2017-2018學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式學(xué)案 新人教B版選修4-5

上傳人:彩*** 文檔編號(hào):104655506 上傳時(shí)間:2022-06-10 格式:DOC 頁(yè)數(shù):10 大?。?85.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2017-2018學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式學(xué)案 新人教B版選修4-5_第1頁(yè)
第1頁(yè) / 共10頁(yè)
2017-2018學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式學(xué)案 新人教B版選修4-5_第2頁(yè)
第2頁(yè) / 共10頁(yè)
2017-2018學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式學(xué)案 新人教B版選修4-5_第3頁(yè)
第3頁(yè) / 共10頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2017-2018學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式學(xué)案 新人教B版選修4-5》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018學(xué)年高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式學(xué)案 新人教B版選修4-5(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 3.2 用數(shù)學(xué)歸納法證明不等式,貝努利不等式 [讀教材·填要點(diǎn)] 貝努利(Bernoulli)不等式 設(shè)x>-1,且x≠0,n為大于1的自然數(shù),則(1+x)n>1+nx. [小問(wèn)題·大思維] 在貝努利不等式中,指數(shù)n可以取任意實(shí)數(shù)嗎? 提示:可以.但是貝努利不等式的體現(xiàn)形式有所變化.事實(shí)上:當(dāng)把正整數(shù)n改成實(shí)數(shù)α后,將有以下幾種情況出現(xiàn): (1)當(dāng)α是實(shí)數(shù),并且滿足α>1或者α<0時(shí),有(1+x)α≥1+αx(x>-1). (2)當(dāng)α是實(shí)數(shù),并且滿足0<α<1時(shí),有(1+x)α≤1+αx(x>-1). 利用數(shù)學(xué)歸納法證明不等式 [例1] 

2、求證:+++…+>1(n≥2,n∈N+). [思路點(diǎn)撥] 本題考查數(shù)學(xué)歸納法的應(yīng)用,解答本題需要注意n的取值范圍,因?yàn)閚≥2,n∈N+,因此應(yīng)驗(yàn)證n0=2時(shí)不等式成立. [精解詳析] (1)當(dāng)n=2時(shí),左邊=++=>1. ∴n=2時(shí)不等式成立. (2)假設(shè)n=k(k≥2,且k∈N)時(shí),不等式成立,即 +++…+>1,那么n=k+1時(shí), ++…++ =++…+++ =++…++->1+-=1+, ∵k≥2,∴2≥. ∴k2-k-1=2-≥1>0. ∴>0. ∴++…+>1. ∴當(dāng)n=k+1時(shí),不等式也成立. 由(1)、(2)可知,對(duì)一切的n≥2,且n∈N+,此不等式

3、都成立. 利用數(shù)學(xué)歸納法證明不等式的關(guān)鍵是由n=k到n=k+1的變形,為滿足題目的要求,往往要采用“放縮”等手段,例如在本題中采用了“>,…,>”的放縮變形. 1.證明不等式: 1+++…+<2(n∈N+). 證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=2,不等式成立. (2)假設(shè)當(dāng)n=k(k≥1)時(shí),命題成立,即 1+++…+<2. ∵當(dāng)n=k+1時(shí),左邊=1+++…++<2 +=, 現(xiàn)在只需證明<2, 即證:2<2k+1, 兩邊平方,整理:0<1,顯然成立. ∴<2成立. 即1+++…++<2成立. ∴當(dāng)n=k+1時(shí),不等式成立. 由(1)(2)知,對(duì)于任何

4、正整數(shù)n原不等式都成立. 利用數(shù)學(xué)歸納法比較大小 [例2] 設(shè)Pn=(1+x)n,Qn=1+nx+x2,n∈N+,x∈(-1,+∞),試比較Pn與Qn的大小,并加以證明. [思路點(diǎn)撥] 本題考查數(shù)學(xué)歸納法的應(yīng)用,解答本題需要先對(duì)n取特值,猜想Pn與Qn的大小關(guān)系,然后利用數(shù)學(xué)歸納法證明. [精解詳析] (1)當(dāng)n=1,2時(shí),Pn=Qn. (2)當(dāng)n≥3時(shí),(以下再對(duì)x進(jìn)行分類(lèi)). ①若x∈(0,+∞),顯然有Pn>Qn. ②若x=0,則Pn=Qn. ③若x∈(-1,0), 則P3-Q3=x3<0,所以P3

