design technology based on the application of technology in power steering, steering system, the steering system design and development power has a certain reference value.
Key Words:Steering column?steering;??steering trapezium;?entity design
目 錄
摘 要 I
Abstract II
第 1 章 緒論 1
1.1 本課題研究的目的和意義 1
1.1.1 電動(dòng)助力轉(zhuǎn)向技術(shù)原理簡介 1
1.1.2 電動(dòng)助力轉(zhuǎn)向技術(shù)的實(shí)用價(jià)值 2
1.1.3 研究的目的和意義 2
1.2 國內(nèi)外研究現(xiàn)狀概述 2
1.2.1 國外研究現(xiàn)狀 2
1.2.2 國內(nèi)研究現(xiàn)狀 2
1.3 本文主要研究內(nèi)容 3
第 2 章 奇瑞QQ轉(zhuǎn)向系統(tǒng)的設(shè)計(jì) 4
2.1 機(jī)械轉(zhuǎn)向系統(tǒng)的結(jié)構(gòu)組成 4
2.2 轉(zhuǎn)向器的方案分析及設(shè)計(jì) 4
2.3齒輪齒條轉(zhuǎn)向器的選擇 5
2.3.1按照輸入和輸出位置選擇: 5
2.3.2按照傳動(dòng)方式選擇: 5
2.3.3按照布置方式選擇: 5
2.4相關(guān)參數(shù)選擇與計(jì)算 5
2.4.1車型相關(guān)參數(shù)選擇與計(jì)算 5
2.4.2轉(zhuǎn)向器參數(shù)的選擇與計(jì)算 7
2.5齒輪齒條材料選擇及強(qiáng)度校核 9
2.5.1齒輪齒條材料的選擇 9
2.5.2齒條的強(qiáng)度計(jì)算 9
2.5.3齒輪的強(qiáng)度校核 10
第 3 章 基于MATLAB的轉(zhuǎn)向梯形機(jī)構(gòu)的優(yōu)化設(shè)計(jì) 13
3.1 汽車的轉(zhuǎn)向特性 13
3.2轉(zhuǎn)向梯形幾何關(guān)系的確立 13
3.3轉(zhuǎn)向梯形的數(shù)學(xué)模型 16
3.3.1建立目標(biāo)函數(shù) 16
3.3.2設(shè)計(jì)變量 16
3.3.3約束條件 17
3.4建立優(yōu)化數(shù)學(xué)模型 18
第 4 章 轉(zhuǎn)向系統(tǒng)建模及有限元分析 21
4.1利用CATIA建立傳動(dòng)機(jī)構(gòu)三維模型 21
4.2利用CATIA建立操縱機(jī)構(gòu)三維模型 24
4.3利用CATIA對轉(zhuǎn)向系統(tǒng)總裝配 25
4.4基于ANSYS的轉(zhuǎn)向節(jié)有限元分析 25
4.4.1分析前的處理 25
4.4.2工況分析 26
結(jié)論 30
致 謝 31
參考文獻(xiàn) 32
Equation Chapter (Next) Section 1
- IV -
哈爾濱工業(yè)大學(xué)本科畢業(yè)論文(設(shè)計(jì))
第 1 章 緒論
1.1 本課題研究的目的和意義
隨著國民經(jīng)濟(jì)的高速發(fā)展,人民生活水平的提高,乘用車成為人們較為普遍的重要交通工具,汽車轉(zhuǎn)向系統(tǒng)的功用是保證汽車能按照駕駛員的意愿穩(wěn)定、高效、安全的進(jìn)行直行或轉(zhuǎn)彎。
對本課題研究的動(dòng)力轉(zhuǎn)向系統(tǒng)應(yīng)有如下要求[1]:
(1) 轉(zhuǎn)向輪轉(zhuǎn)角與轉(zhuǎn)向盤轉(zhuǎn)角的比例關(guān)系;
(2) “路感”良好,即隨著轉(zhuǎn)向輪阻力的增大(或減小),作用在轉(zhuǎn)向盤上的
手力必須增大(或減?。?;
(3) 作用在轉(zhuǎn)向盤上的切向力控制范圍與工作條件;
(4) 轉(zhuǎn)向盤在自動(dòng)回正、助力失效時(shí),機(jī)械傳動(dòng)仍能正常工作;
本文采用轉(zhuǎn)向柱電動(dòng)助力技術(shù),對轉(zhuǎn)向機(jī)構(gòu)中的轉(zhuǎn)向梯形以及轉(zhuǎn)向節(jié)進(jìn)行分析優(yōu)化,旨在獲得更好的轉(zhuǎn)向駕駛過程中的操縱穩(wěn)定性與安全性。
1.1.1 電動(dòng)助力轉(zhuǎn)向技術(shù)原理簡介
電動(dòng)助力轉(zhuǎn)向技術(shù),簡稱EPS,是一種通過電子控制單元,對轉(zhuǎn)向系統(tǒng)附以不同大小的轉(zhuǎn)向力,從而獲得更佳轉(zhuǎn)向性能的技術(shù)[2]。其工作原理如圖1-1所示。電子控制單元根據(jù)轉(zhuǎn)矩傳感器檢測到的轉(zhuǎn)距電壓信號、轉(zhuǎn)動(dòng)方向和車速信號等,向電動(dòng)機(jī)控制器發(fā)出指令,使電動(dòng)機(jī)輸出相應(yīng)大小和方向的轉(zhuǎn)向助力轉(zhuǎn)矩,從而產(chǎn)生輔助動(dòng)力。
圖 11 電動(dòng)助力轉(zhuǎn)向技術(shù)原理圖
1.1.2 電動(dòng)助力轉(zhuǎn)向技術(shù)的實(shí)用價(jià)值
轉(zhuǎn)向柱助力式EPS具有結(jié)構(gòu)簡單,安裝、拆卸和維修方便的特點(diǎn)。它裝在方向盤下面,周圍環(huán)境較好,不需要嚴(yán)格的防水、防高溫技術(shù)。相對于其他EPS,它對轉(zhuǎn)向系統(tǒng)的改動(dòng)最小,所以最適用于將以前生產(chǎn)的無助力效果的純機(jī)械轉(zhuǎn)向汽車改裝成電動(dòng)助力轉(zhuǎn)向汽車。缺點(diǎn)是占用了方向盤下面的空間,助力電動(dòng)機(jī)的振動(dòng)、噪聲很容易傳遞給駕駛員,傳動(dòng)路線也較長,損失較大,反應(yīng)不如其他類型快,且負(fù)荷較小,所以適合于微型車輛。
轉(zhuǎn)向柱助力式轉(zhuǎn)向系統(tǒng)成本低,經(jīng)濟(jì)性好,有很大的應(yīng)用價(jià)值和發(fā)展前景。
