2018版高考數(shù)學二輪復習 第1部分 重點強化專題 專題1 三角函數(shù) 第1講 三角函數(shù)問題教學案 理

上傳人:彩*** 文檔編號:104797485 上傳時間:2022-06-11 格式:DOC 頁數(shù):14 大?。?72.50KB
收藏 版權(quán)申訴 舉報 下載
2018版高考數(shù)學二輪復習 第1部分 重點強化專題 專題1 三角函數(shù) 第1講 三角函數(shù)問題教學案 理_第1頁
第1頁 / 共14頁
2018版高考數(shù)學二輪復習 第1部分 重點強化專題 專題1 三角函數(shù) 第1講 三角函數(shù)問題教學案 理_第2頁
第2頁 / 共14頁
2018版高考數(shù)學二輪復習 第1部分 重點強化專題 專題1 三角函數(shù) 第1講 三角函數(shù)問題教學案 理_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018版高考數(shù)學二輪復習 第1部分 重點強化專題 專題1 三角函數(shù) 第1講 三角函數(shù)問題教學案 理》由會員分享,可在線閱讀,更多相關(guān)《2018版高考數(shù)學二輪復習 第1部分 重點強化專題 專題1 三角函數(shù) 第1講 三角函數(shù)問題教學案 理(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第1講 三角函數(shù)問題 題型1 三角函數(shù)的圖象問題 (對應(yīng)學生用書第1頁) ■核心知識儲備………………………………………………………………………· 1.“五點法”作圖 用五點法畫y=Asin(ωx+φ)在一個周期內(nèi)的簡圖時,一般先列表,后描點,連線,其中所列表如下: x - -+ - ωx+φ 0 π 2π Asin(ωx+φ) 0 A 0 -A 0 2.圖象變換 ■典題試解尋法……………………………………………………………………… 【典題1】 (考查三角函數(shù)圖象的平移變換) (2017·全國Ⅰ卷)已知曲線C1:y=cos

2、 x,C2:y=sin,則下面結(jié)論正確的是(  ) A.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2 B.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2 C.把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2 D.把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2 [思路分析] 異名三角函數(shù)同名三角函數(shù)得結(jié)論. [解析] 因為y=sin=cos=cos,所以曲線C1:y=cos x上各點的橫坐標

3、縮短到原來的,縱坐標不變,得到曲線y=cos 2x,再把得到的曲線y=cos 2x向左平移個單位長度,得到曲線y=cos 2=cos.故選D. [答案] D 【典題2】 (考查已知三角函數(shù)的圖象求解析式)(2017·洛陽模擬)函數(shù)f(x)=2sin(ωx+φ)的部分圖象如圖1-1所示,已知圖象經(jīng)過點A(0,1),B,則f(x)=________. 【導學號:07804000】 圖1-1 [思路分析] 由圖象得周期T,利用T=得ω→由特殊點A(0,1)得關(guān)于φ的三角方程→利用φ的范圍確定φ的值→f(x). [解析] 由已知得=,∴T=,又T=,∴ω=3. ∵f(0)=1,∴s

4、in φ=,又∵0<φ<,∴φ=, ∴f(x)=2sin(經(jīng)檢驗滿足題意). [答案] 2sin [類題通法] (1)當原函數(shù)與所要變換得到的目標函數(shù)的名稱不同時,首先要將函數(shù)名稱統(tǒng)一,將y=sin ωx(ω>0)的圖象變換成y=sin(ωx+φ)的圖象時,只需進行平移變換,應(yīng)把ωx+φ變換成ω,根據(jù)確定平移量的大小,根據(jù)的符號確定平移的方向. (2)函數(shù)y=Asin(ωx+φ)的解析式的確定 ①A由最值確定,A=; ②ω由周期確定; (3)φ由圖象上的特殊點確定. 通常利用峰點、谷點或零點列出關(guān)于φ的方程,結(jié)合φ的范圍解得φ的值,所列方程如下: 峰點:ωx+φ=+2kπ