5、4

6、列{an},{bn}與函數(shù)f(x),g(x),x∈R,滿足條件:b1=b,an=f(bn)=g(bn+1)(n∈N+).若函數(shù)y=f(x)為R上的增函數(shù),g(x)=f-1(x),b=1,f(1)<1,證明:對(duì)任意n∈N+,an+1

7、(2)假設(shè)n=k時(shí)結(jié)論成立,即ak+1對(duì)一切正整數(shù)n都成立,求正整數(shù)a的最大值,并證明你的結(jié)論. [思路點(diǎn)撥] 本題考查數(shù)學(xué)歸納法的應(yīng)用以及探索型問(wèn)題的求解方法.解答本題需要根據(jù)n的取值,猜想出a的最大值,然后再利用數(shù)學(xué)歸納法進(jìn)行證明. [精解詳析] 當(dāng)n=1時(shí),++>

8、, 即>, ∴a<26,而a∈N+,∴取a=25. 下面用數(shù)學(xué)歸納法證明++…+>. (1)n=1時(shí),已證. (2)假設(shè)當(dāng)n=k(k≥1,k∈N+)時(shí), ++…+>, 則當(dāng)n=k+1時(shí),有 ++…++++ =+ >+. ∵+=>, ∴+->0, ∴++…+>也成立. 由(1)、(2)可知,對(duì)一切n∈N+,都有++…+>,∴a的最大值為25. 利用數(shù)學(xué)歸納法解決探索型不等式的思路是:先通過(guò)觀察、判斷,猜想出結(jié)論, 然后用數(shù)學(xué)歸納法證明.這種分析問(wèn)題和解決問(wèn)題的思路是非常重要的,特別是在求解存在型或探索型問(wèn)題時(shí). 3.對(duì)于一切正整數(shù)n,先猜出使tn>n2成立

9、的最小的正整數(shù)t,然后用數(shù)學(xué)歸納法證明,并再證明不等式:n(n+1)·>lg(1·2·3·…·n). 解:猜想當(dāng)t=3時(shí),對(duì)一切正整數(shù)n使3n>n2成立.下面用數(shù)學(xué)歸納法進(jìn)行證明. 當(dāng)n=1時(shí),31=3>1=12,命題成立. 假設(shè)n=k(k≥1,k∈N+)時(shí),3k>k2成立, 則有3k≥k2+1. 對(duì)n=k+1,3k+1=3·3k=3k+2·3k ≥k2+2(k2+1)>3k2+1. ∵(3k2+1)-(k+1)2 =2k2-2k=2k(k-1)≥0, ∴3k+1>(k+1)2,∴對(duì)n=k+1,命題成立. 由上知,當(dāng)t=3時(shí),對(duì)一切n∈N+,命題都成立. 再用數(shù)學(xué)歸納法證

10、明: n(n+1)·>lg(1·2·3·…·n). 當(dāng)n=1時(shí),1·(1+1)·=>0=lg 1,命題成立. 假設(shè)n=k(k≥1,k∈N+)時(shí), k(k+1)·>lg(1·2·3·…·k)成立. 當(dāng)n=k+1時(shí),(k+1)(k+2)· =k(k+1)·+2(k+1)· >lg(1·2·3·…·k)+lg 3k+1 >lg(1·2·3·…·k)+lg(k+1)2 =lg[1·2·3·…·k·(k+1)].命題成立. 由上可知,對(duì)一切正整數(shù)n,命題成立. [對(duì)應(yīng)學(xué)生用書(shū)P45] 一、選擇題 1.對(duì)于一切正整數(shù)n,下列說(shuō)法不正確的是(  ) A.3n≥1+2n 

11、       B.0.9n≥1-0.1n C.0.9n<1-0.1n D.0.1n≥1-0.9n 解析:由貝努利不等式 (1+x)n≥1+nx(x∈N+,x>-1), ∴當(dāng)x=2時(shí),(1+2)n≥1+2n,故A正確. 當(dāng)x=-0.1時(shí),(1-0.1)n≥1-0.1n,B正確,C不正確. 當(dāng)x=-0.9時(shí),(1-0.9)n≥1-0.9n,D正確. 答案:C 2.在用數(shù)學(xué)歸納法證明f(n)=++…+<1(n∈N+,n≥3)的過(guò)程中:假設(shè)當(dāng)n=k(k∈N+,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(