1.1.3 研究的目的和意義
汽車的轉(zhuǎn)向性能是衡量汽車駕駛性能的重要標(biāo)準(zhǔn)之一,汽車行駛過程中的安全性能,穩(wěn)定性能以及駕駛?cè)藛T的舒適性,直接受轉(zhuǎn)向性能的影響。因此,轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)在整車設(shè)計(jì)中顯得非常重要。怎樣設(shè)計(jì)與優(yōu)化轉(zhuǎn)向系統(tǒng)參數(shù),使其汽車在行駛過程中實(shí)現(xiàn)最佳轉(zhuǎn)向性能,是一項(xiàng)非常重要的任務(wù)。
1.2 國內(nèi)外研究現(xiàn)狀概述
1.2.1 國外研究現(xiàn)狀
電動(dòng)助力轉(zhuǎn)向系統(tǒng)(Electric Power Steering,縮寫EPS)是一種直接依靠電機(jī)提供輔助扭矩的動(dòng)力轉(zhuǎn)向系統(tǒng),與傳統(tǒng)的液壓助力轉(zhuǎn)向系統(tǒng)HPS(Hydraulic Power Steering)相比,EPS系統(tǒng)具有很多優(yōu)點(diǎn)。
EPS 最先應(yīng)用于日本的輕型轎車上, 于 1988年由日本鈴木公司首次開發(fā)。隨后, EPS 技術(shù)得到迅速發(fā)展。日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司、美國的 Delphi 公司、英國的Lucas 公司、德國的 ZF 公司都研制了各自的EPS。經(jīng)過 20 多年的發(fā)展,其應(yīng)用范圍已經(jīng)從最初的微型轎車向更大型轎車和商用客車方向發(fā)展,如本田的 Accord 和菲亞特的 Punto 等中型轎車已經(jīng)安裝 EPS,本田甚至還在其 Acura NSX 賽車上裝備了 EPS。[3]
1.2.2 國內(nèi)研究現(xiàn)狀
在中國, EPS 目前正處于技術(shù)開發(fā)和產(chǎn)業(yè)轉(zhuǎn)化的初期,共有研究單位100多家。主要應(yīng)用車型有昌河北斗星、本田飛度、南亞西雅途、鄭州日產(chǎn) MPV, 而正在試裝車型有昌河愛迪爾、無錫英格爾、奇瑞 QQ、吉利豪情、楊子皮卡等。EPS 產(chǎn)品基本上都能實(shí)現(xiàn)轉(zhuǎn)向助力功能,但也存在一定問題,如轉(zhuǎn)向盤抖振、噪聲大、左右轉(zhuǎn)向不對稱等。在產(chǎn)業(yè)化方面, 整車企業(yè)在電控技術(shù)及 EPS 的行業(yè)標(biāo)準(zhǔn)方面存在滯后性,EPS 研發(fā)單位與整車企業(yè)的全面合作尚不夠深入, 因此其樣機(jī)得不到全面的考核,涉及整車操縱穩(wěn)定性能方面的研究較少[4]。
1.3 本文主要研究內(nèi)容
本課題主要研究機(jī)械式轉(zhuǎn)向系統(tǒng)的功能及構(gòu)成,主要從轉(zhuǎn)向系統(tǒng)的轉(zhuǎn)向器部分和轉(zhuǎn)向梯形機(jī)構(gòu)部分作分析研究。
(1)轉(zhuǎn)向器設(shè)計(jì)部分:以齒輪齒條式轉(zhuǎn)向器作為中心,分析其效率、齒輪軸和齒條的設(shè)計(jì)及數(shù)據(jù)校核、其他一些組件的設(shè)計(jì)及標(biāo)準(zhǔn)件選取。
(2)轉(zhuǎn)向梯形機(jī)構(gòu)部分:以整體式轉(zhuǎn)向梯形機(jī)構(gòu)作為中心,對阿克曼(Ackerman)理論轉(zhuǎn)向特性了解的基礎(chǔ)上,對轉(zhuǎn)向梯形機(jī)構(gòu)進(jìn)行數(shù)學(xué)模型分析。用軟件對轉(zhuǎn)向梯形進(jìn)行優(yōu)化設(shè)計(jì),校核。并根據(jù)所得的結(jié)果對傳動(dòng)機(jī)構(gòu)的尺寸作設(shè)計(jì)。
(3)轉(zhuǎn)向節(jié)部分:在三維模型基礎(chǔ)上,利用ANSYS對轉(zhuǎn)向節(jié)進(jìn)行有限元分析。
Equation Chapter (Next) Section 1
第 2 章 奇瑞QQ轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)
2.1 機(jī)械轉(zhuǎn)向系統(tǒng)的結(jié)構(gòu)組成
機(jī)械轉(zhuǎn)向系統(tǒng)主要由以下部分組成:
(1)轉(zhuǎn)向操縱機(jī)構(gòu):轉(zhuǎn)向操縱機(jī)構(gòu)包括轉(zhuǎn)向盤,轉(zhuǎn)向軸,轉(zhuǎn)向管柱;
(2)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu):轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)包括轉(zhuǎn)向臂、轉(zhuǎn)向縱拉桿、轉(zhuǎn)向節(jié)臂、轉(zhuǎn)向梯形臂以及轉(zhuǎn)向橫拉桿等。轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)用于把轉(zhuǎn)向器輸出的力和運(yùn)動(dòng)傳給左、右轉(zhuǎn)向節(jié)并使左、右轉(zhuǎn)向輪按一定關(guān)系進(jìn)行偏轉(zhuǎn);
(3)轉(zhuǎn)向器:轉(zhuǎn)向器是完成由旋轉(zhuǎn)運(yùn)動(dòng)到直線運(yùn)動(dòng)(或近似直線運(yùn)動(dòng))的一組齒輪機(jī)構(gòu),同時(shí)也是轉(zhuǎn)向系中的減速傳動(dòng)裝置。 目前較常用的有齒輪齒條式、循環(huán)球曲柄指銷式、蝸桿曲柄指銷式、循環(huán)球-齒條齒扇式、蝸桿滾輪式等。因?yàn)辇X輪齒輪齒條式轉(zhuǎn)向器結(jié)構(gòu)簡單,轉(zhuǎn)向性能穩(wěn)定,所以本設(shè)計(jì)中采用齒輪齒條式轉(zhuǎn)向器。
Equation Chapter (Next) Section 1