5、;谷點:ωx+φ=-+2kπ.,利用零點時,要區(qū)分該零點是升零點,還是降零點. 升零點(圖象上升時與x軸的交點):ωx+φ=2kπ; 降零點(圖象下降時與x軸的交點):ωx+φ=π+2kπ.(以上k∈Z) ■對點即時訓練………………………………………………………………………· 1.已知函數(shù)f(x)=sin2(ωx)-(ω>0)的最小正周期為,若將其圖象沿x軸向右平移a(a>0)個單位,所得圖象關(guān)于原點對稱,則實數(shù)a的最小值為(  ) A.  B. C. D. D [依題意得f(x)=-=-cos 2ωx,最小正周期T==,ω=2,所以f(x)=-cos 4x,將f(x)=-cos

6、 4x的圖象向右平移a個單位后得到函數(shù)g(x)=-cos[4(x-a)]的圖象.又函數(shù)g(x)的圖象關(guān)于原點對稱. 因此有g(shù)(0)=-cos 4a=0,4a=kπ+,k∈Z,即a=+,k∈Z,因此正實數(shù)a的最小值是,選D.] 2.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,0<φ<π)的圖象如圖1-2所示,則f 的值為________. 圖1-2 1 [根據(jù)圖象可知,A=2,=-,所以周期T=π,ω==2. 又函數(shù)過點, 所以有sin=1,而0<φ<π, 所以φ=,則f(x)=2sin, 因此f =2sin=1.] ■題型強化集訓……………………

7、…………………………………………………· (見專題限時集訓T3、T5、T11) 題型2 三角函數(shù)的性質(zhì)問題 (對應(yīng)學生用書第2頁) ■核心知識儲備……………………………………………………………………… 1.三角函數(shù)的單調(diào)區(qū)間: y=sin x的單調(diào)遞增區(qū)間是(k∈Z),單調(diào)遞減區(qū)間是(k∈Z);y=cos x的單調(diào)遞增區(qū)間是[2kπ-π,2kπ](k∈Z),單調(diào)遞減區(qū)間是[2kπ,2kπ+π](k∈Z);y=tan x的單調(diào)遞增區(qū)間是(k∈Z). 2.三角函數(shù)的對稱性 y=Asin(ωx+φ),當φ=kπ(k∈Z)時為奇函數(shù);當φ=kπ+(k∈Z)時為偶函數(shù);對稱軸方程可由ωx

8、+φ=kπ+(k∈Z)求得. y=Acos(ωx+φ),當φ=kπ+(k∈Z)時為奇函數(shù);當φ=kπ(k∈Z)時為偶函數(shù);對稱軸方程可由ωx+φ=kπ(k∈Z)求得. y=Atan(ωx+φ),當φ=kπ(k∈Z)時為奇函數(shù). 3.三角函數(shù)的最值 (1)y=asin x+bcos x+c型函數(shù)的最值: 通過引入輔助角φ可將此類函數(shù)的最值問題轉(zhuǎn)化為y=sin(x+φ)+c的最值問題,然后利用三角函數(shù)的圖象和性質(zhì)求解. (2)y=asin2x+bsin xcos x+ccos2x型函數(shù)的最值:可利用降冪公式sin2x=,sin xcos x=,cos2x=,將y=asin2x+bsin

9、 xcos x+ccos2x轉(zhuǎn)化為y=Asin 2x+Bcos 2x+C,這樣就可將其轉(zhuǎn)化為(1)的類型來求最值. ■典題試解尋法………………………………………………………………………· 【典題1】 (考查三角函數(shù)圖象的對稱性)將函數(shù)f(x)=cos 2x的圖象向右平移個單位后得到函數(shù)g(x)的圖象,則g(x)具有性質(zhì)(  ) A.最大值為1,圖象關(guān)于直線x=對稱 B.在上單調(diào)遞增,為奇函數(shù) C.在上單調(diào)遞增,為偶函數(shù) D.周期為π,圖象關(guān)于點對稱 [解析] 由題意可得將f(x)=cos 2x的圖象向右平移個單位得到g(x)=cos=cos=sin 2x的圖象,因為函數(shù)g(x)為

10、奇函數(shù),所以排除C,又當x=時函數(shù)值為0,當x=時,函數(shù)值為,所以A和D中對稱的說法不正確,選B. [答案] B 【典題2】 (考查三角函數(shù)的值域問題)(2017·全國Ⅱ卷)函數(shù)f(x)=sin2x+cos x-的最大值是________. [解析] f(x)=1-cos2x+cos x-=-+1. ∵x∈, ∴cos x∈[0,1], ∴當cos x=時,f(x)取得最大值,最大值為1. [答案] 1 【典題3】 (考查三角函數(shù)的定義域、周期性及單調(diào)性的判斷)已知函數(shù)f(x)=4tan x·sin·cos-. 【導學號:07804001】 (1)求f(x)的定義域與最小