12、k),則g(k)=(  ) A.+ B.+- C.- D.- 解析:∵f(k+1)=++…+++, f(k)=++…+, ∴f(k+1)-f(k)=-++, ∴g(k)=+-.故選B. 答案:B 3.用數(shù)學(xué)歸納法證明“

13、沒(méi)有用到當(dāng)n=k時(shí)的結(jié)論,這樣就失去假設(shè)當(dāng)n=k時(shí)命題成立的意義,也不能構(gòu)成一個(gè)遞推關(guān)系,這不是數(shù)學(xué)歸納法.∴A、B、C都不對(duì),選D. 答案:D 4.利用數(shù)學(xué)歸納法證明不等式1+++…+1),當(dāng)n=2時(shí),要證明的式子為_(kāi)_______. 解析:當(dāng)n=2時(shí),要證明的式子為 2<1+++<3.

14、 答案:2<1+++<3 6.用數(shù)學(xué)歸納法證明:當(dāng)n∈N+,1+2+22+23+…+25n-1是31的倍數(shù)時(shí),當(dāng)n=1時(shí)原式為_(kāi)_______,從k到k+1時(shí)需增添的項(xiàng)是________. 解析:當(dāng)n=1時(shí), 原式為1+2+22+23+25-1=1+2+22+23+24. 從k到k+1時(shí)需增添的項(xiàng)是 25k+25k+1+25k+2+25k+3+25k+4. 答案:1+2+22+23+24 25k+25k+1+25k+2+25k+3+25k+4 7.利用數(shù)學(xué)歸納法證明“<”時(shí),n的最小取值n0應(yīng)為_(kāi)_______. 解析:n0=1時(shí)不成立,n0=2時(shí),<,再用數(shù)學(xué)歸納法證明,故

15、n0=2. 答案:2 8.設(shè)a0為常數(shù),且an=3n-1-2an-1(n∈N+),若對(duì)一切n∈N+,有an>an-1,則a0的取值范圍是________. 解析:取n=1,2,則a1-a0=1-3a0>0,a2-a1=6a0>0,∴0

16、比較2n+2與n2的大小(n∈N+),并用數(shù)學(xué)歸納法證明你的結(jié)論. 解:當(dāng)n=1、n=2、n=3時(shí)都有2n+2>n2成立,所以歸納猜想2n+2>n2成立. 下面用數(shù)學(xué)歸納法證明: ①當(dāng)n=1時(shí),左邊=21+2=4;右邊=1,左邊>右邊,所以原不等式成立; 當(dāng)n=2時(shí),左邊=22+2=6,右邊=22=4,所以左邊>右邊; 當(dāng)n=3時(shí),左邊=23+2=10,右邊=32=9,所以左邊>右邊. ②假設(shè)n=k時(shí)(k≥3且k∈N+)時(shí),不等式成立, 即2k+2>k2. 那么n=k+1時(shí) 2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2 又因:2k2-2-(k+1)2=k2-

17、2k-3=(k-3)(k+1)≥0, 即2k+1+2>(k+1)2成立. 根據(jù)①和②可知,2n+2>n2對(duì)于任何n∈N+都成立. 11.已知等比數(shù)列{an}的首項(xiàng)a1=2,公比q=3,Sn是它的前n項(xiàng)和.求證:≤. 證明:由已知,得Sn=3n-1, ≤等價(jià)于≤, 即3n≥2n+1.(*) 法一:用數(shù)學(xué)歸納法證明上面不等式成立. ①當(dāng)n=1時(shí),左邊=3,右邊=3,所以(*)成立. ②假設(shè)當(dāng)n=k時(shí),(*)成立,即3k≥2k+1, 那么當(dāng)n=k+1時(shí),3k+1=3×3k≥3(2k+1)=6k+3≥2k+3=2(k+1)+1, 所以當(dāng)n=k+1時(shí),(*)成立. 綜合①②,得3n≥2n+1成立. 所以≤. 法二:當(dāng)n=1時(shí),左邊=3,右邊=3,所以(*)成立. 當(dāng)n≥2時(shí),3n=(1+2)n=C+C×2+C×22+…+C×2n=1+2n+…>1+2n,所以(*)成立. 所以≤. 10

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