2.2 轉(zhuǎn)向器的方案分析及設(shè)計(jì)
轉(zhuǎn)向器是轉(zhuǎn)向系中的重要部分,其主要作用有三個(gè)方面:一是增大來自轉(zhuǎn)向盤的轉(zhuǎn)矩,使之達(dá)到足以克服轉(zhuǎn)向輪與地面之間的轉(zhuǎn)向阻力矩;二是減低轉(zhuǎn)向傳動(dòng)軸的轉(zhuǎn)速,并帶動(dòng)搖臂軸移動(dòng)使其達(dá)到所需要的位置;三是使轉(zhuǎn)向盤的轉(zhuǎn)動(dòng)方向與轉(zhuǎn)向輪轉(zhuǎn)動(dòng)方向協(xié)調(diào)一致。
根據(jù)機(jī)械轉(zhuǎn)向器可分為齒輪齒條式轉(zhuǎn)向器、循環(huán)球式轉(zhuǎn)向器、蝸桿滾輪式轉(zhuǎn)向器、蝸桿指銷式轉(zhuǎn)向器四類。按照轉(zhuǎn)向動(dòng)力的不同,可分為機(jī)械式和助力式兩種。
齒輪齒條式轉(zhuǎn)向器的正逆效率都很高,屬于可逆式轉(zhuǎn)向器。其自動(dòng)回正能力強(qiáng)。齒輪齒條式轉(zhuǎn)向器結(jié)構(gòu)簡單、加工方便、工作可靠、使用壽命長、用需要調(diào)整齒輪齒條的間隙[6]。
對轉(zhuǎn)向其結(jié)構(gòu)形式的選擇,主要是根據(jù)汽車的類型、前軸負(fù)荷、使用條件等來決定,并要考慮其效率特性、角傳動(dòng)比變化特性等對使用條件的適應(yīng)性以及轉(zhuǎn)向器的其他性能、壽命、制造工藝等。齒輪齒條式轉(zhuǎn)向器安裝助力機(jī)構(gòu)方便且轉(zhuǎn)向器結(jié)構(gòu)簡單,比較適用于本課題的設(shè)計(jì)車型。故本設(shè)計(jì)選用齒輪齒條式轉(zhuǎn)向器。
2.3齒輪齒條轉(zhuǎn)向器的選擇
2.3.1按照輸入和輸出位置選擇:
根據(jù)輸入齒輪位置和輸出特點(diǎn)不同,齒輪齒條式轉(zhuǎn)向器有四種形式:中間輸入,兩端輸出;側(cè)面輸入,兩端輸出;側(cè)面輸入,中間輸出;側(cè)面輸入,一端輸出;現(xiàn)代轎車多采用兩端輸出形式,因其結(jié)構(gòu)簡單,相對精度較高,故本設(shè)計(jì)采用中間輸入,兩段輸出形式。
2.3.2按照傳動(dòng)方式選擇:
采用齒輪齒條式轉(zhuǎn)向器采用直齒圓柱齒輪與直齒齒條嚙合,則運(yùn)轉(zhuǎn)平穩(wěn)性降低,沖擊大,工作噪聲增加。此外,齒輪軸線與齒條軸線之間的夾角只能是直角,為此因與總體布置不適應(yīng)而遭淘汰。采用斜齒圓柱齒輪與斜齒齒條嚙合的齒輪齒條式轉(zhuǎn)向器,重合度增加,運(yùn)轉(zhuǎn)平穩(wěn),沖擊與工作噪聲均下降,而且齒輪軸線與齒條軸線之間的夾角易于滿足總體設(shè)計(jì)的要求[4]。
2.3.3按照布置方式選擇:
根據(jù)齒輪齒條式轉(zhuǎn)向器和轉(zhuǎn)向梯形相對前軸位置的不同,在汽車上有四種布置形式:
(1)轉(zhuǎn)向器位于前軸后方,后置梯形;
(2)轉(zhuǎn)向器位于前軸后方,前置梯形;
(3)轉(zhuǎn)向器位于前軸前方,后置梯形;
(4)轉(zhuǎn)向器位于前軸前方,前置梯形;
現(xiàn)階段大多數(shù)轎車都采用第一種布置方式 :轉(zhuǎn)向器位于前軸后方,后置梯形,這樣不僅能夠減少轉(zhuǎn)向盤到轉(zhuǎn)向器的距離,轉(zhuǎn)向器置于車輪的后方也可以保障汽車形式的安全性,所以本設(shè)計(jì)也采用轉(zhuǎn)向器位于前軸后方,后置梯形的布置方式。
2.4相關(guān)參數(shù)選擇與計(jì)算
2.4.1車型相關(guān)參數(shù)選擇與計(jì)算
(1)最小轉(zhuǎn)彎半徑
最小轉(zhuǎn)彎半徑為軸距的2~2.5倍,選定軸距2340mm,則最小轉(zhuǎn)彎半徑為:
4.68m~5.85m,初取4.75m。
(2)內(nèi)、外側(cè)轉(zhuǎn)向輪最大轉(zhuǎn)角
外側(cè)轉(zhuǎn)向輪最大轉(zhuǎn)角可用下式(2-1)求得[7]:
(2-1)
式中,a為主銷偏移距,取值為:0.4~0.6輪胎寬度,為66~99mm,初取80mm
L為軸距,可得外側(cè)轉(zhuǎn)向輪最大轉(zhuǎn)角:
由幾何關(guān)系,可以由式(2-2)得出對應(yīng)的內(nèi)側(cè)轉(zhuǎn)向輪轉(zhuǎn)角:
(2-2)
可得內(nèi)側(cè)輪轉(zhuǎn)角
式中,B為輪距,R為外側(cè)輪轉(zhuǎn)向半徑,幾何關(guān)系如圖2-1所示:
(3)方向盤直徑選擇
1.2T以下的轎車方向盤的標(biāo)準(zhǔn)直徑Dsw有380mm、400mm、425mm三種,此處選擇380mm,作為方向盤直徑的參考值[8]。
到此,可以基本給出設(shè)計(jì)的基本參數(shù),如表2-1所示:
圖2-1轉(zhuǎn)角圖
表2-1車型相關(guān)參數(shù)
軸距
2340mm
前/后輪胎規(guī)格
165/60 R14
前轉(zhuǎn)矩
1295mm
總長
3550mm
后輪距
1260mm
總寬
1495mm
整備質(zhì)量
936kg
總高
1485mm
最小轉(zhuǎn)彎半徑
4.75m
最小離地間隙
130mm
前懸架
麥弗遜獨(dú)立懸架
方向盤直徑
380mm
手力
6N m
切向力
25~190N
輸出力矩
26.4N
主銷偏移距
80mm
2.4.2轉(zhuǎn)向器參數(shù)的選擇與計(jì)算
按照《汽車設(shè)計(jì)》所指,齒輪模數(shù)多在2~3之間,主動(dòng)小齒輪齒數(shù)多數(shù)在5~7個(gè)齒范圍變化,壓力角取=,齒輪螺旋角的取值范圍多為。齒條齒數(shù)應(yīng)根據(jù)轉(zhuǎn)向輪達(dá)到最大偏轉(zhuǎn)角時(shí),相應(yīng)的齒條移動(dòng)行程應(yīng)達(dá)到的值來確定。正確嚙合條件為:,。
初步設(shè)計(jì)齒輪齒條主要參數(shù)如表2-2所示:
表2-2齒輪齒條主要參數(shù)
名稱
齒輪
齒條
齒數(shù)
7
35
模數(shù)
3
3
壓力角
20
20
螺旋角
12
12