11、正周期; (2)討論f(x)在區(qū)間上的單調(diào)性. [解] (1)f(x)的定義域為. f(x)=4tan xcos xcos-=4sin xcos- =4sin x-=2sin xcos x+2sin2x- =sin 2x+(1-cos 2x)-=sin 2x-cos 2x=2sin. 所以f(x)的最小正周期T==π. (2)令z=2x-,則函數(shù)y=2sin z的單調(diào)遞增區(qū)間是,k∈Z. 由-+2kπ≤2x-≤+2kπ,得-+kπ≤x≤+kπ,k∈Z. 設(shè)A=,B=,易知A∩B=. 所以當x∈時,f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減. [類題通法] 函數(shù)y=Asi

12、n(ωx+φ)的性質(zhì)及應(yīng)用的求解思路 第一步:先借助三角恒等變換及相應(yīng)三角函數(shù)公式把待求函數(shù)化成y=Asin(ωx+φ)+B的形式; 第二步:把“ωx+φ”視為一個整體,借助復合函數(shù)性質(zhì)求y=Asin(ωx+φ)+B的單調(diào)性及奇偶性、最值、對稱性等問題. ■對點即時訓練………………………………………………………………………· 1.已知函數(shù)f(x)=sin(ωx+2φ)-2sin φcos(ωx+φ)(ω>0,φ∈R)在上單調(diào)遞減,則ω的取值范圍是(  ) A.(0,2] B. C. D. C [f(x)=sin(ωx+φ+φ)-2sin φcos(ωx+φ)=cos φsin(ω

13、x+φ)-sin φcos(ωx+φ)=sin ωx,+2kπ≤ωx≤+2kπ,k∈Z?+≤x≤+,k∈Z,所以函數(shù)f(x)的單調(diào)遞減區(qū)間為, k∈Z,所以+≤π<≤+,k∈Z,由+≤π,可得+2k≤ω,k∈Z,由≤+,k∈Z,可得ω≤1+,k∈Z,所以+2k≤ω≤1+,k∈Z,又≥-π=,所以≥π,因為ω>0,所以0<ω≤2,所以當k=0時,≤ω≤1.故選C.] 2.已知函數(shù)f(x)=Acos2(ωx+φ)+1的最大值為3,f(x)的圖象與y軸的交點坐標為(0,2),其相鄰兩條對稱軸間的距離為2,則f(1)+f(2)+…+f(2 016)=(  ) 【導學號:07804002】 A.

14、2 468 B.3 501 C.4 032 D.5 739 C [f(x)=cos(2ωx+2φ)++1.由相鄰兩條對稱軸間的距離為2,知=2,得T=4=,∴ω=,由f(x)的最大值為3,得A=2.又f(x)的圖象過點(0,2),∴cos 2φ=0,∴2φ=kπ+(k∈Z),即φ=+(k∈Z),又0<φ<,∴φ=,∴f(x)=cos+2=-sin +2.∴f(1)+f(2)+…+f(2 016)=(-1+2)+(0+2)+(1+2)+(0+2)+(-1+2)+…+(0+2)=2×2 016=4 032.] ■題型強化集訓………………………………………………………………………· (見

15、專題限時集訓T1、T4、T6、T7、T8、T12、T13、T14) 題型3 三角恒等變換 (對應(yīng)學生用書第4頁) ■核心知識儲備………………………………………………………………………· 1.兩角和與差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β?sin αsin β; (3)tan(α±β)=. 2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α; (2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; (3)tan 2α=.