齒輪齒條的設(shè)計(jì)不僅僅依據(jù)機(jī)械設(shè)計(jì)相關(guān)知識,還要實(shí)際考慮轉(zhuǎn)向器的實(shí)際齒條行程對應(yīng)的轉(zhuǎn)向輪最大轉(zhuǎn)角,在轉(zhuǎn)向輪最大轉(zhuǎn)角時(shí)應(yīng)當(dāng)齒條行程應(yīng)當(dāng)略小于其最大行程。
計(jì)算傳動(dòng)比時(shí),由于助力未知,故力傳動(dòng)比將無法使用,本處使用角傳動(dòng)比計(jì)算公式(2-4),得出初選傳動(dòng)比。
轉(zhuǎn)向時(shí)需要克服的阻力,主要包括了轉(zhuǎn)向輪繞主銷轉(zhuǎn)動(dòng)的阻力、轉(zhuǎn)向輪穩(wěn)定阻力(即轉(zhuǎn)向輪的回正力矩)、輪胎變形阻力以及轉(zhuǎn)向系中的內(nèi)摩擦阻力矩等。通常情況下可以用以下的經(jīng)驗(yàn)公式來計(jì)算得出汽車在瀝青或混泥土路面上的原地轉(zhuǎn)向阻力矩,故由輪胎上的原地轉(zhuǎn)動(dòng)的阻力矩由經(jīng)驗(yàn)公式(2-3)可得[9]:
(2-3)
式中,f為輪胎和路面間的滑動(dòng)摩擦因素,一般取0.7;G1 為前軸轉(zhuǎn)向負(fù)荷,取800kg;p—為輪胎氣壓(MPa)。取0.24MPa;得:
MR=10777.25N·m
方向盤轉(zhuǎn)動(dòng)圈數(shù):
(2-4)
式中, 為初選傳動(dòng)比;可以的出傳動(dòng)比為3.49。
方向盤上的操縱載荷力可以用式(2-5)計(jì)算:
(2-5)
代入各項(xiàng)數(shù)值,可以得出:
該力符合操縱機(jī)構(gòu)的要求,但是由于進(jìn)行助力,查的理想手力為26.4N,故其余部分可以用轉(zhuǎn)向助力進(jìn)行彌補(bǔ);最終總體的設(shè)計(jì)還是符合要求的。
齒輪分度圓直徑可由式(2-6)求得:
(2-6)
式中,mn為齒輪模數(shù);
計(jì)算可得:
d1=mm。
則齒條寬度可以得出b2=fdd1=25.76mm, 圓整[10]取26mm;進(jìn)而可求得齒輪齒寬 。
確定了齒輪齒條的主要尺寸夠,就可以轉(zhuǎn)而開始對齒輪的配合尺寸進(jìn)行計(jì)算。
初步選定齒輪和齒條齒頂高系數(shù) =1;頂隙系數(shù) ;齒輪的變位系數(shù)。齒輪和齒條的其他參數(shù)都可通過上面已知的參數(shù)計(jì)算獲得,這樣齒輪和齒條的基本參數(shù)就已經(jīng)確定并且初選了,齒輪和齒條的基本參數(shù)如表[2-2]所示:
表2-2齒輪齒條的基本參數(shù)
名稱
符號
齒輪
齒條
齒數(shù)
z
7
35
分度圓直徑
d
21.47mm
─
變位系數(shù)
0.65
─
齒頂高
4.95mm
3mm
齒根高
1.8mm
4.25mm
齒頂圓直徑
31.37mm
─
齒根圓直徑
17.87mm
─
齒輪中圓直徑
24.47mm
─
螺旋角
12
12
齒寬
b
36
26
2.5齒輪齒條材料選擇及強(qiáng)度校核
2.5.1齒輪齒條材料的選擇
齒輪通常選用國內(nèi)常用、性能優(yōu)良的20CrMnTi合金鋼,熱處理采用表面滲碳淬火工藝,齒面硬度為HRC58~63。
齒條選用40Cr使之與齒輪具有較好匹配性的,齒條熱處理采用高頻淬火工藝,表面硬度HRC50~56。
2.5.2齒條的強(qiáng)度計(jì)算
作用于齒條上的力[11]可以分解成沿齒條徑向的分力(徑向力)Fr,可以表示成式(2-7),沿齒輪周向的分力(切向力)Ft表示為式(2-8),沿齒輪軸向的分力(軸向力)Fx ,表示成式(2-9)。各力的大小為:
(2-7)
(2-8)
(2-9)
式中 為齒輪軸分度圓螺旋角; 為法面壓力角;
齒輪收到的切向力
式中T為作用在輸入軸上的扭矩,為26 ;d為齒輪軸分度圓直徑;
齒條齒面的法向力:
齒條齒上的切向力:
齒條的單齒彎曲應(yīng)力:
式中為齒條齒面切向力;b為危險(xiǎn)截面處沿齒長方向齒寬; 為齒條計(jì)算齒高 ;S為危險(xiǎn)截面齒厚;
可以計(jì)算出齒條齒根彎曲應(yīng)力:
因齒輪齒條在工作過程中,嚙合的齒數(shù)實(shí)際大于1個(gè),而齒條的抗拉強(qiáng)度2528N/mm2 ;考慮到齒部彎曲安全系數(shù),設(shè)實(shí)際工作齒數(shù)為2,齒面安全強(qiáng)度的校核:
齒面安全強(qiáng)度通過校核。
2.5.3齒輪的強(qiáng)度校核
(1)齒輪的計(jì)算載荷
為了便于分析計(jì)算,通常取沿齒面接觸線單位長度上所受的載荷進(jìn)行計(jì)算。沿齒面接觸線單位長度上的平均載荷P(單位為N/mm)為:
式中Fn作用在齒面接觸線上的法向載荷;L為沿齒面的接觸線長;
在實(shí)際工況下,法面載荷會增大;并且不是均勻分布的,因此在計(jì)算中,應(yīng)按接觸線單位長度上的最大載荷Pca進(jìn)行計(jì)算,Pca可由式(2-10)得出:
(2-10)
式中K為載荷系數(shù);
載荷系數(shù)可由式(2-11)確定:
(2-11)
式中為使用系數(shù),是考慮齒輪嚙合時(shí)外部裝置引起的附加動(dòng)載荷影響的系數(shù),此處取1.0;
為動(dòng)載系數(shù),是考慮到裝配誤差與受載彈性變形引入的參數(shù),此處去1.0;
為齒間載荷系數(shù)。由齒輪的制造精度決定,此處取1.2;
為齒向載荷分布系數(shù);可以通過齒寬系數(shù)和齒向載荷分布系數(shù)的公式(2-12)來計(jì)算出來:
(2-12)
得載荷系數(shù)K=1.8;
齒輪傳動(dòng)過程中的單位長度受力和接觸長度為:
結(jié)合式(2-11)、式(2-12),再由公式(2-13):
(2-13)
可以求得 ;
接下來可以計(jì)算 ,利用公式(2-14):
(2-14)
式中 為彈性系數(shù),可由式(2-15)求出:
(2-15)
通過查閱相關(guān)資料可知 , , ;最終求得:
小齒輪接觸疲勞強(qiáng)度極限 = 1000 MPa,應(yīng)力循環(huán)次數(shù)N = 210,所以 = 1.1;取失效概率為1%,安全系數(shù)S = 1,可得計(jì)算接觸疲勞許用應(yīng)力:
式中,KHN為接觸疲勞壽命系數(shù);
得出結(jié)果 ,通過齒面接觸疲勞強(qiáng)度校核;
齒輪部分也可以符合傳動(dòng)的要求。
Equation Chapter (Next) Section 1
第 3 章 基于MATLAB的轉(zhuǎn)向梯形機(jī)構(gòu)的優(yōu)化設(shè)計(jì)
轉(zhuǎn)向梯形機(jī)構(gòu)優(yōu)化設(shè)計(jì)的目的是使汽車在行駛過程中轉(zhuǎn)彎時(shí)內(nèi)外輪轉(zhuǎn)角存在一定的函數(shù)關(guān)系,以使汽車的車輪能夠繞一個(gè)瞬時(shí)中心運(yùn)動(dòng),這樣任意一個(gè)車輪理想上都在圍繞這一瞬時(shí)中心作無滑動(dòng)的純滾動(dòng)運(yùn)動(dòng),不僅延長了輪胎的使用壽命,更能提高行駛轉(zhuǎn)向的安全性能,因此可以通過建立轉(zhuǎn)向梯形的運(yùn)動(dòng)學(xué)方程,借助MATLAB的優(yōu)化工具對該機(jī)構(gòu)進(jìn)行優(yōu)化。
3.1 汽車的轉(zhuǎn)向特性
獨(dú)立懸架必須使用斷開式轉(zhuǎn)向梯形,本文前面已經(jīng)給出轉(zhuǎn)向器的布置形式,故斷開式轉(zhuǎn)向梯形的原理可以通過圖3-1給出的幾何關(guān)系看出:
圖3-1轉(zhuǎn)向梯形機(jī)構(gòu)
而轉(zhuǎn)向梯形的優(yōu)化目的是要設(shè)計(jì)出一種能夠?qū)崿F(xiàn)更加優(yōu)異轉(zhuǎn)向性能的轉(zhuǎn)向器,這樣就需要在部分已定參數(shù)的基礎(chǔ)之上對先前的轉(zhuǎn)向梯形機(jī)構(gòu)的部分設(shè)計(jì)參數(shù)進(jìn)行優(yōu)化,使其轉(zhuǎn)向運(yùn)動(dòng)符合阿克曼幾何學(xué)。為此需要先確立理想的轉(zhuǎn)向梯形機(jī)構(gòu)的幾何圖形。
3.2轉(zhuǎn)向梯形幾何關(guān)系的確立
由轉(zhuǎn)向梯形機(jī)構(gòu)所提供的內(nèi)、外輪實(shí)際轉(zhuǎn)角關(guān)系可以根據(jù)幾何關(guān)系來求解。汽車轉(zhuǎn)向時(shí),通過橫拉桿的作用,內(nèi)外輪各會獲得一個(gè)對應(yīng)的轉(zhuǎn)角,我們可以設(shè)一個(gè)外輪轉(zhuǎn)角為自變量,然后通過轉(zhuǎn)向梯形幾何關(guān)系作出兩角的函數(shù)關(guān)系,轉(zhuǎn)而求出另一個(gè)轉(zhuǎn)角的期望值,以轉(zhuǎn)角實(shí)際值和期望值得均差為基礎(chǔ)建立函數(shù),從而運(yùn)用函數(shù)關(guān)系對各項(xiàng)參數(shù)進(jìn)行優(yōu)化。
當(dāng)汽車左轉(zhuǎn)彎時(shí),右輪為外輪,外輪一側(cè)的桿系的桿系運(yùn)動(dòng)如圖3-2所示。假設(shè)齒條向右移過某一行程 S,通過右橫拉桿推動(dòng)右梯形臂,使右輪對應(yīng)轉(zhuǎn)過角度 ;這時(shí)便可以利用幾何關(guān)系建立一個(gè)齒條行程S關(guān)于外輪轉(zhuǎn)角的函數(shù)關(guān)系式(3-1)[12]。
圖3-2外轉(zhuǎn)向輪桿系運(yùn)動(dòng)圖
同理通過S做內(nèi)轉(zhuǎn)向輪桿系的運(yùn)動(dòng)圖,如圖3-3所示:
圖3-3內(nèi)轉(zhuǎn)向輪桿系運(yùn)動(dòng)圖
通過上圖所示的幾何關(guān)系可以的出行程S與外輪轉(zhuǎn)角 的關(guān)系:
(3-1)
式中,l1 為梯形臂的長度;
K為注銷間距;
M為齒輪齒條拉桿長度;
為傳動(dòng)角;
為齒條軸線相對前軸線偏距;
轉(zhuǎn)角間關(guān)系可由式(3-2)表示:
(3-2)
式中, ;可以用式(3-3)表示:
(3-3)
式中,l2 為拉桿的長度,可由K、M表示出來;
綜合式(3-1)(3-2)(3-3),可得式(3-4):
(3-4)
內(nèi)轉(zhuǎn)向輪處的桿系運(yùn)動(dòng)及坐標(biāo)建立如圖3-3所示,齒條右移了相同的行程S,通過左橫拉桿帶動(dòng)左梯形臂轉(zhuǎn)過,則: ,齒條的實(shí)際行程S可由式(3-5)表示:
(3-5)
同樣,求得 如下式(3-5):
(3-5)
橫拉桿 長度可有已知的K、M來表示:
因此,可以利用任意一外輪轉(zhuǎn)角 的齒條行程S得出對應(yīng)的內(nèi)輪轉(zhuǎn)角 ,記作 ;
3.3轉(zhuǎn)向梯形的數(shù)學(xué)模型
為了簡化數(shù)學(xué)模型,忽略一些次要因素作如下假設(shè):
(1)車輪外傾角,轉(zhuǎn)向軸線內(nèi)傾角為零;
(2)全部鉸鏈點(diǎn)為無間隙配合;
(3)所有桿件均為剛體;
(4)各橋轉(zhuǎn)向節(jié)臂在水平面內(nèi)轉(zhuǎn)動(dòng);
(5)雙搖臂和中間連桿處在同一垂直平面內(nèi);
3.3.1建立目標(biāo)函數(shù)
轉(zhuǎn)向梯形機(jī)構(gòu)優(yōu)化設(shè)計(jì)的目標(biāo)就是要在規(guī)定的轉(zhuǎn)角范圍內(nèi)使實(shí)際的內(nèi)(或外)輪轉(zhuǎn)角盡量地接近對應(yīng)的理想的內(nèi)(或外)輪轉(zhuǎn)角。為了綜合評價(jià)在全部轉(zhuǎn)角范圍內(nèi)兩者接近的精確程度,并考慮到在最常用的中小轉(zhuǎn)角時(shí)希望兩者盡量接近,因此,將轉(zhuǎn)角α離散化,離散步長取為1°。同時(shí)其誤差在最常用的中間位置附近小轉(zhuǎn)角范圍內(nèi)應(yīng)盡量小,以減小高速行駛時(shí)輪胎的磨損,而在不經(jīng)常使用且車速較慢的最大轉(zhuǎn)角時(shí),可適當(dāng)放寬要求,因此再引入加權(quán)因子 ,目標(biāo)函數(shù)可由式(3-6)表示:
(3-6)
考慮到汽車常用轉(zhuǎn)角α小于20°,且10°以內(nèi)的小轉(zhuǎn)角范圍使用得比較頻繁,因此?。?