16、 3.輔助角公式 asin x+bcos x=sin(x+φ). ■典題試解尋法………………………………………………………………………· 【典題1】 (考查給式求角問題)(2014·全國Ⅰ卷)設(shè)α∈,β∈,且tan α=,則(  ) A.3α-β= B.2α-β= C.3α+β= D.2α+β= [解析] 法一:(切化弦)由tan α=得=, 即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin. ∵α∈,β∈, ∴α-β∈,-α∈, 由sin(α-β)=sin,得α-β=-α, ∴2α-β=. 法二:(弦化切)tan α

17、== = =cot =tan =tan, ∴α=kπ+,k∈Z, ∴2α-β=2kπ+,k∈Z. 當k=0時,滿足2α-β=,故選B. [答案] B 【典題2】 (考查給值求值問題)(2016·江西八校聯(lián)考)如圖1-3,圓O與x軸的正半軸的交點為A,點C,B在圓O上,且點C位于第一象限,點B的坐標為,∠AOC=α,若|BC|=1,則cos2-sincos -的值為________. 【導學號:07804003】 圖1-3 [解析] 由題意可知|OB|=|BC|=1,∴△OBC為正三角形. 由三角函數(shù)的定義可知,sin∠AOB=sin=, ∴cos2-sinco

18、s-=--=cos α-sin α=sin=. [答案]  [類題通法] 解決三角函數(shù)式的化簡求值要堅持“三看”原則:一看“角”,通過看角之間的差別與聯(lián)系,把角進行合理的拆分;二是“函數(shù)名稱”,是需進行“切化弦”還是“弦化切”等,從而確定使用的公式;三看“結(jié)構(gòu)特征”,了解變式或化簡的方向. ■對點即時訓練………………………………………………………………………· 1.對于銳角α,若sin=,則cos=(  ) A. B. C. D.- D [由α為銳角,且sin=,可得cos=,那么cos=cos=coscos -sinsin =,于是cos=2cos2-1=2×-1=-.故選D

19、.] 2.已知tan α=,tan β=-,且0<α<,<β<π,則2α-β的值為________. - [tan 2α==, 又0<α<,所以2α∈,又<β<π, 所以2α-β∈(-π,0),又tan β=-,則tan(2α-β)===1, 故2α-β=-.] ■題型強化集訓………………………………………………………………………· (見專題限時集訓T2、T9、T10) 三年真題| 驗收復習效果 (對應(yīng)學生用書第4頁) 1.(2015·全國Ⅰ卷)sin 20°cos 10°-cos 160°sin 10°=(  ) A.-  B.  C.-  D. D [sin 20°

20、cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=,故選D.] 2.(2016·全國Ⅲ卷)若tan α=,則cos2α+2sin 2α=(  ) A.    B.    C.1    D. A [因為tan α=,則cos2α+2sin 2α====.故選A.] 3.(2016·全國Ⅱ卷)若將函數(shù)y=2sin 2x的圖象向左平移個單位長度,則平移后圖象的對稱軸為(  ) 【導學號:07804004】 A.x=-(k∈Z) B.x=+(k∈Z) C.x=-(k∈Z) D.x=+

21、(k∈Z) B [將函數(shù)y=2sin 2x的圖象向左平移個單位長度,得到函數(shù)y=2sin 2=2sin的圖象.由2x+=kx+(k∈Z),得x=+(k∈Z),即平移后圖象的對稱軸為x=+(k∈Z).] 4.(2017·全國Ⅲ卷)設(shè)函數(shù)f(x)=cos,則下列結(jié)論錯誤的是(  ) A.f(x)的一個周期為-2π B.y=f(x)的圖象關(guān)于直線x=對稱 C.f(x+π)的一個零點為x= D.f(x)在單調(diào)遞減 D [A項,因為f(x)=cos的周期為2kπ(k∈Z),所以f(x)的一個周期為-2π,A項正確. B項,因為f(x)=cos圖象的對稱軸為直線x=kπ-(k∈Z),所以y

22、=f(x)的圖象關(guān)于直線x=對稱,B項正確. C項,f(x+π)=cos.令x+=kπ+(k∈Z),得x=kπ-π,當k=1時,x=,所以f(x+π)的一個零點為x=,C項正確. D項,因為f(x)=cos的遞減區(qū)間為(k∈Z),遞增區(qū)間為(k∈Z),所以是減區(qū)間,是增區(qū)間,D項錯誤.故選D.] 5.(2015·全國Ⅰ卷)函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖1-4所示,則f(x)的單調(diào)遞減區(qū)間為(  ) 【導學號:07804005】 圖1-4 A.,k∈Z B.,k∈Z C.,k∈Z D.,k∈Z D [由圖象知,最小正周期T=2=2, ∴=2,∴ω=π.

23、 由π×+φ=+2kπ,k∈Z,不妨取φ=, ∴f(x)=cos. 由2kπ<πx+<2kπ+π,k∈Z,得2k-

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