(0°< ≤10°)
(10°< ≤20°)
(20°< )
3.3.2設(shè)計(jì)變量
對于給定的汽車,其軸距L=2340mm,主銷后傾角、左右兩主銷軸線延長線與地面交點(diǎn)之間的距離K為己知值,K=1135mm。同時(shí),對于選定的齒輪齒條式轉(zhuǎn)向器,其齒條兩端球鉸中心距M也為己知值,M=530mm。故在設(shè)計(jì)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)時(shí),需要確定的參數(shù)為梯形底角 、梯形臂長 以及齒條軸線到梯行底邊的安裝距離h。而橫拉桿長 則可由轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的上述參數(shù)以及己知的汽車參數(shù)K和轉(zhuǎn)向器參數(shù)M來確定。因此設(shè)計(jì)變量可確定如下:
(1)梯形臂長;
(2)傳動(dòng)角;
(3)齒條軸線到梯形底邊的安裝距離h;
3.3.3約束條件
考慮到轉(zhuǎn)向機(jī)構(gòu)與其他機(jī)構(gòu)的干涉問題,轉(zhuǎn)向盤轉(zhuǎn)角與齒條的長度,需要對傳動(dòng)角進(jìn)行限制,由此引入限位點(diǎn)By,并且齒輪齒條轉(zhuǎn)向機(jī)構(gòu)在優(yōu)化中應(yīng)滿足如下條件:
(1)在安裝轉(zhuǎn)向機(jī)構(gòu)的位置處,可能會與轉(zhuǎn)向機(jī)構(gòu)中運(yùn)動(dòng)部分干涉的位置點(diǎn)已經(jīng)確定,為了保證轉(zhuǎn)向機(jī)構(gòu)不與其它機(jī)構(gòu)干涉,可以通過限制B點(diǎn)在Y方向上的坐標(biāo)值來滿足要求,可由式(3-7)表示:
(3-7)
式中,By為汽車上可能與轉(zhuǎn)向機(jī)構(gòu)模型中的B點(diǎn)產(chǎn)生干涉的位置點(diǎn)的Y坐標(biāo)值,單位:mm。
(2)要保證有足夠大的傳動(dòng)角 。傳動(dòng)角是指轉(zhuǎn)向梯形臂與橫拉桿所夾的銳角 對應(yīng)于同一齒條行程,內(nèi)輪一側(cè)的傳動(dòng)角總比外輪一側(cè)的傳動(dòng)角 要小,且當(dāng) 達(dá)到最大時(shí), 為最小值。而轉(zhuǎn)向器安裝距離h對傳動(dòng)角的影響較大,h越小,可獲得的傳動(dòng)角 就越小。根據(jù)幾何關(guān)系變換,可得h的取值范圍為可由式(3-8)和式(3-9)得出:
(3-8)
(3-9)
(3)保證有足夠的齒條滑塊向左或向右的行程來實(shí)現(xiàn)要求的最大轉(zhuǎn)角,即:
式中, 為轉(zhuǎn)向器的許用齒條行程(左右總程);
3.4建立優(yōu)化數(shù)學(xué)模型
基于以上分析,可把齒輪齒條式轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的數(shù)學(xué)模型表達(dá)如下:
目標(biāo)函數(shù)[13]可由式(3-10)表示:
(3-10)
運(yùn)用Matlab優(yōu)化工具箱求解;
目標(biāo)函數(shù)M文件的編寫:
已知奇瑞QQ型車的相關(guān)參數(shù),其中梯形臂長度為l1=106 mm,傳動(dòng)角 =60°,齒輪齒條拉桿長度M=609 mm,齒條的許用行程S=145 mm,轉(zhuǎn)向主銷間距K=1135mm。軸距L=2 340 mm,車輪的滾動(dòng)半徑r=266 mm,主銷后傾角 =2.5°,梯形臂BO在前軸上的許用投影長By=42 mm,根據(jù)最小轉(zhuǎn)彎半徑的要求,最大外輪轉(zhuǎn)角為30°。根據(jù)以上參數(shù),編寫目標(biāo)函數(shù)并以文件名并保存在Matlab工作目錄下。運(yùn)用Matlab工具箱中已有的函數(shù)“l(fā)sqnonlin”函數(shù)求實(shí)際值與期望值的標(biāo)準(zhǔn)差?;蜥槍Ρ驹O(shè)計(jì),可將.fun調(diào)用文件以及主函數(shù)寫在一個(gè)程序里面。
其函數(shù)如圖3-4所示.
對于非線性約束函數(shù),編寫其對應(yīng)約束函數(shù)程序,并以保存在Matlab工作目錄中。
在MATLAB主程序M文件中調(diào)用優(yōu)化函數(shù):
[x,fval,exit-flag]=fmincon(@obj_fun,x0,[],[],[],[],A,b,@my-con,options);
disp('X的最優(yōu)解');
disp(x);
disp('最優(yōu)解處誤差累計(jì)最小值');
disp(fval);
end;
優(yōu)化結(jié)果如圖3-5所示,為實(shí)際轉(zhuǎn)角和理論轉(zhuǎn)角的你和曲線,求得最小的平均差m和此時(shí)對應(yīng)的變量數(shù)值:
圖3-4MATLAB函數(shù)
圖3-4實(shí)際轉(zhuǎn)角和理論轉(zhuǎn)角關(guān)系圖
優(yōu)化結(jié)果m=0.0057,
l1=240mm,=70°,h=222mm。
第 4 章 轉(zhuǎn)向系統(tǒng)建模及有限元分析
4.1利用CATIA建立傳動(dòng)機(jī)構(gòu)三維模型
首先應(yīng)當(dāng)確立三維圖的繪制順序[14]:
本文的建模順序?yàn)椋河山⒂旋X輪軸到齒條滑塊的轉(zhuǎn)向器的三維模型,再建立有轉(zhuǎn)向器到轉(zhuǎn)向節(jié)的三維模型,然后建立由從齒條到車輪的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)到由方向盤到齒條的轉(zhuǎn)向操縱機(jī)構(gòu)的三維模型,最后對所有部件進(jìn)行總裝配和約束。
(1)在對轉(zhuǎn)向器參數(shù)進(jìn)行了選擇和計(jì)算之后首先繪制齒輪軸(圖4-1)和齒條滑塊(圖4-2)及轉(zhuǎn)向器殼體三維圖后,完成基礎(chǔ)上進(jìn)行裝配獲得轉(zhuǎn)向器的三維模型如圖4-3;
圖4-1轉(zhuǎn)向器齒輪軸
齒輪軸的設(shè)計(jì):根據(jù)已知的齒輪參數(shù)選擇合理的軸徑,然后大體設(shè)計(jì)出各段的軸長,這些參數(shù)需要和轉(zhuǎn)向器殼體與軸承的設(shè)計(jì)和選擇完備后,才能最終確定下來。
斜齒輪的畫法:
建立圓柱體在圓柱體一端面畫輪齒的輪廓投影到另一個(gè)端面再旋轉(zhuǎn)一個(gè)角度,通過 Multi-section Solid 功能完成單齒三維構(gòu)造,對端面進(jìn)行圓形陣列繪制齒輪齒[15] 。
也可以用齒輪生成器輸入齒輪的參數(shù)后進(jìn)行生成一個(gè)斜齒輪,然后畫各段軸。
圖4-2齒條滑塊
齒條滑塊和齒輪軸都確定以后,就可以試著進(jìn)行裝配設(shè)計(jì),在其基礎(chǔ)上建立轉(zhuǎn)向器套筒的三維模型,同時(shí)可以選取軸承的內(nèi)外徑,接著就可對上述部件進(jìn)行裝配了。
圖4-3轉(zhuǎn)向器三維模型
(2)為了方便在ANSYS中對轉(zhuǎn)向節(jié)進(jìn)行有限元分析[19],需要初步建立轉(zhuǎn)向節(jié)的三維模型如圖4-4;
轉(zhuǎn)向節(jié)是汽車轉(zhuǎn)向中的重要組成部分,與外部有4個(gè)節(jié)點(diǎn),本文設(shè)計(jì)的轉(zhuǎn)向節(jié)上方連著彈簧減震器相連[16],下方與下三角擺臂相連,前方連接制動(dòng)裝置,后方與轉(zhuǎn)向系統(tǒng)的橫拉桿連在一起。
圖4-4轉(zhuǎn)向節(jié)三維模型
(3)繪制整個(gè)轉(zhuǎn)向梯形機(jī)構(gòu)的三維圖4-5:
圖4-5轉(zhuǎn)向梯形機(jī)構(gòu)
轉(zhuǎn)向節(jié)設(shè)計(jì)完畢后便可以進(jìn)行有限元分析了,本課題中轉(zhuǎn)向節(jié)的有限元分析用到ANSYS分析軟件。
4.2利用CATIA建立操縱機(jī)構(gòu)三維模型
繪制轉(zhuǎn)向操縱機(jī)構(gòu)的主要零部件,可以依據(jù)設(shè)計(jì)距離依次進(jìn)行建模,過程包含了從下轉(zhuǎn)向節(jié)到方向盤等一系列零件,首先繪制上下轉(zhuǎn)向節(jié)的實(shí)體模型,而后對轉(zhuǎn)向柱進(jìn)行設(shè)計(jì),見圖4-6:
圖4-6轉(zhuǎn)向柱
完成后就可以選用適當(dāng)?shù)妮S承,并設(shè)計(jì)轉(zhuǎn)向柱套筒尺寸規(guī)格,所有部件設(shè)計(jì)完成后,就可以進(jìn)行裝配,得到如圖4-7所示的轉(zhuǎn)向操縱機(jī)構(gòu)三維模型。
圖4-7轉(zhuǎn)向操縱機(jī)構(gòu)
4.3利用CATIA對轉(zhuǎn)向系統(tǒng)總裝配
對已完成的設(shè)計(jì)零件依次裝配并建立適當(dāng)?shù)募s束后,整個(gè)轉(zhuǎn)向系統(tǒng)的三維模型便建立了,如圖4-8所示。
圖4-8轉(zhuǎn)向系統(tǒng)
設(shè)計(jì)到此,整個(gè)轉(zhuǎn)向系統(tǒng)的三維模型初步建立了,但是還需要對轉(zhuǎn)向節(jié)進(jìn)行有限元分析之后,才可確定最終模型。之后可進(jìn)行一些材料,渲染的后期制作。
4.4基于ANSYS的轉(zhuǎn)向節(jié)有限元分析
4.4.1分析前的處理
由于前文已經(jīng)建立了轉(zhuǎn)向節(jié)的實(shí)體模型,故可跳過這一步,進(jìn)行材料選擇。
本文中轉(zhuǎn)向節(jié)使用強(qiáng)度較高的球墨鑄鐵,強(qiáng)度較高,可以滿足不同工況的使用要求。
首先需要分析其受力情況,按照需求,本文中主要對收到載荷最大的三種情況進(jìn)行分析,三種工況分別是分別是路過不平路面工況、轉(zhuǎn)向側(cè)滑工況、緊急制動(dòng)工況。這三種工況分別對應(yīng)不同的受力情況,也有可能相互疊加作用,本文只考慮單一作用下的有限元分析。
使用Model命令將三維模型導(dǎo)入到ANSYS中去進(jìn)行單元選擇和網(wǎng)格劃分,網(wǎng)格劃分可選取不同單位[19],為了獲得更加細(xì)致的結(jié)果,此處以0.01作為分析的單元格。
4.4.2工況分析
本文主要分析轉(zhuǎn)向節(jié)在三種高應(yīng)力工況下的應(yīng)力和應(yīng)變。分別是路過不平路面工況、轉(zhuǎn)向側(cè)滑工況、緊急制動(dòng)工況。
其受力可大致由表4-1表示[20]。
表4-1三種典型工況的載荷分布情況
工況
載荷類型
載荷符號
ANSYS中符號
參考數(shù)值
單位
路過不平路面工況
垂直載荷
Fzmax
FY
10135
N
緊急制動(dòng)工況
垂直載荷
Fz
FY
5705
N
縱向載荷
Fx
FX
4303
N
附加力矩
Mz
MY
1239300
N·m
側(cè)滑工況
垂直載荷
Fz
FY
7378
N
側(cè)向載荷
Fy
FZ
7378
N
附加力矩
Mx
-MX
-2124986
N·m
了解了受力情況之后,就可以在軟件中進(jìn)行模擬受力和分析。下面是三種不同工況下轉(zhuǎn)向節(jié)的應(yīng)力和應(yīng)變。
(1)緊急制動(dòng)工況
緊急制動(dòng)工況下,汽車受到垂直方向載荷以及很大的縱向載荷,是汽車行駛中經(jīng)常遇到的危險(xiǎn)工況。
轉(zhuǎn)向節(jié)的應(yīng)力和應(yīng)變結(jié)果如圖4-9所示:
圖4-9轉(zhuǎn)向節(jié)緊急制動(dòng)工況下的應(yīng)力和應(yīng)變
(2)越過不平路面工況
車輛在不平路面行駛時(shí),車輛的振動(dòng)使轉(zhuǎn)向節(jié)承受帶沖擊性的疲勞載荷,因此,該工況動(dòng)載系數(shù)最大。這時(shí)應(yīng)力與應(yīng)變的分布情況如圖4-10所示:
圖4-10轉(zhuǎn)向節(jié)越過不平路面時(shí)的應(yīng)力(上)和應(yīng)變(下)
(3)轉(zhuǎn)向側(cè)滑工況
車輛發(fā)生轉(zhuǎn)向側(cè)滑時(shí),左、右兩個(gè)前輪將分別受到一大小不等、方向相同的側(cè)向力。這時(shí)主要受垂直載荷FY、側(cè)向載荷FZ、以及附加力矩MX的共同作用,其應(yīng)力和應(yīng)變?nèi)鐖D4-11所示:
圖4-11轉(zhuǎn)向節(jié)在側(cè)滑工況下的應(yīng)力(上)與應(yīng)變(下)
從受力和應(yīng)變來看,危險(xiǎn)面集中在下方與下三角擺臂連接處,雖然分析可以不同工況下的載荷,但還是要加強(qiáng)厚度使之更加安全、耐用。
Equation Chapter (Next) Section 1
結(jié)論
本文基于CATIA三維實(shí)體設(shè)計(jì)軟件,對奇瑞QQ這一乘用車型的轉(zhuǎn)向系統(tǒng)進(jìn)行了設(shè)計(jì),通過軟件對轉(zhuǎn)向梯形進(jìn)行優(yōu)化,并對轉(zhuǎn)向節(jié)進(jìn)行了有限元分析,得出以下結(jié)論:
(1)根據(jù)轉(zhuǎn)向系統(tǒng)在實(shí)際操作中的要求,一步一步對轉(zhuǎn)向系統(tǒng)中的傳動(dòng)結(jié)構(gòu)、布置形式等進(jìn)行選擇和計(jì)算,在確立轉(zhuǎn)向梯形機(jī)構(gòu)參數(shù)的情況下,利用內(nèi)外輪轉(zhuǎn)向角幾何關(guān)系的MATLAB建立最終函數(shù)關(guān)系式,在添加完成所需的約束條件后,使用優(yōu)化工具箱求出最優(yōu)解。從而得出理想的轉(zhuǎn)向拉桿、轉(zhuǎn)向節(jié)臂和梯形距的最終配合。
(2)由設(shè)計(jì)順序的進(jìn)行,利用CATIA依次對轉(zhuǎn)向器、轉(zhuǎn)向節(jié)、轉(zhuǎn)向梯形進(jìn)行三維實(shí)體建模,不僅使整個(gè)設(shè)計(jì)過程能夠有條不紊,并且能夠選取更加合理的尺寸,獲得更佳的整體尺寸布置形式以及轉(zhuǎn)向性能。
整個(gè)設(shè)計(jì)完成之后得到一套完整的轉(zhuǎn)向系統(tǒng),但是由于部分的欠缺,助力部分不能根號的發(fā)揮作用,另外對汽車在實(shí)際行駛過程中的種種工況也欠缺考慮。本課題研究的主要目的是通過此次設(shè)計(jì),進(jìn)一步加深對車輛結(jié)構(gòu)、汽車?yán)碚?、汽車設(shè)計(jì)以及三維實(shí)體設(shè)計(jì)等相關(guān)知識的學(xué)習(xí),整個(gè)設(shè)計(jì)過程經(jīng)歷了結(jié)構(gòu)優(yōu)化、部件分析、元件設(shè)計(jì)及三維建模的過程,基本達(dá)到了課題的設(shè)計(jì)任務(wù)和目的。
致 謝
在本次論文設(shè)計(jì)過程中,劉濤老師對該論文從選題,構(gòu)思到最后定稿的各個(gè)環(huán)節(jié)給予細(xì)心指引與教導(dǎo),并且在過程中不斷地督促和監(jiān)督,使我得以最終完成畢業(yè)論文設(shè)計(jì)。感謝劉濤老師對我四年來的幫助。同時(shí)感謝學(xué)校給我們這次畢業(yè)設(shè)計(jì)機(jī)會,是我們在實(shí)際設(shè)計(jì)中獲得更多的知識和技能。感謝大學(xué)同學(xué)舍友對我的無私幫助。
然后還要感謝大學(xué)四年來所有的老師,為我們打下機(jī)械及汽車專業(yè)知識的基礎(chǔ);同時(shí)還要感謝所有的同學(xué)們,正是因?yàn)橛辛四銈兊闹С趾凸膭?lì)。此次畢業(yè)設(shè)計(jì)才會順利完成。
參考文獻(xiàn)
[1] 林逸,張晰,施國標(biāo),邢洪濱. 汽車轉(zhuǎn)向感覺主觀評價(jià)實(shí)驗(yàn)方法綜述[D]. 北京理工大學(xué),2007
[2] 朱海. 電動(dòng)助力轉(zhuǎn)向匹配分析及性能評價(jià)研究[M]. 2004
[3] 余卓平,孟濤,陳慧,張立軍. 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的技術(shù)發(fā)展趨勢[D].同濟(jì)大學(xué),2009
[4] 黃榕清向鐵明,許迎東. 電動(dòng)助力轉(zhuǎn)向的原理和發(fā)展[D]. 華南理工大學(xué), 2008
[5] 趙燕. C型電動(dòng)轉(zhuǎn)向器動(dòng)力學(xué)分析與研究[D]. 武漢理工大學(xué),2006
[6] 徐石安.汽車構(gòu)造-底盤工程[M].北京:清華大學(xué)出版社,2008.
[7] 胡海峰. 轉(zhuǎn)向器齒輪齒條設(shè)計(jì)與受力分析[J]. 科學(xué)與應(yīng)用2013. 11
[8] 胡愛軍,王朝輝. 汽車主動(dòng)安全性[D]. 河南理工大學(xué),2011
[9] 吳曉建. 齒輪齒條式轉(zhuǎn)向機(jī)構(gòu)轉(zhuǎn)向特性研究[D]. 重慶理工大學(xué),2009
[10] 張敏中. 與齒輪齒條式轉(zhuǎn)向器配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)[J]. 汽車技術(shù),1994
[11] Lior R. Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognition, [J]. 2008, 41(4): 676-680
[12] 姚永玉,周遠(yuǎn). 基于Matlab的汽車斷開式轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)優(yōu)化設(shè)計(jì) 汽車技術(shù),2013
[13] 石幸民. 基于MATLAB實(shí)用數(shù)值計(jì)算[D]. 北京:清華大學(xué),2006
[14] Reglil W, Cicirello A. managing digital libraries for computer-aided design. Computer-Aided Design, 2000, 52(6): 119-132.
[15] Chao P Y, Wang Y C. A data exchange framework for networked CAD/CAM. Computers in Industry, 2001, 49(4): 131-140.
[16] 袁旦 汽車轉(zhuǎn)向節(jié)有限元分析與優(yōu)化設(shè)計(jì)[D]. 浙江工業(yè)大學(xué),2010
[17]HtlinaQian,LufangZhang,DanYuan.ThecommunitycooPerationsystembasedon
ChineseCharacteristic[J]. 2008IEEEgthinternationalconferenceoncomPuter aided
industrialdesign&concePtualdesign,2008,6
[18] Jissica.J. Finite element analysis of the automobile steering section. Annal-Manufacturing Technology[J]. 2007, 30(l): 49-52.
[19] Zahed S, Divid R. A virtual prototyping approach to product disassembly reasoning. Computer Aided Design, 1997, 29(12):847-860.
[20]李立友,李芳,袁旦.基于Nastran的汽車轉(zhuǎn)向節(jié)危險(xiǎn)工況有限元分析[J].2010,27(3):38一40
32
- -
收藏